23.05.2014 Views

Thin film microcalorimeter for heat capacity measurements ... - Physics

Thin film microcalorimeter for heat capacity measurements ... - Physics

Thin film microcalorimeter for heat capacity measurements ... - Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1844 Rev. Sci. Instrum., Vol. 73, No. 4, April 2002 Zink et al.<br />

fields, lead to the consideration of our <strong>microcalorimeter</strong> technology<br />

as a solution <strong>for</strong> the measurement of specific <strong>heat</strong>s of<br />

any small samples in fields up to 30 T and beyond. In these<br />

types of <strong>measurements</strong>, the ability to rely on thermal conductance<br />

values measured in zero field means only need be<br />

measured in high field. Because the magnetoresistance of the<br />

thermometers has no effect on the tau measurement, the thermometers<br />

need not be calibrated in field. These facts save<br />

valuable high field data acquisition time. There are yet many<br />

challeges to adapting these <strong>microcalorimeter</strong>s <strong>for</strong> use in very<br />

high field systems, including the demands of space in small<br />

magnet bores, assuring thermal stability of the calorimeter,<br />

and measuring the impact of the thermometer’s magnetoresistance<br />

on pulsed field <strong>measurements</strong>.<br />

ACKNOWLEDGMENTS<br />

The authors would like to thank Ami Berkowitz <strong>for</strong> the<br />

use of the superconducting magnet system and Etienne Janod<br />

<strong>for</strong> his work on the zero field experiment, as well as the NSF<br />

DMR 9705300 and the Swiss National Fund <strong>for</strong> Scientific<br />

Research <strong>for</strong> providing funding <strong>for</strong> this work.<br />

FIG. 6. a Time constant as a function of temperature in magnetic fields<br />

up to 8 T <strong>for</strong> a device with a 4000-Å-thick <strong>film</strong> sample of a-Gd 0.07 Si 0.93 .<br />

The small shifts in are the signature of the field dependent specific <strong>heat</strong> of<br />

this spin glass. The inset shows the same measurement from 2–80 K. The<br />

large upturn in below 15 K is due to the large low temperature specific<br />

<strong>heat</strong> of a-Gd x Si 1x . b The resulting <strong>heat</strong> <strong>capacity</strong> of this device. The<br />

dotted line indicates the field independent contribution of the addenda,<br />

which is 1% of the total specific <strong>heat</strong> at low T.<br />

V. OUTLOOK-HIGH FIELD MEASUREMENTS<br />

We have demonstrated that our membrane <strong>microcalorimeter</strong><br />

is an effective tool <strong>for</strong> measuring specific <strong>heat</strong> of thin<strong>film</strong><br />

and other small samples from 2–300 K in applied dc<br />

magnetic fields up to 8 T. These results, particularly the reproducibility<br />

of the thermal conductance in various magnetic<br />

1 F. Fominaya, T. Fournier, P. Gandit, and J. Chaussy, Rev. Sci. Instrum. 68,<br />

4191 1997.<br />

2 F. Fominaya, J. Villain, T. Fournier, P. Gandit, J. Chaussy, A. Fort, and A.<br />

Caneschi, Phys. Rev. B 59, 5191999.<br />

3 M. Sohn and F. Baumann, J. Phys.: Condens. Matter 8, 6857 1996.<br />

4 S. G. Doettinger-Zech, M. Uhl, D. L. Sisson, and A. Kapitulnik, Rev. Sci.<br />

Instrum. 72, 2398 2001.<br />

5 B. L. Zink, E. Janod, K. Allen, and F. Hellman, Phys. Rev. Lett. 83, 2266<br />

1999.<br />

6 F. Hellman, E. N. Abarra, A. L. Shapiro, and R. B. van Dover, Phys. Rev.<br />

B 58, 5672 1998.<br />

7 E. N. Abarra, K. Takano, A. E. Berkowitz, and F. Hellman, Phys. Rev.<br />

Lett. 77, 3451 1996.<br />

8 K. Allen and F. Hellman, Phys. Rev. B 60, R11765 1999.<br />

9 K. Allen and F. Hellman, J. Chem. Phys. 111, 52911999.<br />

10 D. Kim, J. M. D. Coey, and F. Hellman, Phys. Rev. B to be published.<br />

11 B. Revaz, M. C. Cyrille, B. L. Zink, I. K. Schuller, and F. Hellman, Phys.<br />

Rev. B to be published.<br />

12 D. W. Denlinger, E. N. Abarra, K. Allen, P. W. Rooney, M. T. Messer, S.<br />

K. Watson, and F. Hellman, Rev. Sci. Instrum. 65, 946 1994.<br />

13 R. Bachman et al., Rev. Sci. Instrum. 43, 2051972.<br />

14 Y. Wang, B. Revaz, A. Erb, and A. Junod, Phys. Rev. B 63, 945081<br />

2001.<br />

15 P. Sullivan and G. Seidel, Phys. Rev. 173, 679 1968.<br />

16 Lake Shore Cryotronics, http://www.lakeshore.com.<br />

17 B. L. Zink, B. Revaz, and F. Hellman unpublished.<br />

Downloaded 01 Apr 2002 to 132.239.69.118. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!