22.05.2014 Views

Homework 11—help 16.12. Solve: Let F π π π π

Homework 11—help 16.12. Solve: Let F π π π π

Homework 11—help 16.12. Solve: Let F π π π π

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Homework</strong> 11—help<br />

16.8. (a) The ideal-gas law says<br />

1 <br />

<br />

V<br />

pV 1<br />

2 2<br />

3p<br />

<br />

1<br />

3<br />

(b)<br />

2<br />

<br />

T2 T1 T1 T1.<br />

pV<br />

1 1 p1 V1<br />

2<br />

<br />

pV pV pV 3p 2V<br />

<br />

T T T 6T<br />

<br />

1 1 2 2 2 2 1 1<br />

2 1 1 1<br />

T1 T2 pV<br />

1 1<br />

p1 V1<br />

<strong>16.12.</strong> <strong>Solve</strong>: <strong>Let</strong> TF TC T :<br />

T T 32T T 32T<br />

40<br />

F<br />

9 9<br />

5 C<br />

5<br />

That is, the Fahrenheit and the Celsius scales give the same numerical value at 40 .<br />

Assess: It is usually unnecessary to specify the scale when the temperature is reported as 40 .<br />

16.20. Model: Treat the oxygen gas in the cylinder as an ideal gas.<br />

<strong>Solve</strong>: (a) The number of moles of oxygen is<br />

M 50 g<br />

n 1.563 mol 1.6 mol<br />

M 32 g mol<br />

(b) The number of molecules is<br />

mol<br />

<br />

<br />

N nN A<br />

1.563 mol 6.0210 mol 9.4110 9.4<br />

10<br />

2<br />

(c) The volume of the cylinder V r L <br />

(d) From the ideal-gas law pV<br />

23 1 23 23<br />

2 2 3<br />

0.10 m 0.40 m 1.257 10 m . Thus,<br />

N<br />

V<br />

23<br />

9.4110<br />

7.510 m<br />

2 3<br />

1.257 10 m<br />

25 3<br />

nRT we can calculate the absolute pressure to be<br />

1.563 mol8.31 J mol K293 K<br />

nRT<br />

p 303 kPa<br />

2 3<br />

V<br />

1.257 10 m<br />

where we used T 20C 293 K. But a pressure gauge reads gauge pressure:<br />

pg p1 atm 303 kPa 101 kPa 202 kPa 200 kPa<br />

16.69. Model: Assume that the compressed air is an ideal gas.<br />

<strong>Solve</strong>: (a) Because the piston is floating in equilibrium,<br />

where the piston’s cross-sectional area A<br />

490 N. Thus,<br />

F ( p p ) Aw<br />

0 N<br />

net 1 atoms<br />

2 2 3 2<br />

( r ) (0.050 m) 7.854 10 m and the piston’s weight w (50 kg)(9.8)<br />

w<br />

490 N<br />

p1 patmos <br />

3 2<br />

A 7.85410 m<br />

<br />

Using the ideal-gas equation 1 1 1<br />

5 5<br />

1.013 10 Pa=1.637 10 Pa


5<br />

(1.637 10 Pa)Ah<br />

1<br />

(0.12 mol)(8.31 J/mol K)[(273 30) K]<br />

With the value of A given above, this equation yields h1 0.235 m 23.5 cm.<br />

(b) When the temperature is increased from T1<br />

303 K to T2 (303 100) K 403 K, the volume changes from V1 Ah1<br />

V Ah at a constant pressure p . 2<br />

p 1<br />

From the before-and-after relationship of the ideal gas:<br />

to<br />

2 2<br />

p1( Ah1) p2( Ah2)<br />

<br />

T T<br />

1 2<br />

p1 T2<br />

403 K <br />

h2 h1<br />

1 0.235 m0.313 m 31.3 cm<br />

p2 T1<br />

303 K <br />

Thus, the piston moves h2 h1 7.8 cm.<br />

16.58. Model: The gas is an ideal gas.<br />

<strong>Solve</strong>: (a) Using the ideal-gas equation,<br />

pV<br />

nR<br />

5 3<br />

1.010 Pa2.0 m <br />

1 1<br />

1<br />

<br />

T<br />

80 mol8.31 J mol K<br />

301 K<br />

Because points 1 and 2 lie on the isotherm, T2 T1 301 K. The temperature of the isothermal process is 301 K.<br />

(b) The straight-line process 1 2 can be represented by the equation<br />

p(3 V) 10<br />

where V is in m 3 and p is in Pa. We can use the ideal gas law to find that the temperature along the line varies as<br />

5<br />

pV<br />

2 10<br />

T (3 V V<br />

) <br />

nR<br />

nR<br />

We can maximize T by setting the derivative dT/dV to zero:<br />

At this volume, the pressure is<br />

dT<br />

10 3<br />

(32 V ) 0 m 1.50 m<br />

dV<br />

nR<br />

2<br />

5<br />

2 3 3<br />

max<br />

Vmax<br />

5<br />

pmax = 1.5 10 Pa and the temperature is<br />

5<br />

T<br />

p V<br />

nR<br />

<br />

(80 mol)(8.31 J/mol K)<br />

5 3<br />

max max<br />

(1.50 10 Pa)(1.5 m )<br />

max<br />

<br />

338 K<br />

Making Espresso<br />

Espresso is a coffee beverage made by forcing steam through finely ground coffee beans.<br />

Modern espresso makers generate steam at very high pressures and temperatures, but in this<br />

problem we'll consider a low-tech espresso machine that only generates steam at 100C and<br />

atomospheric pressure--not much good for making your favorite coffee beverage. The amount of<br />

heat Q needed to turn a mass m of room temperature (T1) water into steam at 100C (T2) can be<br />

found using the specific heat c of water and the heat of vaporization Hv of water at 1 atmosphere<br />

of pressure.<br />

Suppose that a commercial espresso machine in a coffee shop turns 1.50 Kg of water at 22.0 C<br />

into steam at 100C . If and, how much heat Q is absorbed by the water from the heating resistor


inside the machine? Assume that this is a closed and isolated system. C(water) = 4187J/Kg C,<br />

Hv = 2258 KJ/Kg.<br />

PartA :<br />

Q = 4187 ( J/Kg C) ×(100-22) C × 1.5Kg + 2258 ×10 3 J/Kg × 1.5 Kg = 3.88×10 6 J<br />

PartB:<br />

P·t = 1200W ·(time) = Q = 3.88×10 6 J<br />

So t = 3233 s = 54 minutes<br />

PartC<br />

Suppose the mass of propane is m, so that the number of mole of propane gas is m/44.1<br />

It can release the heat m/44.1 × 2219 KJ / mol<br />

<strong>Solve</strong> equation m/44.1 × 2219 KJ / mol = 3.88×10 6 J<br />

Get m = 77g<br />

17.44. Model: There are two interacting systems: coffee (i.e., water) and ice. Changing the coffee temperature from<br />

90C to 60C requires four steps: (1) raise the temperature of ice from 20C to 0C, (2) change ice at 0C to water at<br />

0C, (c) raise the water temperature from 0C to 60C, and (4) lower the coffee temperature from 90C to 60C.<br />

<strong>Solve</strong>: For the closed coffee-ice system,<br />

QQice Qcoffee Q1 Q2 Q3 Q4 0 J<br />

2090 J kg K20 K 41,800 J kg<br />

Q M c T M M<br />

1 ice ice ice ice<br />

Q2 MiceLf Mice 330,000 J kg<br />

<br />

4190 J kg K60 K 251,400 J kg<br />

Q M c T M M<br />

3 ice water ice ice<br />

6 3 3<br />

<br />

Q4 McoffeeccoffeeT<br />

30010 m 1000 kg m 4190 J kg K 30 K 37,000 J<br />

The Q 0 J equation thus becomes<br />

<br />

<br />

M<br />

ice<br />

41,800 330,000 251,400 J kg 37,710 J 0 J M<br />

ice<br />

0.061 kg 61 g<br />

Assess: 61 g is the mass of approximately 1 ice cube.<br />

<br />

17.59. Model: The monatomic gas is an ideal gas which is subject to isobaric and isochoric processes.<br />

<strong>Solve</strong>: (a) For the isochoric process, V 2 V 1 800 10 6 m 3 , p 1 4.0 atm, p 2 2.0 atm. The temperature T 1 of the gas is<br />

obtained from the ideal-gas equation as:<br />

1 1<br />

T1 pV 390 K<br />

nR<br />

where n 0.10 mol. T 2 can be obtained from the ideal-gas equation as follows:<br />

pV<br />

1 1<br />

pV<br />

2 2<br />

2.0 atm <br />

T2 T1p2 p1390 K<br />

195 K<br />

T1 T2<br />

4.0 atm <br />

The heat required for the process 1 2 is<br />

<br />

QnCV T2 T1 0.10 mol 20.8 J/mol K 195 K 390 K 406 J 410 J<br />

Because of the negative sign, this is the amount of heat removed from the gas.<br />

(b) For this isobaric process, p 2 p 3 2.0 atm, V 2 800 10 6 m 3 , and V 3 1600 10 6 m 3 .<br />

6 3<br />

V <br />

3<br />

160010 m <br />

T3 T2 T2<br />

2T<br />

6 3 <br />

2<br />

390 K<br />

V2<br />

80010 m <br />

Thus, the heat required for the process 2 3 is


QnCP T3 T2 0.10 mol 29.1 J mol K 195 K 567 J 570 J<br />

This is heat transferred to the gas.<br />

(c) The change in the thermal energy of the gas is<br />

E Q Q W W 406 J 567 J 0 J + W 162 J p<br />

V<br />

<br />

th 12 23 12 23 23<br />

Assess: This result was expected since T 3 T 1 .<br />

162 J – (2.0 1.013 10 5 Pa)(1600 10 6 m 3 – 800 10 6 m 3 ) 0 J

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!