23.05.2014 Views

Spin-orbit-mediated control of electron and hole spins in InSb ...

Spin-orbit-mediated control of electron and hole spins in InSb ...

Spin-orbit-mediated control of electron and hole spins in InSb ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Sp<strong>in</strong></strong>-<strong>orbit</strong>-<strong>mediated</strong> <strong>control</strong> <strong>of</strong> <strong>electron</strong> <strong>and</strong> <strong>hole</strong> <strong>sp<strong>in</strong>s</strong> <strong>in</strong><br />

<strong>InSb</strong> nanowire quantum dots<br />

Vlad Pribiag<br />

Kavli Institute <strong>of</strong> Nanoscience,<br />

Delft University <strong>of</strong> Technology<br />

Stevan Nadj-Perge<br />

Sergey Frolov<br />

Johan van den Berg<br />

Ilse van Weperen<br />

Leo Kouwenhoven<br />

Sébastien Plissard<br />

Erik Bakkers<br />

conduction b<strong>and</strong>


Z<strong>in</strong>cblende <strong>InSb</strong> nanowires (111)<br />

nanowires are grown by<br />

MOVPE<br />

Au<br />

<strong>InSb</strong><br />

InAs<br />

• Strong sp<strong>in</strong>-<strong>orbit</strong> coupl<strong>in</strong>g<br />

• Smallest b<strong>and</strong> gap <strong>of</strong> III-V semiconductors<br />

• Very large g-factors<br />

InP (111)<br />

Qubits, Majorana fermions<br />

Plissard et al., NanoLetters (2012).<br />

see also: Car<strong>of</strong>f et al., Nanotechnology (2009).


Right Gate (mV)<br />

300 400 500<br />

<strong>InSb</strong> double quantum dots<br />

3<br />

2<br />

4<br />

1<br />

5<br />

D<br />

S<br />

1 µm<br />

BG<br />

300 400 500 600<br />

Left gate (mV)<br />

• easier to tune than InAs<br />

(higher mobility, lower <strong>electron</strong> mass)<br />

S. Nadj-Perge et al., PRL (2012).<br />

(Few-<strong>electron</strong> s<strong>in</strong>gle dot <strong>in</strong> <strong>InSb</strong> nw’s first realized <strong>in</strong> Xu group (Lund).)


Energy (μeV)<br />

Electric dipole sp<strong>in</strong> resonance<br />

Weak <strong>in</strong>terdot coupl<strong>in</strong>g<br />

E ac = E 0 s<strong>in</strong>(ω L t)<br />

<br />

<br />

gµ B B<br />

• a.c. electric field drives sp<strong>in</strong> resonance<br />

<strong>mediated</strong> by the sp<strong>in</strong>-<strong>orbit</strong> <strong>in</strong>teraction<br />

20<br />

0<br />

-20<br />

(,)<br />

(,)<br />

(,)<br />

(,)<br />

0 5 10<br />

B (mT)


Energy (μeV)<br />

Electric dipole sp<strong>in</strong> resonance<br />

Detect sp<strong>in</strong> rotations via sp<strong>in</strong> blockade<br />

Weak <strong>in</strong>terdot coupl<strong>in</strong>g<br />

E ac = E 0 s<strong>in</strong>(ω L t)<br />

<br />

<br />

gµ B B<br />

• a.c. electric field drives sp<strong>in</strong> resonance<br />

<strong>mediated</strong> by the sp<strong>in</strong>-<strong>orbit</strong> <strong>in</strong>teraction<br />

20<br />

0<br />

-20<br />

(,)<br />

(,)<br />

(,)<br />

(,)<br />

0 5 10<br />

B (mT)


Frequency (GHz)<br />

Energy (μeV)<br />

Electric dipole sp<strong>in</strong> resonance<br />

Detect sp<strong>in</strong> rotations via sp<strong>in</strong> blockade<br />

Weak <strong>in</strong>terdot coupl<strong>in</strong>g<br />

20<br />

20<br />

(,)<br />

0<br />

(,)<br />

(,)<br />

5<br />

-50 50<br />

B (mT)<br />

-20<br />

(,)<br />

0 5 10<br />

B (mT)


g-factor<br />

g-factor anisotropy <strong>in</strong> an <strong>InSb</strong> double-dot<br />

45<br />

anisotropic g-factors <strong>in</strong> two dots:<br />

30<br />

-90° 0° 90° 180° 270°<br />

Angle<br />

nw B<br />

nw<br />

B<br />

Similar measurements on g-factors from Petta group on InAs nanowires.


g-factor<br />

g-factor anisotropy <strong>in</strong> an <strong>InSb</strong> double-dot<br />

45<br />

anisotropic g-factors <strong>in</strong> two dots:<br />

30<br />

-90° 0° 90° 180° 270°<br />

Angle<br />

left dot<br />

right dot


Electric dipole sp<strong>in</strong> resonance – stronger<br />

<strong>in</strong>terdot coupl<strong>in</strong>g<br />

Stronger <strong>in</strong>terdot coupl<strong>in</strong>g<br />

• tunnel coupl<strong>in</strong>g hybridizes S(1,1) <strong>and</strong> S(0,2)<br />

• SO mixes T - (1,1) <strong>and</strong> S


Frequency (GHz)<br />

Electric dipole sp<strong>in</strong> resonance – stronger<br />

<strong>in</strong>terdot coupl<strong>in</strong>g<br />

Stronger <strong>in</strong>terdot coupl<strong>in</strong>g<br />

15<br />

10<br />

5<br />

-20 B (mT) 20<br />

• tunnel coupl<strong>in</strong>g hybridizes S(1,1) <strong>and</strong> S(0,2)<br />

• SO mixes T - (1,1) <strong>and</strong> S<br />

anticross<strong>in</strong>g size: l so ~ 230 nm<br />

(cf. l SO ~ 10 µm for GaAs!)


Angular dependence <strong>of</strong> SOI<br />

• anticross<strong>in</strong>g size depends on angle <strong>of</strong> B w.r.t. nanowire


Angular dependence <strong>of</strong> SOI<br />

• anticross<strong>in</strong>g size depends on angle <strong>of</strong> B w.r.t. nanowire<br />

• sp<strong>in</strong>-blockade leakage current has similar angular dependence on B


Angular dependence <strong>of</strong> SOI<br />

B SO<br />

B<br />

φ<br />

T - (1,1)<br />

B SO<br />

S(1,1)<br />

T 0 (1,1)<br />

T + (1,1)<br />

B SO<br />

S(0,2)<br />

• anticross<strong>in</strong>g <strong>and</strong> leakage current show same anisotropy<br />

• common orig<strong>in</strong>: mix<strong>in</strong>g <strong>of</strong> T(1,1) <strong>and</strong> S by the SOI


Determ<strong>in</strong><strong>in</strong>g the sp<strong>in</strong>-<strong>orbit</strong> field direction<br />

k<br />

E<br />

111<br />

B SO<br />

• No BIA sp<strong>in</strong>-<strong>orbit</strong> for [111] direction (the growth direction)<br />

• Anisotropies consistent with Rashba sp<strong>in</strong>-<strong>orbit</strong> <strong>in</strong>teraction


Coherent <strong>control</strong> <strong>of</strong> <strong>electron</strong> sp<strong>in</strong> <strong>in</strong> <strong>InSb</strong><br />

<strong>in</strong>itialize manipulate readout<br />

SB<br />

CB<br />

SB<br />

• f Rabi up to 104 MHz (highest reported for s<strong>in</strong>gle-sp<strong>in</strong> qubit <strong>in</strong> a QD)<br />

• fidelity <strong>of</strong> ~81%<br />

J. van den Berg et al., PRL 2013 (<strong>in</strong> pr<strong>in</strong>t).


Ramsey sequence<br />

<strong>InSb</strong> qubit coherence<br />

Ramsey fr<strong>in</strong>ge<br />

vary the relative phase


Ramsey sequence<br />

<strong>InSb</strong> qubit coherence<br />

Ramsey fr<strong>in</strong>ge<br />

vary the relative phase<br />

Decay <strong>of</strong> Ramsey fr<strong>in</strong>ge contrast<br />

vary the wait<strong>in</strong>g time t<br />

T 2 * ~ 6-9 ns


<strong>InSb</strong> qubit coherence<br />

Ramsey sequence<br />

Hahn echo sequence<br />

Decay <strong>of</strong> Ramsey fr<strong>in</strong>ge contrast<br />

Decay <strong>of</strong> Hahn echo fr<strong>in</strong>ge contrast<br />

T 2 * ~ 6-9 ns<br />

T echo ~ 32-35 ns<br />

Similar to InAs nw qubits: suggests dephas<strong>in</strong>g due to fast dynamics <strong>of</strong> nuclear sp<strong>in</strong> bath


Selective coherent <strong>control</strong><br />

• large Δg between the two QD’s (due to difference <strong>in</strong> conf<strong>in</strong>ement)


Selective coherent <strong>control</strong><br />

• large Δg between the two QD’s (due to difference <strong>in</strong> conf<strong>in</strong>ement)<br />

• allows selective driv<strong>in</strong>g <strong>of</strong> Rabi oscillations for each <strong>of</strong> the two qubits<br />

• the large ΔE Z may enable CPHASE gate operation time <strong>of</strong> ~1 ns (Meunier et al., PRB 2011)


From <strong>electron</strong> <strong>sp<strong>in</strong>s</strong> to <strong>hole</strong> <strong>sp<strong>in</strong>s</strong><br />

Electron <strong>sp<strong>in</strong>s</strong>:<br />

• very advanced platform for quantum <strong>in</strong>formation process<strong>in</strong>g<br />

(s<strong>in</strong>gle-sp<strong>in</strong> rotations, s<strong>in</strong>gle-sp<strong>in</strong> readout, coherent exchange)<br />

• decoherence due to nuclear <strong>sp<strong>in</strong>s</strong> is a challenge <strong>in</strong> III-V semiconductors<br />

Hole <strong>sp<strong>in</strong>s</strong>:<br />

• weaker hyperf<strong>in</strong>e <strong>in</strong>teraction (longer sp<strong>in</strong> coherence)<br />

(e.g. Brunner et al., Science (2009); DeGreve et al., Nat. Phys. (2011))<br />

• stronger sp<strong>in</strong>-<strong>orbit</strong> coupl<strong>in</strong>g (enhanced sp<strong>in</strong> <strong>control</strong>)<br />

(e.g. Manaselyan et al., Europhys. Lett. (2009); Kloeffel et al., PRB (2011))<br />

• <strong>control</strong> may facilitate sp<strong>in</strong>-to-photon conversion<br />

• … but challeng<strong>in</strong>g fabrication few sp<strong>in</strong> transport studies to date<br />

V.S.P. et al., Nature Nanotech., 2013 (<strong>in</strong> pr<strong>in</strong>t).


From <strong>electron</strong>s to <strong>hole</strong>s <strong>in</strong> <strong>InSb</strong> nw’s<br />

<strong>hole</strong><br />

transport<br />

<strong>electron</strong><br />

transport<br />

S<br />

D<br />

Bipolar <strong>InSb</strong> nanowire FETs first demonstrated by<br />

Nielsen et al., (2011).


B<strong>and</strong>gap <strong>of</strong> our <strong>InSb</strong> nanowires<br />

B<strong>and</strong>gap ~ 200 meV (agrees with bulk values)


Schematic b<strong>and</strong> diagram for <strong>hole</strong> QD.<br />

Hole quantum dots


Hole quantum dots<br />

Gate tun<strong>in</strong>g from <strong>electron</strong> transport to <strong>hole</strong> QD.<br />

Schematic b<strong>and</strong> diagram for <strong>hole</strong> QD. • charg<strong>in</strong>g energies: ~20 meV<br />

• <strong>orbit</strong>al energies: ~3-8 meV


Double quantum dots with <strong>hole</strong>s<br />

Schematic b<strong>and</strong> diagram for <strong>hole</strong> double QD.


Double quantum dots with <strong>hole</strong>s<br />

Schematic b<strong>and</strong> diagram for <strong>hole</strong> double QD.<br />

• charg<strong>in</strong>g energies: ~20 meV<br />

• <strong>orbit</strong>al energies: ~8 meV<br />

• predom<strong>in</strong>antly light <strong>hole</strong> character


Double quantum dots with <strong>hole</strong>s<br />

Schematic b<strong>and</strong> diagram for <strong>hole</strong> double QD.<br />

• charg<strong>in</strong>g energies: ~20 meV<br />

• <strong>orbit</strong>al energies: ~8 meV<br />

• predom<strong>in</strong>antly light <strong>hole</strong> character<br />

Csontos et al., PRB (2009).


Hole sp<strong>in</strong> blockade<br />

• B = 0 peak is a typical signature <strong>of</strong> sp<strong>in</strong> blockade for <strong>electron</strong> <strong>sp<strong>in</strong>s</strong><br />

(e.g. Koppens et al., Science (2005))


Hyperf<strong>in</strong>e coupl<strong>in</strong>g: <strong>hole</strong>s vs. <strong>electron</strong>s<br />

• Peak width enables estimate <strong>of</strong> RMS fluctuations <strong>of</strong> hyperf<strong>in</strong>e field


Hyperf<strong>in</strong>e coupl<strong>in</strong>g: <strong>hole</strong>s vs. <strong>electron</strong>s<br />

• Peak width enables estimate <strong>of</strong> RMS fluctuations <strong>of</strong> hyperf<strong>in</strong>e field<br />

cf. optical measurements<br />

Chekhovich et al., PRL 2011


Electric-dipole sp<strong>in</strong> resonance <strong>of</strong><br />

<strong>hole</strong> <strong>sp<strong>in</strong>s</strong>


Electric-dipole sp<strong>in</strong> resonance <strong>of</strong><br />

<strong>hole</strong> <strong>sp<strong>in</strong>s</strong>


Electric-dipole sp<strong>in</strong> resonance <strong>of</strong><br />

<strong>hole</strong> <strong>sp<strong>in</strong>s</strong>: <strong>hole</strong> g-factors<br />

Hole g-factors <strong>in</strong> QDs:<br />

• Highly-anisotropic<br />

• One order <strong>of</strong> magnitude smaller than for <strong>electron</strong>s<br />

• Surpris<strong>in</strong>gly small compared to bulk <strong>hole</strong> g-factor (~16) – likely subb<strong>and</strong> mix<strong>in</strong>g<br />

• Strong gate-dependence: suggests g-tensor modulation contributes to EDSR


Electric-dipole sp<strong>in</strong> resonance <strong>of</strong><br />

<strong>hole</strong> <strong>sp<strong>in</strong>s</strong>: <strong>hole</strong> g-factors<br />

Csontos et al., PRB (2009).<br />

Hole g-factors <strong>in</strong> QDs:<br />

• Highly-anisotropic<br />

• One order <strong>of</strong> magnitude smaller than for <strong>electron</strong>s<br />

• Surpris<strong>in</strong>gly small compared to bulk <strong>hole</strong> g-factor (~16) – likely subb<strong>and</strong> mix<strong>in</strong>g<br />

• Strong gate-dependence: suggests g-tensor modulation contributes to EDSR


<strong>Sp<strong>in</strong></strong>-blockade – strong coupl<strong>in</strong>g<br />

• Dip at B = 0<br />

• Likely due to sp<strong>in</strong>-<strong>orbit</strong> coupl<strong>in</strong>g (as also seen for <strong>electron</strong>s)<br />

• But, very different angular dependence than <strong>electron</strong>s…


<strong>Sp<strong>in</strong></strong>-blockade anisotropy – strong coupl<strong>in</strong>g<br />

Electrons:<br />

B SO<br />

B<br />

k<br />

T - (1,1)<br />

E<br />

B SO<br />

S(1,1)<br />

T 0 (1,1)<br />

T + (1,1)<br />

B SO<br />

S(0,2)


<strong>Sp<strong>in</strong></strong>-blockade anisotropy – strong coupl<strong>in</strong>g<br />

Electrons:<br />

Holes:<br />

B SO<br />

B<br />

k<br />

T - (1,1)<br />

E<br />

B SO<br />

S(1,1)<br />

T 0 (1,1)<br />

T + (1,1)<br />

B SO<br />

S(0,2)


Summary<br />

<strong>InSb</strong> nanowires, so far:<br />

• Mapped out anisotropy <strong>of</strong> sp<strong>in</strong> blockade <strong>and</strong> g-factor (for e <strong>and</strong> h)<br />

• Fast Rabi oscillations <strong>of</strong> s<strong>in</strong>gle-<strong>electron</strong>-sp<strong>in</strong> qubit (>100 MHz)<br />

• Compared hyperf<strong>in</strong>e coupl<strong>in</strong>g (e vs. h)<br />

• Achieved electrical <strong>control</strong> <strong>of</strong> <strong>hole</strong> <strong>sp<strong>in</strong>s</strong> <strong>in</strong> <strong>InSb</strong> nanowires<br />

– potential for enhanced <strong>control</strong> <strong>and</strong> coherence w.r.t. <strong>electron</strong> <strong>sp<strong>in</strong>s</strong><br />

Future directions:<br />

• CPHASE gate (based on large ΔE Z )<br />

• Coherent s<strong>in</strong>gle <strong>hole</strong> sp<strong>in</strong> rotations<br />

• Study <strong>hole</strong> SOI strength <strong>and</strong> anisotropy (us<strong>in</strong>g EDSR)<br />

• S<strong>in</strong>gle-shot sp<strong>in</strong> readout (rf-SETs) – study entanglement correlations

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!