23.05.2014 Views

Short-Range Correlations and the EMC Effect

Short-Range Correlations and the EMC Effect

Short-Range Correlations and the EMC Effect

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Short</strong>-<strong>Range</strong> <strong>Correlations</strong> <strong>and</strong> <strong>the</strong> <strong>EMC</strong> <strong>Effect</strong><br />

Two seemingly unrelated phenomena<br />

Linear correlation between SRC <strong>and</strong> <strong>EMC</strong><br />

Hypo<strong>the</strong>sis: both effects are related to highmomentum<br />

(high-virtuality) nucleons<br />

Are high-momentum (virtuality) nucleons modified?<br />

Future studies


<strong>Short</strong>-<strong>Range</strong> <strong>Correlations</strong> (SRC)<br />

E <br />

(q,ω) <br />

E’ <br />

Partonic (nucleonic) structure of nuclei<br />

Q 2 = !q µ<br />

q µ = q 2 !! 2<br />

! = E '! E<br />

nucleons <br />

x B<br />

=<br />

Q2<br />

2m N<br />

!<br />

E, E’ ≈ 3-5 GeV<br />

Q 2 ≥ 1.5 GeV 2<br />

0 ≤ B ≤ A<br />

B counts <strong>the</strong> number of<br />

nucleons involved : B > n<br />

==> at least n+1 nucleons<br />

B determines also <strong>the</strong> minimum<br />

momentum of struck nucleon in nucleus


At high nucleon momenta,<br />

strength is different but shapes<br />

of distributions are similar<br />

Scaling!<br />

Universality of SRC (Scaling)<br />

A(e,e’) <br />

Predictions by<br />

Frankfurt,<br />

Strikman, <strong>and</strong><br />

Sargsian<br />

n<br />

A<br />

( k)<br />

= C ⋅n<br />

( k)<br />

A<br />

D<br />

Adapted from<br />

Ciofi degli Atti<br />

Nucleus <br />

d <br />

% 2N corr. <br />

4.1 ± 0.8 <br />

3<br />

He 8.0 ± 1.6 <br />

4<br />

He 15.4 ± 3.2 <br />

12<br />

C 19.8 ± 4.4 <br />

56<br />

Fe 23.9 ± 5.3 <br />

N. Fomin et al.,<br />

Phys. Rev. Lett. 108<br />

(2012) 092502<br />

Additional data on<br />

A/d <strong>and</strong> A/ 3 He<br />

from SLAC, Hall B<br />

a 2<br />

(A / d) = ! (A) / A<br />

! (d) / 2


JLAB Experiment E01-015<br />

HRS<br />

HRS<br />

Use 12 C(e,e’p) as a tag to measure<br />

12<br />

C(e,e’pN)/ 12 C(e,e’p)<br />

Optimized kinematics:<br />

p<br />

q<br />

p<br />

Q 2 ≈ 2.0<br />

x B ≈ 1.2<br />

“Semi anti-parallel” kinematics<br />

e’<br />

n array<br />

n<br />

e<br />

Big Bite<br />

Lead wall


What Did We Measure?<br />

Almost all protons with p i > k F in<br />

12<br />

C(e,e’p) have a paired proton or<br />

neutron with similar momentum in<br />

opposite direction<br />

CM momentum of pair σ CM =136±20<br />

MeV/c {(σ CM (BNL)=143±17; σ CM (Ciofi<br />

degli Atti & Simula)=139 MeV/c}<br />

R. Shneor et al., PRL99, 072501 (2007)<br />

12 C(e,e' pp)<br />

= 9.5 ± 2%<br />

12 C(e,e' p)<br />

Corrected for acceptance<br />

12 C(e,e' pn)<br />

12 C(e,e' p) = 96 +4 !23%<br />

12 C(e,e' pn)<br />

12 C(e,e' pp) = 9.0 ± 2.5<br />

Corrected for det. Efficiency <strong>and</strong> SCX <br />

R. Subedi et al., Science 320 (5882), 1476 (2008) <br />

np SRC is ~18 times pp (nn) SRC!!!


SRC in Data Mining from CLAS E2<br />

!<br />

!<br />

p miss<br />

12<br />

C(e,e’pp)<br />

from 12 C(e,e’p)<br />

p rec<br />

!<br />

prec<br />

!<br />

prec<br />

!<br />

p miss<br />

! q<br />

!<br />

p miss<br />

!<br />

q<br />

!<br />

p miss<br />

!<br />

q<br />

Similar data from<br />

56<br />

Fe(e,e’pp)<br />

208<br />

Pb(e,e’p)<br />

Or Hen, Tel Aviv University


What do we know about SRC?<br />

Structure of 12 C<br />

R. Subedi et al., Science 320 (2008) 1476<br />

12<br />

C(e,e’pN) <strong>and</strong> 4 He(e,e’pN)<br />

Tensor NN Force <strong>and</strong> beyond?<br />

R. Schiavilla, R. B. Wiringa, S. C. Pieper, J.<br />

Carlson, Phys. Rev. Lett. 98 (2007) 132501<br />

A(e,e’pp) data from Hall B is being <br />

analyzed by O. Hen, TAU – “Data Mining”


DIS <strong>and</strong> <strong>the</strong> <strong>EMC</strong> <strong>Effect</strong><br />

E <br />

lepton <br />

(q,ω) <br />

nucleon <br />

E’ <br />

lepton <br />

F.S. <br />

hadrons <br />

W 2 <br />

Q 2 = !q µ<br />

q µ = q 2 !! 2<br />

! = E '! E<br />

0 < x B<br />

= Q2<br />

2m N<br />

! < 1<br />

Scale is several GeV<br />

Nuclear binding energy<br />

scale is several MeV<br />

Expectation: DIS of bound nucleons ≅<br />

DIS of a free nucleons<br />

<strong>EMC</strong><br />

DIS off bound N ≠ DIS<br />

off free N<br />

Origin of <strong>EMC</strong> effect<br />

! 1000<br />

unknown!!<br />

publications


Universality of <strong>EMC</strong><br />

Minimal dependence on Q 2<br />

J. Seely et al., Phys. Rev. Lett. 103 (2009) 202301


Universality of <strong>EMC</strong><br />

Data from CERN, SLAC, JLAB<br />

Size of effect (“depth” or slope) grows with A


Eureka Moment!<br />

“…effect scales with <strong>the</strong><br />

local environment of <strong>the</strong><br />

nucleons…”<br />

Local density?<br />

J. Seely et al., PRL 103 (2009) 202301<br />

SRC is a local-density<br />

effect related to highmomentum<br />

nucleons<br />

<strong>Effect</strong>ive number of<br />

high-momentum nucleons<br />

in SRC is given by a 2<br />

Is <strong>EMC</strong> related to<br />

modified SF of highmomentum<br />

nucleons?<br />

|dR <strong>EMC</strong> /dx B | <br />

a 2 (A/d)-­‐1


<strong>Correlations</strong> Between <strong>EMC</strong> <strong>and</strong> SRC!<br />

SLAC data<br />

L. Frankfurt, M. Strikman, D. Day, M. Sargsian,<br />

Phys. Rev. C48, 4251 (1993)<br />

Q 2 =2.3 GeV/c 2<br />

J. Gomez et al., Phys. Rev. D49, 4348 (1983)<br />

Q 2 =2,5,10, 15, GeV/c 2 (averaged)<br />

SRC<br />

High local density<br />

High nucleons momenta<br />

<strong>EMC</strong><br />

Is <strong>EMC</strong> related to highmomentum<br />

nucleons?<br />

Slopes 0.35 ≤ X B ≤ 0.7 <br />

<strong>EMC</strong> <br />

<strong>EMC</strong> data <br />

SLAC (Gomez et al.) <br />

JLab Hall C (Seely et al.) <br />

Free p+n?<br />

SRC <br />

SRC data <br />

SLAC (Day et al.) <br />

JLab Hall B (Egiyan et al.) <br />

JLab Hall C (Fomin et al.) <br />

Scaling factors X B ≥ 1.4 <br />

O. Hen et al., arXiv:1202.3452 [nucl-ex


Robustness of SRC-<strong>EMC</strong> <strong>Correlations</strong><br />

O. Hen et al., arXiv:1202.3452 [nucl-ex]<br />

Insensitive to:<br />

Isoscalar corrections<br />

Radiative corrections<br />

Coulomb corrections<br />

Inelastic contributions<br />

Pair C.M. moaon correcaon for A > 2: <br />

Reduces x-­‐secaons by ~20% <br />

Reduces intercept by ~20% <br />

Does not make a qualitative change<br />

to conclusions


Suggested Explanation of Correlation<br />

between SRC <strong>and</strong> <strong>EMC</strong><br />

<strong>EMC</strong> effect does not occur (or is very small) for meanfield<br />

nucleons<br />

Both SRC <strong>and</strong> <strong>EMC</strong> are related to high-momentum (high<br />

virtuality) nucleons in nuclei<br />

High momentum (high virtuality) nucleons in <strong>the</strong> medium<br />

are modified<br />

&Hmm..<br />

We can measure <strong>the</strong> in-medium modified structure<br />

function F 2 in DIS<br />

We can also measure <strong>the</strong> <strong>EMC</strong> effect for highmomentum<br />

nucleons


Dependence of Nucleons SF on Momenta<br />

Dependence on:<br />

Models<br />

Nucleon’s momentum <strong>and</strong> x B<br />

Melnitchouk, Screiber, Thomas, Phys. Lett. B 335, 11 (1994)<br />

Nucleon’s momentum, not x B<br />

Gross, Liuti, Phys. Lett. B 356, 157 (1995)<br />

Melnitchouk, Sargsian, Strikman,<br />

Z. Phys. A 359, 99 (1997)<br />

Binding/ <br />

off shell <br />

Rescaling <br />

PLC <br />

suppression <br />

! S<br />

= (E S<br />

" p Z S<br />

) / m S


Nucleons Modified at High Momentum<br />

M. Paolone et al. PRL 105,072001 (2010)<br />

This is in quasi-elastic<br />

scattering, not DIS!<br />

Our experiment will cover <strong>the</strong><br />

range of virtuality 0.2 – 0.5


Explore Connection between <strong>EMC</strong> <strong>and</strong> SRC<br />

If we are right, we should<br />

measure a large <strong>EMC</strong><br />

effect by selecting highmomentum<br />

nucleons!?<br />

Deuteron<br />

Is <strong>the</strong>re an “<strong>EMC</strong>” effect in<br />

<strong>the</strong> deuteron?<br />

Is <strong>the</strong>re a large “<strong>EMC</strong>”<br />

effect in <strong>the</strong> highmomentum<br />

tail of <strong>the</strong><br />

deuteron?<br />

Does <strong>the</strong> structure function<br />

F 2 depend on nucleon<br />

momentum (virtuality)?<br />

Consequences for F 2n<br />

-­‐0.082±0.004 <br />

! d DIS " ! p DIS + ! n<br />

DIS<br />

! d<br />

! p<br />

+ ! n<br />

= 1! (0.082 ± 0.004)(0.6 ! 0.31± 0.04) " 0.976<br />

! d<br />

! p<br />

+ ! n<br />

(x B<br />

= 0.6) ! 0.976<br />

! p<br />

*<br />

! ! *<br />

n<br />

! 2.4%<br />

! p<br />

! n<br />

5% ! 0.5


Experimental Program at JLAB<br />

Compare F 2 in DIS off high-momentum nucleons to F 2 of free nucleons<br />

E12-11-107 – TAU, ODU, MIT JLAB<br />

Experimental method<br />

Use deuteron as a target in DIS<br />

Tag high-momentum nucleons with high-momentum backwardrecoiling<br />

(“spectator”) partner nucleon as in SRC using <strong>the</strong><br />

reaction d(e,e’N S )


Experimental Method<br />

Utilize factorization of <strong>the</strong> d(e,e’N S ) cross section to SF <strong>and</strong><br />

distorted momentum distribution.<br />

Keeping <strong>the</strong> recoil kinematics fixed <strong>and</strong> measuring x-section ratios<br />

at 2 different χ’, <strong>the</strong> ratio is:<br />

d 4 !<br />

d" 1<br />

dQ 2 d p ! d 4 !<br />

S<br />

d" 2<br />

dQ 2 d p ! = ( K 1<br />

K 2 )"# F ! 2<br />

(! 1<br />

'," S<br />

, p T<br />

,Q 2 1<br />

) F ! 2<br />

(! 2<br />

'," S<br />

, p T<br />

,Q 2 1<br />

) $ %<br />

S<br />

For χ 1 ’≈0.45 – 0.6 <strong>and</strong> χ 2 ’≈0.3 we shall measure: <br />

" d 4 #<br />

F ! 2<br />

(! 1<br />

'," S<br />

, p T<br />

,Q 2 1<br />

) F ! 2<br />

(! 2<br />

'," S<br />

, p T<br />

,Q 2 1<br />

) =<br />

d! 1<br />

dQ 2 d p ! %<br />

/ K 1<br />

#<br />

$<br />

S &<br />

'<br />

" d 4 !<br />

d" 2<br />

dQ 2 d p ! %<br />

/ K 2<br />

#<br />

$<br />

S &<br />

'<br />

Integraang over θ pq > 107° (small FSI), we’ll compare <strong>the</strong> measured raao f(α S ) to <br />

<strong>the</strong> BONUS results for free neutron, <strong>and</strong> to <strong>the</strong> free proton SF in d(e,e’n S )


Experimental Method (cont.)<br />

Minimize experimental <strong>and</strong> <strong>the</strong>oretical uncertainties<br />

by measuring cross-section ratios<br />

'<br />

! DIS<br />

(x high<br />

,Q 2 1<br />

, p ! s<br />

)<br />

'<br />

! DIS<br />

(x low<br />

,Q 2 2<br />

, p ! s<br />

) ! " free DIS<br />

(x low<br />

,Q 2 2<br />

)<br />

free (x high<br />

,Q 2 1<br />

) ! R FSI = F bound '<br />

2<br />

(x high<br />

,Q 2 1<br />

, p ! s<br />

)<br />

F free 2<br />

(x high<br />

,Q 2 1<br />

)<br />

" DIS<br />

'<br />

x high<br />

! 0.45<br />

FSI correction factor<br />

'<br />

0.25 ! x low<br />

! 0.35 No <strong>EMC</strong> is expected<br />

x B<br />

'<br />

(For<br />

2p µ<br />

q = d) Q 2<br />

µ 2[(M d<br />

! E S<br />

)! + p ! S<br />

" q]<br />

!<br />

= Q2<br />

x B<br />

=<br />

Q2<br />

2m N<br />

!


x B<br />

'<br />

= Q2<br />

x B ’ vs. x B (Why x’?)<br />

D(e,e’N) no FSI <br />

2 p µ<br />

q µ x B<br />

= Q2<br />

x’ B – Nucleon rest frame <br />

x B – Lab frame <br />

2m N<br />

!


How to Deal with FSI?<br />

D(e,e’p S ) <br />

We know that FSI:<br />

Decrease with Q 2<br />

Increase with W’<br />

Not sensitive to x’ B<br />

Small for pq > 107°<br />

We shall:<br />

Involve <strong>the</strong>oretical colleagues<br />

Take data at large recoil angles<br />

A. V. Klimenko et al., PRC 73, 035212 (2006)<br />

Take data at 90°<br />

Take data at two x’<br />

Use low x’ data to study FSI dependence on Q 2 , W’ 2 , pq


Experimental Setup – Hall C<br />

HMS <strong>and</strong> SHMS detect electrons<br />

LAD detect recoiling nucleon<br />

Central values of kinematics<br />

10 cm LD 2 target <br />

Low x’ <br />

High x’ <br />

LAD


Large acceptance Detector (LAD)


Kinematic Coverage<br />

Scavered electrons <br />

E’ [GeV] <br />

Recoiling nucleons <br />

θ e’ <br />

Recoil nucleon <br />

virtuality <br />

P S [GeV]


Expected Results<br />

G eff /G n <br />

G eff /G p <br />

! S<br />

= (E S<br />

" p S Z ) / m S<br />

! S<br />

= (E S<br />

" p S Z ) / m S<br />

SHMS <strong>and</strong> HMS efficiency <strong>and</strong><br />

acceptances (1-2%)<br />

LAD efficiency (3% protons, 5%<br />

neutrons)<br />

Al walls subtraction (1%)<br />

Systematic uncertainty (4-7% total)<br />

FSI ratio (4%)<br />

Free nucleons structure<br />

functions ratio (1% protons,<br />

4% neutrons)


Summary – Nucleons Medium Modification<br />

SRC <strong>and</strong> <strong>EMC</strong> are linearly correlated<br />

We suggest that this correlation is because both phenomena<br />

are related to high-momentum nucleons<br />

We assume that highly virtual nucleons are modified<br />

E12-11-107 is approved to measure at JLAB <strong>the</strong> ratio of F 2 for<br />

highly virtual nucleons to F 2 of free nucleons in <strong>the</strong> deuteron<br />

Use spectator tagging to select highly virtual nucleons in DIS<br />

Minimize systematic uncertainties by measuring ratios<br />

This is not (yet) an <strong>EMC</strong> measurement


Second Stage of Program - <strong>EMC</strong><br />

Measuring <strong>EMC</strong> with Tagged High-Momentum Recoil Nucleons<br />

LOI-11-104 - TAU, ODU, MIT, JLAB<br />

Basic idea of measurement<br />

Perform DIS (Q 2 > 2; W > 2) on high-momentum (vituality) nucleons<br />

by tagging <strong>the</strong> high-momentum recoiling nucleons<br />

Remember, almost all high-momentum nucleons have a SRC partner!!<br />

Measure per-nucleon x-sections (p S > 275 MeV/c; θ pq > 110°) ratio of<br />

4<br />

He to deuteron, σ[ 4 He(e,e’p S )]/σ[d(e,e’p S )], f(0.3 < X B < 0.6)<br />

Signal<br />

If <strong>EMC</strong> depend on virtuality, σ[ 4 He(e,e’p S )]/σ[d(e,e’p S )] should not<br />

depend on x B<br />

Magnitude of ratio should be a 2N ( 4 He/d) ≈ 4


Basic Idea of Measurement (cont.)<br />

Second Measurement<br />

Ratio of per-nucleon cross section, σ[ 4 He(e,e’p S )]/σ[d(e,e’)], at<br />

<strong>the</strong> same kinematic range<br />

Only σ[ 4 He(e,e’p S )] is tagged by p S > 275 MeV/c while σ[d(e,e’)]<br />

is not!<br />

Signal<br />

Ratio depends on x B<br />

Shape similar to universal <strong>EMC</strong><br />

shape BUT signal is larger<br />

Experimental setup of both <br />

measurements will be similar <br />

to that of E12-11-107<br />

CLAS data, very preliminary!<br />

Or Hen, TAU<br />

Remember a 2N ( 12 C/d) = 4.8 ± 0.4


Summary - <strong>EMC</strong><br />

LOI-11-104 plans to measure <strong>the</strong> doubly-tagged per-nucleon<br />

cross-sections ratio σ[ 4 He(e,e’p S )]/σ[d(e,e’p S )] for p S > 275 MeV/c,<br />

θ pq > 110°, <strong>and</strong> as f(0.3 < X B < 0.6)<br />

LOI-11-104 also plans to measure <strong>the</strong> singly-tagged per-nucleon<br />

cross-sections ratio σ[ 4 He(e,e’p S )]/σ[d(e,e’)] in <strong>the</strong> same conditions<br />

If <strong>the</strong> <strong>EMC</strong> effect is related to highly virtual nucleons, <strong>the</strong>n both<br />

measurements will have a very unique signatures<br />

A full proposal will be submitted to <strong>the</strong> next JLAB PAC<br />

This IS an <strong>EMC</strong> measurement<br />

Experimental<br />

setup for both<br />

measurements


Who Needs <strong>Short</strong>-<strong>Range</strong> <strong>Correlations</strong>?<br />

A(e,e’p) A-1 measurements:<br />

Shape of momentum distributions<br />

described very well by IPM<br />

X-section is only 65-70% of IPM<br />

Extra high momentum strength<br />

<strong>Short</strong>-range correlations<br />

A <br />

L. Lapikas, Nucl. Phys. A553, 297c (1993)<br />

Benhar et al., Phys. Lett. B 177, 135 (1986)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!