23.05.2014 Views

Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes ...

Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes ...

Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Journal of Physical Chemistry C<br />

(4) Frackowiak, E.; Beguin, F. <strong>Carbon</strong> materials for the electrochemical<br />

storage of energy in capacitors. <strong>Carbon</strong> 2001, 39, 937–950.<br />

(5) Frackowiak, E.; Beguin, F. <strong>Electro</strong>chemical storage of energy in<br />

carbon nanotubes and nanostructured carbons. <strong>Carbon</strong> 2002, 40,<br />

1775–1787.<br />

(6) Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.;<br />

Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shapeengineerable<br />

and highly densely packed single-walled carbon nanotubes<br />

and their application as super-capacitor electrodes. Nat. Mater. 2006,<br />

5, 987–994.<br />

(7) Wang, Y.; Shi, Z. Q.; Huang, Y.; Ma, Y. F.; Wang, C. Y.; Chen,<br />

M. M.; Chen, Y. S. Supercapacitor devices based on graphene materials.<br />

J. Phys. Chem. C 2009, 113, 13103–13107.<br />

(8) Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R.S.<br />

Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.<br />

(9) Wang, D. W.; Li, F.; Zhao, J. P.; Ren, W. C.; Chen, Z. G.; Tan, J.;<br />

Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. Fabrication of graphene/<br />

polyaniline composite paper via in situ anodic electropolymerization for<br />

high-performance flexible electrode. ACS Nano 2009, 3, 1745–1752.<br />

(10) Pandolfo, A. G.; Hollenkamp, A. F. <strong>Carbon</strong> properties and their<br />

role in supercapacitors. J. Power Sources 2006, 157, 11–27.<br />

(11) Fischer, A. E.; Pettigrew, K. A.; Rolison, D. R.; Stroud, R. M.;<br />

Long, J. W. Incorporation of homogeneous, nanoscale MnO 2 within<br />

ultraporous carbon structures via self-limiting electroless deposition:<br />

Implications for electrochemical capacitors. Nano Lett. 2007, 7, 281–286.<br />

(12) Chang, J. K.; Lee, M. T.; Tsai, W. T.; Deng, M. J.; Cheng, H. F.;<br />

Sun, I. W. Pseudocapacitive mechanism of manganese oxide in 1-ethyl-3-<br />

methytimidazolium thiocyanate ionic liquid electrolyte studied using<br />

X-ray photoelectron spectroscopy. Langmuir 2009, 25, 11955–11960.<br />

(13) Babakhani, B.; Ivey, D. G. Anodic deposition of manganese<br />

oxide electrodes with rod-like structures for application as electrochemical<br />

capacitors. J. Power Sources 2010, 195, 2110–2117.<br />

(14) Conway, B. E. Transition from Supercapacitor to Battery<br />

Behavior in <strong>Electro</strong>chemical Energy-Storage. J. <strong>Electro</strong>chem. Soc. 1991,<br />

138, 1539–1548.<br />

(15) Long, J. W.; Swider, K. E.; Merzbacher, C. I.; Rolison, D. R.<br />

Voltammetric characterization of ruthenium oxide-based aerogels and<br />

other RuO 2 solids: the nature of capacitance in nanostructured materials.<br />

Langmuir 1999, 15, 780–785.<br />

(16) Frackowiak, E.; Khomenko, V.; Jurewicz, K.; Lota, K.; Beguin,<br />

F. Supercapacitors based on conducting polymers/nanotubes composites.<br />

J. Power Sources 2006, 153, 413–418.<br />

(17) Ryu, K. S.; Kim, K. M.; Park, N. G.; Park, Y. J.; Chang, S. H.<br />

Symmetric redox supercapacitor with conducting polyaniline electrodes.<br />

J. Power Sources 2002, 103, 305–309.<br />

(18) Gupta, V.; Miura, N. Influence of the microstructure on the<br />

supercapacitive behavior of polyaniline/single-wall carbon nanotube<br />

composites. J. Power Sources 2006, 157, 616–620.<br />

(19) Khomenko, V.; Frackowiak, E.; Beguin, F. Determination of the<br />

specific capacitance of conducting polymer/nanotubes composite electrodes<br />

using different cell configurations. <strong>Electro</strong>chim. Acta 2005, 50,<br />

2499–2506.<br />

(20) Park, J. H.; Ko, J. M.; Park, O. O.; Kim, D. W. Capacitance<br />

properties of graphite/polypyrrole composite electrode prepared by<br />

chemical polymerization of pyrrole on graphite fiber. J. Power Sources<br />

2002, 105, 20–25.<br />

(21) Li, J.; Cui, L.; Zhang, X. G. Preparation and electrochemistry of<br />

one-dimensional nanostructured MnO 2 /PPy composite for electrochemical<br />

capacitor. Appl. Surf. Sci. 2010, 256, 4339–4343.<br />

(22) Lacroix, J. C.; Diaz, A. F. <strong>Electro</strong>lyte effects on the switching<br />

reaction of polyaniline. J. <strong>Electro</strong>chem. Soc. 1988, 135, 1457–1463.<br />

(23) Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu,<br />

Z. N. Tube-covering-tube nanostructured polyaniline/carbon nanotube<br />

array composite electrode with high capacitance and superior rate<br />

performance as well as good cycling stability. <strong>Electro</strong>chem. Commun.<br />

2008, 10, 1056–1059.<br />

(24) Sivakkumar, S. R.; Kim, W. J.; Choi, J. A.; MacFarlane, D. R.;<br />

Forsyth, M.; Kim, D. W. <strong>Electro</strong>chemical performance of polyaniline<br />

ARTICLE<br />

nanofibres and polyaniline/multi-walled carbon nanotube composite as<br />

an electrode material for aqueous redox supercapacitors. J. Power Sources<br />

2007, 171, 1062–1068.<br />

(25) Tarascon, J. M.; Armand, M. Issues and challenges facing<br />

rechargeable lithium batteries. Nature 2001, 414, 359–367.<br />

(26) Yu, X. F.; Li, Y. X.; Zhu, N. F.; Yang, Q. B.; Kalantar-zadeh, K. A<br />

polyaniline nanofibre electrode and its application in a self-powered<br />

photoelectrochromic cell. Nanotechnology 2007, 18, -.<br />

(27) Wang, K.; Huang, J. Y.; Wei, Z. X. Conducting polyaniline<br />

nanowire arrays for high performance supercapacitors. J. Phys. Chem. C<br />

2010, 114, 8062–8067.<br />

(28) Horng, Y. Y.; Lu, Y. C.; Hsu, Y. K.; Chen, C. C.; Chen, L. C.;<br />

Chen, K. H. Flexible supercapacitor based on polyaniline nanowires/<br />

carbon cloth with both high gravimetric and area-normalized capacitance.<br />

J. Power Sources 2010, 195, 4418–4422.<br />

(29) Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.; Wang, X.<br />

Graphene oxide doped polyaniline for supercapacitors. <strong>Electro</strong>chem.<br />

Commun. 2009, 11, 1158–1161.<br />

(30) Qu, D. Y. Studies of the activated carbons used in double-layer<br />

supercapacitors. J. Power Sources 2002, 109, 403–411.<br />

(31) Portet, C.; Taberna, P. L.; Simon, P.; Laberty-Robert, C.<br />

Modification of Al current collector surface by sol-gel deposit for<br />

carbon-carbon supercapacitor applications. <strong>Electro</strong>chim. Acta 2004, 49,<br />

905–912.<br />

(32) Conway, B. E. <strong>Electro</strong>chemical Supercapacitors: Scientific Fundamentals<br />

and Technological Applications; Plenum Press: New York, 1999;<br />

p 698.<br />

’ NOTE ADDED AFTER ASAP PUBLICATION<br />

This manuscript was originally published on the web on<br />

November 1, 2011, with errors to the Results and Discussion<br />

Section and the caption of Figure 2. The corrected version was<br />

reposted on November 4, 2011.<br />

G dx.doi.org/10.1021/jp203852p |J. Phys. Chem. C XXXX, XXX, 000–000

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!