23.05.2014 Views

Water-based Liquid Scintillator - Department of Physics

Water-based Liquid Scintillator - Department of Physics

Water-based Liquid Scintillator - Department of Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Water</strong>-<strong>based</strong> <strong>Liquid</strong> <strong>Scintillator</strong><br />

Minfang Yeh<br />

Brookhaven National<br />

Laboratory, Chemistry-555,<br />

Upton, NY11973<br />

ANT-2010, Santa Fe, NM<br />

Research sponsored by the U.S. <strong>Department</strong> <strong>of</strong> Energy, Office <strong>of</strong> Nuclear <strong>Physics</strong> and<br />

Office <strong>of</strong> High Energy <strong>Physics</strong>, under contract with Brookhaven National Laboratory –<br />

Brookhaven Science Associates.


First anti-neutrino detector<br />

PET or CAT scan?<br />

http://www.strokecenter.org/patients/diagnosis/ct.htm


BNL 40+ years <strong>of</strong> neutrino at chemistry<br />

1961<br />

Radiochemical<br />

<strong>Water</strong><br />

<strong>Liquid</strong><br />

<strong>Scintillator</strong><br />

• HOMESTAKE Radiochemical Detector<br />

615 tons <strong>of</strong> C 2 Cl 4 ;<br />

37<br />

Cl + e 37 Ar + e - (~40 years)<br />

• GALLEX Radiochemical Detector<br />

30 tons <strong>of</strong> Ga; 71 Ga + e 71 Ge + e - (1986 - 1998)<br />

• SNO <strong>Water</strong> Čerenkov Detector (SNOLab)<br />

1-k tons <strong>of</strong> ultra-pure D 2 O (1996 - 2006)<br />

• LENS Real-time LS Detector (R&D)<br />

100 tons <strong>of</strong> ~8% 115 In in <strong>Liquid</strong> id <strong>Scintillator</strong> ill (began ~2000)<br />

• LBNE Long-Baseline Neutrino Experimen<br />

V beam to DUSEL (began~2002)<br />

• Daya Bay High-Precision Reactor 13 Detector<br />

200 tons <strong>of</strong> 0.1% Gd in <strong>Liquid</strong> <strong>Scintillator</strong> (began ~2003)<br />

• SNO+ Neutrino-less Double Beta Decay Real-time Detector<br />

1-k tons <strong>of</strong> 0.1% Nd in <strong>Liquid</strong> <strong>Scintillator</strong> (began ~2005)<br />

<br />

<br />

• <br />

<br />

<br />

2009 <br />

• Neutrino Application<br />

• Nonproliferation and/or Reactor Monitoring<br />

• Li/Zr/Ca-loaded <strong>Liquid</strong> <strong>Scintillator</strong> (began 2008)<br />

• <strong>Water</strong>-<strong>based</strong> <strong>Liquid</strong> <strong>Scintillator</strong><br />

3<br />

M. Yeh for ANT-2010


<strong>Liquid</strong> scintillators for large-scale physics<br />

• Expertise in low background counting, organic scintillators and, in particular<br />

metal loaded organic scintillators.<br />

• Interest for neutrino and neutron detectors.<br />

• Laboratory developed for the investigation <strong>of</strong> optical characteristics <strong>of</strong> a large variety <strong>of</strong> liquid<br />

scintillators:<br />

• PC, PCH, DIN, PXE, LAB<br />

• with high light yield, long attenuation length and low flammability<br />

• Absorption and emission spectra, extinction length, dependence on purity level,<br />

concentration <strong>of</strong> fluors and wavelength shifters, environmental factors (e.g. temperature,<br />

humidity, exposure to air)<br />

• Capability <strong>of</strong> purifying and synthesizing materials in-house and <strong>of</strong><br />

controlling the chemical processes.<br />

• Collaboration between <strong>Physics</strong> and Chemistry Depts. at BNL<br />

44<br />

M. Yeh for ANT‐2010


Metal loaded liquid scintillators<br />

Development and production <strong>of</strong> Metal-loaded loaded (Yb, In, Nd, Zr, Gd, Li, etc) liquid<br />

scintillator (LS) for neutrino experiments<br />

• LENS uses 125 tons <strong>of</strong> In-loaded LAB or PC beginning <strong>of</strong> M-LS in 2000<br />

• Daya-Bay uses 200 tons <strong>of</strong> Gd-loaded LAB<br />

• SNO+ uses 1 KT <strong>of</strong> Nd-loaded LAB<br />

• M. Yeh et al. Gadolinium-Loaded <strong>Liquid</strong> <strong>Scintillator</strong> for<br />

High-Precision Measurements <strong>of</strong> Antineutrino<br />

Oscillations and the Mixing Angle, θ13, NIM A 578<br />

(2007) 329-339<br />

Study <strong>of</strong> optical properties as a function <strong>of</strong> purity levels and <strong>of</strong> metal concentration<br />

Self-scavenging method to<br />

remove Th/U and improve UV<br />

carboxylic acids are the preferred choice<br />

5<br />

M. Yeh for ANT‐2010<br />

• M. Yeh et al. Purification i <strong>of</strong> lanthanides for large<br />

neutrino detectors, NIM A 618 (2010) 124–130


<strong>Liquid</strong> <strong>Scintillator</strong> for Particle Detector<br />

• High efficiency <strong>of</strong> converting kinetic<br />

energy <strong>of</strong> charged particle to detectable<br />

light<br />

• Good light transparency to the emission<br />

wavelength<br />

• Short decay time for fast signal pulse<br />

• Mass-producible<br />

• Index <strong>of</strong> refraction for scattering light<br />

• High flash point, low toxicity, safe to be<br />

used in confined space<br />

• Long stability and chemical compatibility<br />

6<br />

M. Yeh for ANT‐2010


<strong>Liquid</strong> Scintillation (versus <strong>Water</strong> Cherenkov)<br />

Cons<br />

Safety: Chemical hazard,<br />

Fire hazard, and Reactivity<br />

Cost:<br />

$2k/ton or $100M for 50 KT<br />

Handling & ES&H<br />

event reconstruction and<br />

PID<br />

Pros<br />

orders <strong>of</strong> magnitudes light<br />

output: smaller detector or<br />

less photo-sensors<br />

<strong>Physics</strong> <strong>of</strong> charged particles<br />

below Cherenkov threshold<br />

Excellent PSD to suppress<br />

background events<br />

Sub-MeV (geo-, solar- and<br />

reactor) neutrinos<br />

7<br />

M. Yeh for ANT‐2010


Comparisons <strong>of</strong> Selected <strong>Liquid</strong> <strong>Scintillator</strong>s<br />

first identified by SNO+<br />

8<br />

M. Yeh for ANT‐2010


NEPA assessment <strong>of</strong> fire safety for ongoing<br />

and newly yproposed p experiments<br />

Experiment<br />

LS<br />

Borexino PC ~3<br />

NEPA<br />

450<br />

Rating 400<br />

350<br />

Flashing<br />

Point<br />

Boiling<br />

Point<br />

9<br />

LENS LAB/PC 1/3<br />

Daya Bay LAB 1<br />

SNO+ LAB 1<br />

Reno LAB 1<br />

Double-<br />

CHOOZ<br />

KamLAND<br />

NOvA<br />

LENA<br />

20%PXE +<br />

80%dodecane<br />

20% PC +<br />

80%dodecane<br />

5% PC + 95%<br />

MO<br />

PXE/LAB/dodec<br />

ane<br />

Temperaturem m, C<br />

300<br />

250<br />

200<br />

2~1<br />

150<br />

3~2<br />

1~2<br />

1/1/2<br />

<strong>Liquid</strong> scintillators used in all ongoing g or proposed p experiments are<br />

combustible ; some are even close to flammable<br />

M. Yeh for ANT‐2010<br />

100<br />

50<br />

0<br />

PC PCH DIN PXE LAB MO Dodecane<br />

<strong>Scintillator</strong>


A large (>50kT) liquid scintillator has<br />

challenges <strong>of</strong><br />

• cost<br />

• attenuation<br />

• ES&H<br />

• Compatibility<br />

• etc<br />

IS THERE AN ALTERNATE?<br />

10


Light Yield <strong>of</strong> PC% in dodecane<br />

• By 137 Cs Compton<br />

scattering<br />

• Light-yield is a<br />

function <strong>of</strong><br />

percents <strong>of</strong> liquid<br />

scintillator; but is<br />

not linear<br />

11<br />

M. Yeh for ANT‐2010


<strong>Water</strong> Optical Transmission<br />

• Superior attenuation<br />

length <strong>of</strong> water<br />

could compensate<br />

the loss <strong>of</strong> photon<br />

• High proton density<br />

(6.69 69 atoms per c.c.)<br />

12<br />

M. Yeh for ANT‐2010


Goal <strong>of</strong> <strong>Water</strong> <strong>based</strong> liquid scintillator<br />

<strong>Water</strong>-<strong>based</strong> liquid scintillator is different from dissolving<br />

wavelength shifter in water.<br />

Develop a W-LS to be used as energy spectrometers in large-scale<br />

physics experiments<br />

• Replace the hundreds to many tons <strong>of</strong> unloaded or metalloaded<br />

organic liquid scintillators to provide:<br />

• simpler sensitive detection medium<br />

• fewer compatibility problems<br />

• cost savings<br />

• Non-linear photon production plus superior water attenuation<br />

length makes it possible to detect physics below Cherenkov<br />

threshold<br />

• PDK + channel becomes accessible<br />

13<br />

M. Yeh for ANT‐2010


Nucleon Decay<br />

The SUSY SU(5) model predicts<br />

the K-decay mode to be<br />

dominant with a partial<br />

lifetime varying from 10 29 y to<br />

10 35 yrs !<br />

( p k<br />

v)<br />

<br />

2.310<br />

33<br />

yrs<br />

SK<br />

H.Ejiri Phys. Re ev. C48 (1993) 14 442<br />

• 22.5 kT (7.5 x 10 33 protons & 6.0 x<br />

10 33 neutrons) at 40% coverage<br />

• T K+ ~340 MeV/c: below Cerenkov<br />

threshold<br />

•<br />

16<br />

O (p → 15 3/2 ) N* + 63 6.3 MeV<br />

14<br />

M. Yeh for ANT‐2010


<strong>Water</strong>-<strong>based</strong> LS for PDK +<br />

• A 50-kt detector would have a sensitivity <strong>of</strong> t >4×10 34<br />

yrs for PDK + model after 10 years <strong>of</strong> run time (LENA)<br />

• 150 p.e./MeV (30%)<br />

• 1/e ~20m<br />

• >4000m<br />

• 9000 photons/MeV for 100% LAB<br />

• 25% coverage gives 180 p.e. per MeV (DYB)<br />

• Assuming W-LS has 20% <strong>of</strong> S <strong>of</strong> LAB,<br />

• ~5 = exp(/20); 1/e >32m<br />

• Need to catch kaon before decay: t d


• Polarity Tension<br />

• Like to like<br />

CAN WE LOAD IT?


Surfactant reduces the tension; thus<br />

balances the “like to like”<br />

Conventional watermiscible<br />

cocktails for<br />

/ counting or in<br />

medical imaging are<br />

not stable in water<br />

A highly stable W-LS<br />

with long<br />

attenuation length<br />

that generates light<br />

as particle detector<br />

17<br />

M. Yeh for ANT‐2010


As much as 40% <strong>of</strong> liquid scintillator<br />

can be loaded d in water<br />

18<br />

M. Yeh for ANT‐2010


• P urification <strong>of</strong> raw mat erials before<br />

production<br />

• Online- purification during the data-<br />

taking period<br />

LONG ATTENUATION LENGTH<br />

IS THE KEY<br />

M. Yeh for ANT‐ 19<br />

2010


Purification Scheme and Strategy<br />

• dry-column extraction<br />

ti<br />

• freezing-isolation<br />

• Short-path vacuum distillation<br />

• Aqueous/organic solvent-washing<br />

• Re-crystallization/dissolution<br />

• contractors<br />

20<br />

M. Yeh for ANT‐2010


0.5% W-LS achieved excellent optical<br />

transmission<br />

i<br />

after a rather complicated<br />

purification scheme<br />

21<br />

M. Yeh for ANT‐2010


Online purification is achievable; but<br />

not easy<br />

22<br />

M. Yeh for ANT‐2010


Characterization <strong>of</strong> W-LS by GC-MS<br />

23<br />

M. Yeh for ANT‐2010


• -ray Compton Scattering<br />

• Emission fluorescence spectroscopy<br />

IS THERE A LIGHT?<br />

M. Yeh for ANT‐ 24<br />

2010


~7% W-LS has a light-yield <strong>of</strong> 15~20%<br />

<strong>of</strong> pure LAB (by 137 Cs)<br />

UV<br />

—W‐LS —<br />

LAB<br />

25<br />

M. Yeh for ANT‐2010


Emissions <strong>of</strong> W-LS and pure LS<br />

• s <strong>of</strong> 10% W-LS is<br />

~25% <strong>of</strong> pure LAB<br />

• Non-radiative<br />

energy-transfer<br />

mechanism is<br />

not wellunderstood<br />

yet<br />

26<br />

M. Yeh for ANT‐2010


SNO went through h a search <strong>of</strong> water-soluble<br />

wavelength shifters and identified few<br />

promising candidates (for Cerenkov)<br />

27<br />

M. Yeh for ANT-2010


• Time-resolved fluorescence<br />

spectroscopy<br />

• Single-photon counting?<br />

HOW FAST IS THE LIGHT?


decay time is in the region <strong>of</strong> interest<br />

29<br />

M. Yeh for ANT‐2010


• Attenuation measurement <strong>of</strong> light<br />

change at 1% precision<br />

• Use for Daya Bay, SNO+ and LENS<br />

BNL 2-M DUAL-BEAM SYSTEM


Purification is essential for optical transmission,<br />

particularly for large LS detector<br />

Close to the baseline<br />

that a long path-<br />

length system is<br />

needed!<br />

31<br />

M. Yeh for ANT‐2010


BNL 2-m system<br />

- at 1% precision<br />

-2 s per measurement<br />

32<br />

M. Yeh for ANT‐2010


0.1% Nd-LAB by UV 10-cm and 2-m system<br />

2.42m<br />

3.75m<br />

3.31m<br />

5.26m<br />

6.23m<br />

Chris 33 Ouellet M. et Yeh al. for in preparation ANT‐2010 for NIM‐A


Double-baselinedbaselined<br />

10-cm UV agrees<br />

with 2-m<br />

measurement very<br />

well!<br />

Johnny Goett et al. in preparation for<br />

NIM‐A<br />

34<br />

M. Yeh for ANT‐2010


Summary<br />

• W-LS could be a promising detection medium<br />

for large detector<br />

• Samples <strong>of</strong> W-LS have been stable (1-yr+) since<br />

preparation<br />

• Plenty <strong>of</strong> light; but need to optimize fluor selection<br />

(organic or aqueous)<br />

• The decay time is fast<br />

• Online purification is the key; but can we run it at<br />

lower temperature to minimize the<br />

microorganisms?<br />

i • <strong>Physics</strong> <strong>of</strong> PDK + and sub-MeV neutrinos<br />

35<br />

M. Yeh for ANT‐2010


Future Plan<br />

• Light production property, quenching effect<br />

as a function <strong>of</strong> dE/dx, in response to a proton<br />

beam at NSRL (BNL) with kinetic energy <strong>of</strong> 100<br />

to 1000 MeV.<br />

• A 250-L prototype for Cf-252 neutron capture.<br />

• Can we preserve the scintillation and<br />

Cerenkov radiations simultaneously?<br />

• Little scintillation not to overcome Cerenkov (5<br />

p.e./MeV at 30%)<br />

• Neutron-tagging g by adding metal (such as<br />

Gd) into the W-LS?<br />

• IBD followed by Gd-capture sum <strong>of</strong> 8-MeV<br />

36<br />

M. Yeh for ANT-2010


Neutrino at BNL-Chemistry<br />

• Richard Hahn<br />

• James Cumming (retiree)<br />

Postdoctoral<br />

Students/Technicians<br />

• Sunej Hans<br />

• Richard Rosero<br />

• Liangming Hu • Wanda Beriguete<br />

• Pankaj Sinha • Wai Ting Chan<br />

• 1~2 openings • John Goett (LNGS)<br />

Research sponsored by the US U.S. <strong>Department</strong> <strong>of</strong> Energy, Office <strong>of</strong> Nuclear <strong>Physics</strong> and Office <strong>of</strong> High<br />

Energy <strong>Physics</strong>, under contract with Brookhaven National Laboratory – Brookhaven Science Associates.<br />

37 M. Yeh for ANT‐2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!