23.05.2014 Views

Atomically Assembled Quantum Spin Lattices Sander Otte

Atomically Assembled Quantum Spin Lattices Sander Otte

Atomically Assembled Quantum Spin Lattices Sander Otte

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Atomically</strong> <strong>Assembled</strong> <strong>Quantum</strong> <strong>Spin</strong> <strong>Lattices</strong><br />

<strong>Sander</strong> <strong>Otte</strong><br />

http://ottelab.tudelft.nl


<strong>Atomically</strong> <strong>Assembled</strong> <strong>Quantum</strong> <strong>Spin</strong> <strong>Lattices</strong><br />

OUTLINE<br />

1. Overview of single atom spin IETS measurements:<br />

• Magnetic anisotropy<br />

• <strong>Spin</strong> coupling<br />

• <strong>Spin</strong> pumping (spin dynamics)<br />

2. NEW: Anisotropic superexchange coupling<br />

<strong>Sander</strong> <strong>Otte</strong><br />

http://ottelab.tudelft.nl


<strong>Spin</strong>-Polarized STM<br />

Use magnetic tip in order to see magnetization direction<br />

Static, directional<br />

Inelastic Tunneling<br />

Measure energy needed to change magnetization<br />

Dynamic, non-directional<br />

Small voltage:<br />

Only elastic tunneling<br />

Larger voltage:<br />

Also inelastic tunneling<br />

Co on Pt(111)<br />

Science 320, 82 (2008)<br />

Fe on Cu 2 N/Cu(100)<br />

© 2012 <strong>Sander</strong> <strong>Otte</strong> http://ottelab.tudelft.nl


vacancy direction <br />

Magnetic Anisotropy<br />

Magnetic field along nitrogen direction<br />

Magnetic field along vacancy direction<br />

0.36 nm <br />

nitrogen direction <br />

Cu 2 N on Cu(100) <br />

© 2012 <strong>Sander</strong> <strong>Otte</strong> http://ottelab.tudelft.nl


vacancy direction <br />

Magnetic Anisotropy<br />

Magnetic field along nitrogen direction<br />

Magnetic field along vacancy direction<br />

Ĥ = gµ B B · Ŝ + DŜ2 z + E<br />

⇣Ŝ2 x Ŝ 2 y<br />

⌘<br />

D < 0 means easy-axis anisotropy<br />

0<br />

• <strong>Spin</strong> prefers the z-axis for magnetization<br />

1 -1<br />

• Ground state has large |m z |<br />

2<br />

-2<br />

D > 0 means hard-axis anisotropy<br />

• <strong>Spin</strong> dislikes the z-axis for magnetization<br />

• Ground state has small |m z |<br />

2<br />

1 -1<br />

0<br />

-2<br />

nitrogen direction <br />

© 2012 <strong>Sander</strong> <strong>Otte</strong> http://ottelab.tudelft.nl


Magnetic Anisotropy<br />

Magnetic field along nitrogen direction<br />

Magnetic field along vacancy direction<br />

Magnetic field along vacancy direction<br />

Ĥ = gµ B B · Ŝ + DŜ2 z + E<br />

⇣Ŝ2 x Ŝ 2 y<br />

⌘<br />

For Fe: S = 2, D = −1.55 meV, E = 0.31 meV, g = 2.11<br />

D < 0 means easy-axis anisotropy<br />

0<br />

• <strong>Spin</strong> prefers the z-axis for magnetization<br />

1 -1<br />

• Ground state has large |m z |<br />

2<br />

-2<br />

along nitrogen direction <br />

D > 0 means hard-axis anisotropy<br />

2<br />

-2<br />

• <strong>Spin</strong> dislikes the z-axis for magnetization<br />

1 -1<br />

• Ground state has small |m z |<br />

0<br />

Hirjibehedin et al. Science 317, 1199 (2007)<br />

© 2012 <strong>Sander</strong> <strong>Otte</strong> http://ottelab.tudelft.nl


<strong>Spin</strong> Coupling<br />

1 Mn <br />

10 Mn <br />

Hirjibehedin et al. Science 312, 1022 (2006)<br />

0.36 nm<br />

Strong coupling<br />

• Atoms not discernable in topography<br />

• Cannot be taken apart<br />

• <strong>Spin</strong>s combine into one state: |S total , M total 〉<br />

<strong>Otte</strong> et al. PRL 103, 107203 (2009)<br />

0.72 nm<br />

Weak coupling<br />

• Atoms discernable in topography<br />

• Can be taken apart<br />

• <strong>Spin</strong>s remain separate: |s 1 , s 2 , m 1 , m 2 〉<br />

© 2012 <strong>Sander</strong> <strong>Otte</strong> http://ottelab.tudelft.nl


<strong>Spin</strong> Coupling<br />

On a single Co atom:<br />

Kondo resonance splitting in magnetic field<br />

<strong>Otte</strong> et al. Nature Physics 4, 847 (2008)<br />

Magnetic field along vacancy direction<br />

7 T<br />

5 T<br />

3 T<br />

<strong>Otte</strong> et al. PRL 103, 107203 (2009)<br />

Magnetic field along nitrogen direction<br />

7 T<br />

5 T<br />

3 T<br />

-5 0 5<br />

1 T<br />

0 T<br />

0.72 nm<br />

J = 0.13 meV (AF coupling)<br />

-5 0 5<br />

1 T<br />

0 T<br />

© 2012 <strong>Sander</strong> <strong>Otte</strong> http://ottelab.tudelft.nl


<strong>Spin</strong> Coupling<br />

DFT calculation along<br />

nitrogen direction:<br />

Hirjibehedin et al. Science 317, 1199 (2007)<br />

Strong coupling due to<br />

covalent surface network<br />

Magnetic field along vacancy direction<br />

7 T<br />

5 T<br />

3 T<br />

1 T<br />

<strong>Otte</strong> et al. PRL 103, 107203 (2009)<br />

Magnetic field along nitrogen direction<br />

7 T<br />

5 T<br />

3 T<br />

1 T<br />

-5 0 5<br />

0 T<br />

J = 0.13 meV (AF coupling)<br />

-5 0 5<br />

0 T<br />

© 2012 <strong>Sander</strong> <strong>Otte</strong> http://ottelab.tudelft.nl


<strong>Spin</strong>-Polarized STM<br />

Use magnetic tip in order to see magnetization direction<br />

Static, directional<br />

<strong>Spin</strong> Pumping<br />

Use magnetic tip to control magnetization direction<br />

Dynamic, directional<br />

Inelastic Tunneling<br />

Measure energy needed to change magnetization<br />

Dynamic, non-directional<br />

−5/2<br />

−3/2<br />

−1/2<br />

+1/2<br />

+3/2<br />

+5/2<br />

0.7 meV<br />

B = 7 T <br />

B = 7 T <br />

Low current High current<br />

−5/2<br />

−3/2<br />

−1/2<br />

+1/2<br />

+3/2<br />

+5/2<br />

For Mn: S = 5/2, D = −0.04 meV<br />

At 7 T this results in a simple ladder<br />

x!<br />

© 2012 <strong>Sander</strong> <strong>Otte</strong> http://ottelab.tudelft.nl<br />

Loth et al. Nature Physics 6, 340 (2010)


Pump-probe Pulsing<br />

• Pump pulse exceeds excitation threshold voltage<br />

• Probe pulse stays well below threshold<br />

• Measure DC as a function of the delay time Δt<br />

Loth et al. Science 329, 1628 (2010)<br />

T 1 = 86 ns<br />

© 2012 <strong>Sander</strong> <strong>Otte</strong> http://ottelab.tudelft.nl


3<br />

He STM system in Delft<br />

300 mK, 10 -10 mbar, 9T/2T


Constructing spin lattices<br />

Aims:<br />

• Construct 1D and 2D spin lattices<br />

• Tune J by adjusting atom spacing<br />

• Search for quantum phase transitions<br />

• Explore non-trivial magnetization states<br />

(frustration, spin liquids, …)<br />

• Build Kondo chains/lattices<br />

Similar to:<br />

Loth et al., Science 335, 196 (2012)<br />

© 2012 <strong>Sander</strong> <strong>Otte</strong> http://ottelab.tudelft.nl


Acknowledgements<br />

Andreas Heinrich (IBM Almaden)<br />

Chris Lutz (IBM Almaden)<br />

Cyrus Hirjibehedin (UCL, London)<br />

Markus Ternes (MPI Stuttgart)<br />

Kirsten von Bergmann (Universität Hamburg)<br />

Sebastian Loth (CFEL, Hamburg)<br />

Harald Brune (EPFL, Lausanne)<br />

Barbara Jones (IBM Almaden)<br />

Don Eigler (IBM Almaden)<br />

The <strong>Otte</strong> Lab in Delft:<br />

Anna <strong>Spin</strong>elli<br />

Ben Bryant<br />

PhD positions available!<br />

© 2012 <strong>Sander</strong> <strong>Otte</strong> http://ottelab.tudelft.nl

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!