05.06.2014 Views

Risk 1 - Hans Buehler

Risk 1 - Hans Buehler

Risk 1 - Hans Buehler

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Equity Derivatives Teach-In<br />

Modeling <strong>Risk</strong><br />

Dr. <strong>Hans</strong> <strong>Buehler</strong>, Head of EDG QR Asia<br />

Singapore, August 1 st , 2009<br />

hans.x.buehler@jpmorgan.com<br />

0


English_General<br />

[ P R E S E N T A T I O N T I T L E ]<br />

This presentation was prepared exclusively for the benefit and internal use of the J.P. Morgan client to whom it is directly addressed and delivered (including such<br />

client’s subsidiaries, the ―Company‖) in order to assist the Company in evaluating, on a preliminary basis, the feasibility of a possible transaction or transactions<br />

and does not carry any right of publication or disclosure, in whole or in part, to any other party. This presentation is for discussion purposes only and is<br />

incomplete without reference to, and should be viewed solely in conjunction with, the oral briefing provided by J.P. Morgan. Neither this presentation nor any of<br />

its contents may be disclosed or used for any other purpose without the prior written consent of J.P. Morgan.<br />

The information in this presentation is based upon any management forecasts supplied to us and reflects prevailing conditions and our views as of this date, all of<br />

which are accordingly subject to change. J.P. Morgan’s opinions and estimates constitute J.P. Morgan’s judgment and should be regarded as indicative,<br />

preliminary and for illustrative purposes only. In preparing this presentation, we have relied upon and assumed, without independent verification, the accuracy<br />

and completeness of all information available from public sources or which was provided to us by or on behalf of the Company or which was otherwise reviewed by<br />

us. In addition, our analyses are not and do not purport to be appraisals of the assets, stock, or business of the Company or any other entity. J.P. Morgan makes<br />

no representations as to the actual value which may be received in connection with a transaction nor the legal, tax or accounting effects of consummating a<br />

transaction. Unless expressly contemplated hereby, the information in this presentation does not take into account the effects of a possible transaction or<br />

transactions involving an actual or potential change of control, which may have significant valuation and other effects.<br />

Notwithstanding anything herein to the contrary, the Company and each of its employees, representatives or other agents may disclose to any and all persons,<br />

without limitation of any kind, the U.S. federal and state income tax treatment and the U.S. federal and state income tax structure of the transactions<br />

contemplated hereby and all materials of any kind (including opinions or other tax analyses) that are provided to the Company relating to such tax treatment and<br />

tax structure insofar as such treatment and/or structure relates to a U.S. federal or state income tax strategy provided to the Company by J.P. Morgan.<br />

J.P. Morgan’s policies prohibit employees from offering, directly or indirectly, a favorable research rating or specific price target, or offering to change a rating or<br />

price target, to a subject company as consideration or inducement for the receipt of business or for compensation. J.P. Morgan also prohibits its research analysts<br />

from being compensated for involvement in investment banking transactions except to the extent that such participation is intended to benefit investors.<br />

IRS Circular 230 Disclosure: JPMorgan Chase & Co. and its affiliates do not provide tax advice. Accordingly, any discussion of U.S. tax matters included<br />

herein (including any attachments) is not intended or written to be used, and cannot be used, in connection with the promotion, marketing or<br />

recommendation by anyone not affiliated with JPMorgan Chase & Co. of any of the matters addressed herein or for the purpose of avoiding U.S. tax-related<br />

penalties.<br />

J.P. Morgan is a marketing name for investment banking businesses of JPMorgan Chase & Co. and its subsidiaries worldwide. Securities, syndicated loan arranging,<br />

financial advisory and other investment banking activities are performed by a combination of J.P. Morgan Securities Inc., J.P. Morgan plc, J.P. Morgan Securities<br />

Ltd. and the appropriately licensed subsidiaries of JPMorgan Chase & Co. in Asia-Pacific, and lending, derivatives and other commercial banking activities are<br />

performed by JPMorgan Chase Bank, N.A. J.P. Morgan deal team members may be employees of any of the foregoing entities.<br />

This presentation does not constitute a commitment by any J.P. Morgan entity to underwrite, subscribe for or place any securities or to extend or arrange credit or<br />

to provide any other services.<br />

1


Contents<br />

• Introduction, Overview, Product Lifecycle<br />

• Products<br />

• Modeling <strong>Risk</strong><br />

— Basics<br />

— Local Volatility<br />

— Stochastic Volatility<br />

— Crash <strong>Risk</strong><br />

• Numerical Methods<br />

2


Contents<br />

Challenges in Equity Modelling<br />

• Deterministic<br />

— Implied Volatility<br />

— Interest rates<br />

— Dividend marks and handling<br />

(proportional vs. discrete)<br />

— FX Volatilities<br />

— Equity Correlation<br />

— Equity/FX Correlation<br />

— Repo, borrow, basis, etc<br />

• First Order<br />

— Local Volatility<br />

— CDS/Credit risk<br />

• Second Order<br />

— Stochastic Volatility / Jumps<br />

— Stochastic Dividends<br />

— Stochastic Interest rates<br />

— Equity/IR correlation<br />

• Third Order<br />

— Stochastic Correlation<br />

— Stochastic Credit <strong>Risk</strong><br />

— Equity/Credit ―correlation‖<br />

• Fourth Order<br />

— Transaction Costs, Liqudity<br />

— Forward curve models<br />

3


Modeling <strong>Risk</strong><br />

Basics<br />

4


Modeling <strong>Risk</strong> – Basics<br />

Setting<br />

• Given is a Stochastic Differential Equation<br />

Brownian<br />

Motion<br />

dS(<br />

t)<br />

S(<br />

t)<br />

= (<br />

t)<br />

dt s ( t,<br />

S(<br />

t))<br />

dW ( t)<br />

Drift<br />

Volatility<br />

Forward<br />

— In the risk-neutral world, the drift is implied by E[S(t)] = F(t) as<br />

dF(<br />

t)<br />

( t)<br />

dt = r(<br />

t)<br />

<br />

( t)<br />

F(<br />

t)<br />

— Black & Scholes [3]: s= s BS is a constant number.<br />

5


Modeling <strong>Risk</strong> – Basics<br />

Black & Scholes<br />

1400<br />

S&P500 versus Geometric Brownian Motion<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

One of these paths<br />

is the actual S&P<br />

500, the other two<br />

are simulated using<br />

Black & Scholes.<br />

28/06/2003 06/10/2003 14/01/2004 23/04/2004 01/08/2004 09/11/2004 17/02/2005 28/05/2005 05/09/2005 14/12/2005<br />

6


Modeling <strong>Risk</strong> – Basics<br />

Black & Scholes<br />

• For this particular choice, the SDE has the analytical solution<br />

S<br />

BS<br />

1 2 <br />

( t)<br />

= F(<br />

t)exp<br />

s<br />

BSW<br />

( t)<br />

s<br />

BS<br />

t<br />

2 <br />

which allows computing vanilla option prices and, indeed, many more<br />

option prices analytically.<br />

The famous Black&Scholes formula for the value of an European call is:<br />

FV( T,Stoday)<br />

: =<br />

DF( T)<br />

= DF( T)<br />

E<br />

<br />

<br />

<br />

S<br />

BS<br />

( T)<br />

K<br />

F(T)N ( d<br />

<br />

<br />

<br />

<br />

) KN(<br />

d<br />

<br />

) <br />

d<br />

<br />

=<br />

ln( F(<br />

T) / K)<br />

<br />

s<br />

BS<br />

T<br />

1<br />

2<br />

s 2<br />

BS<br />

T<br />

7


Modeling <strong>Risk</strong> – Basics<br />

Black & Scholes<br />

• The value of each payoff under Black&Scholes is a function of the current<br />

spot level S today and time-to-maturity T:<br />

FV( T,Stoday) : = DF( T)<br />

E F(<br />

S ( T)<br />

<br />

t, S) : = FV( t,<br />

S)<br />

S<br />

— The seminal paper of Black&Scholes has shown that if the market is<br />

behaving like the model predicted, then perfect replication is possible:<br />

<br />

BS<br />

<br />

Payoff at<br />

maturity T<br />

<br />

S(<br />

T)<br />

K = FV(0, S ) <br />

Fair Value of<br />

the option<br />

today (time 0)<br />

T<br />

today<br />

( t,<br />

S(<br />

t))<br />

dS(<br />

t)<br />

0<br />

Delta-Hedging<br />

(*) This simplified<br />

formula holds if<br />

•Interest rates are zero<br />

•The stock pays mo<br />

dividends<br />

•The stock earns/pays<br />

no borrow<br />

8


Modeling <strong>Risk</strong> – Basics<br />

Black & Scholes<br />

• What does this formula mean?<br />

S(<br />

T)<br />

K = FV(0, S ) ( t,<br />

S(<br />

t))<br />

dS(<br />

t)<br />

— It tells us how to execute the hedge:<br />

FV(<br />

t<br />

<br />

today<br />

1<br />

dt,<br />

S(<br />

t1))<br />

= FV(0, Stoday)<br />

(0,<br />

Stoday)<br />

S(<br />

t1)<br />

T<br />

0<br />

<br />

S<br />

today<br />

<br />

Buy units of<br />

shares today<br />

and sell them<br />

tomorrow.<br />

Tomorrow’s<br />

option value<br />

— For two days:<br />

Today’s option<br />

value<br />

9


Modeling <strong>Risk</strong> – Basics<br />

Black & Scholes<br />

• What does this formula mean?<br />

— For two days:<br />

FV( t<br />

2<br />

= FV( t<br />

, S(<br />

t<br />

1<br />

, S(<br />

t<br />

= FV(0, S<br />

<br />

S(<br />

T)<br />

K = FV(0, S ) ( t,<br />

S(<br />

t))<br />

dS(<br />

t)<br />

2<br />

))<br />

1<br />

today<br />

)) (<br />

t<br />

1<br />

, S(<br />

t<br />

) (0,<br />

S<br />

1<br />

))<br />

today<br />

)<br />

<br />

S(<br />

t<br />

2<br />

today<br />

) S(<br />

t<br />

)<br />

T<br />

0<br />

<br />

S<br />

( t ) S (<br />

t , S(<br />

t )) S<br />

( t ) S(<br />

t ) <br />

1<br />

1<br />

today<br />

1<br />

1<br />

2<br />

1<br />

10


Modeling <strong>Risk</strong> – Basics<br />

Black & Scholes<br />

• The formula is understood as<br />

Change of<br />

option value<br />

Change of<br />

Delta position<br />

value<br />

FV( t<br />

dt,<br />

S(<br />

t<br />

dt))<br />

FV( t,<br />

S(<br />

t))<br />

dFV(<br />

t)<br />

=<br />

=<br />

(<br />

t,<br />

S(<br />

t))<br />

<br />

S(<br />

t<br />

(<br />

t)<br />

dS(<br />

t)<br />

dt)<br />

S(<br />

t)<br />

<br />

• Practitioners often look at ―cash delta‖ rather than delta.<br />

It reflects the cash value of the delta position:<br />

— This gives<br />

<br />

$<br />

( t) : =<br />

dFV(<br />

t,<br />

S(<br />

t))<br />

=<br />

(<br />

t)<br />

S(<br />

t)<br />

<br />

$<br />

dS(<br />

t)<br />

( t)<br />

S(<br />

t)<br />

Return on the<br />

stock<br />

investment<br />

11


Fair Value<br />

-200%<br />

-180%<br />

-160%<br />

-140%<br />

-120%<br />

-100%<br />

-80%<br />

-60%<br />

-40%<br />

-20%<br />

0%<br />

20%<br />

40%<br />

60%<br />

80%<br />

100%<br />

120%<br />

140%<br />

160%<br />

180%<br />

200%<br />

Modeling <strong>Risk</strong> – Basics<br />

4<br />

Hedging a European Call<br />

(3d to maturity, 45% Volatility)<br />

Price T<br />

3<br />

Price(S0) + Delta T<br />

Price T+1<br />

2<br />

1<br />

Break-Even<br />

Point at<br />

-100%<br />

Break-Even<br />

Point at<br />

+100%<br />

0<br />

Stock price move in standard deviations<br />

(relative to one-day volatility)<br />

12


Daily Return / Initial Fair Value<br />

Modeling <strong>Risk</strong> – Basics<br />

40%<br />

Naked European Call (matures 99% OTM)<br />

30%<br />

20%<br />

10%<br />

0%<br />

-10%<br />

-20%<br />

Using actual<br />

-30%<br />

HSI market<br />

04-Jul-08 04-Sep-08 04-Nov-08 04-Jan-09 04-Mar-09 data 04-May-09<br />

13


Daily Return / Initial Fair Value<br />

Modeling <strong>Risk</strong> – Basics<br />

40%<br />

Delta-Hedging an European Call<br />

30%<br />

20%<br />

Unhedged<br />

Hedged<br />

10%<br />

0%<br />

-10%<br />

-20%<br />

-30%<br />

04-Jul-08 04-Sep-08 04-Nov-08 04-Jan-09 04-Mar-09 04-May-09<br />

14


Daily Return / Initial Fair Value<br />

Modeling <strong>Risk</strong> – Basics<br />

40%<br />

Delta-Hedging an European Call<br />

500%<br />

30%<br />

20%<br />

LogSqRet<br />

Unhedged<br />

450%<br />

400%<br />

350%<br />

10%<br />

Hedged<br />

300%<br />

250%<br />

0%<br />

200%<br />

-10%<br />

-20%<br />

High daily<br />

volatility leads<br />

to deterioration<br />

of hedging<br />

performance.<br />

150%<br />

100%<br />

50%<br />

-30%<br />

04-Jul-08 04-Sep-08 04-Nov-08 04-Jan-09 04-Mar-09 04-May-09<br />

0%<br />

15


Probability<br />

Modeling <strong>Risk</strong> – Basics<br />

70%<br />

Effect of Delta Hedging on the Return Distribution for ATM Calls<br />

60%<br />

50%<br />

40%<br />

30%<br />

Unhedged 2w<br />

Unhedged 1m<br />

Unhedged 2m<br />

Hedged 2w<br />

Hedged 1m<br />

Hedged 2m<br />

20%<br />

10%<br />

Marked<br />

reduction<br />

in tail risk<br />

Marked<br />

reduction<br />

in tail risk<br />

0%<br />

-50% -43% -37% -30% -23% -17% -10% -3% 3% 10% 17% 23% 30% 37% 43% 50%<br />

__<br />

Period Feb 06 – April 07<br />

16


Modeling <strong>Risk</strong> – Basics<br />

Black & Scholes<br />

• What about the error if we only hedge daily (not instantaneous) ?<br />

— Black&Scholes PDE:<br />

dFV(<br />

t)<br />

<br />

$<br />

( t)<br />

dS(<br />

t)<br />

S(<br />

t)<br />

=<br />

1<br />

2<br />

<br />

$<br />

2<br />

dS(<br />

t)<br />

<br />

<br />

S(<br />

t)<br />

<br />

dt<br />

“Cash Gamma”<br />

$ := S 2<br />

Theta<br />

• Key message<br />

— Theta ―compensates‖ for Gamma (theta is negative – the option value<br />

decays in time)<br />

— The hedge works perfectly if Theta and the Gamma term cancel.<br />

17


Modeling <strong>Risk</strong> – Basics<br />

Black & Scholes – Break Even Vol<br />

• In a Black&Scholes world, the hedge works perfectly,<br />

• Hence, Theta must cancel if the asset squared return is just as anticipated<br />

by the Black&Scholes model – this means:<br />

dFV(<br />

t)<br />

<br />

( t)<br />

dS(<br />

t)<br />

S(<br />

t)<br />

• Define the ―Break Even Volatility‖<br />

$<br />

s<br />

2<br />

break even<br />

=<br />

=<br />

1<br />

<br />

2<br />

1<br />

<br />

2<br />

$<br />

$<br />

2<br />

dS(<br />

t)<br />

<br />

<br />

S(<br />

t)<br />

<br />

<br />

s s<br />

2<br />

realized<br />

<br />

2<br />

dt<br />

: = <br />

$<br />

dt<br />

2<br />

BS<br />

dt<br />

18


Modeling <strong>Risk</strong> – Basics<br />

Black & Scholes – Break Even Vol<br />

• Break Even Vol<br />

— Note that for practical computation, needs to be computed carefully;<br />

the so-called ―optionality theta‖ is the raw theta<br />

<br />

optionalit y<br />

= <br />

simpleshift<br />

{dividends<br />

funding<br />

client cashflows}<br />

• In other words,<br />

s<br />

2<br />

break even<br />

<br />

optionalit y<br />

: = <br />

$<br />

2<br />

dt<br />

19


Modeling <strong>Risk</strong> – Basics<br />

Black & Scholes – Summary Break Even Vol<br />

• The most basic equation of Modeling <strong>Risk</strong><br />

dFV(<br />

t)<br />

<br />

$<br />

( t)<br />

dS(<br />

t)<br />

S(<br />

t)<br />

=<br />

1<br />

2<br />

<br />

$<br />

<br />

s<br />

2<br />

realized<br />

s<br />

2<br />

model<br />

dt<br />

— Holds for all one-factor stock price models (*)<br />

dS(<br />

t)<br />

S(<br />

t)<br />

= (<br />

t)<br />

dt s ( t,<br />

S(<br />

t))<br />

dW ( t)<br />

— A similar formula will be shown for stochastic volatility<br />

We say ―we pay Theta‖ for the Gamma of the option.<br />

__<br />

(*) assuming no daily recalibration.<br />

20


Modeling <strong>Risk</strong><br />

Local Volatility<br />

21


Modeling <strong>Risk</strong> – Local Volatility<br />

Black & Scholes – Implied Volatility<br />

• Recall the Black&Scholes formula for a European call:<br />

FV( T,Stoday)<br />

: =<br />

DF( T)<br />

= DF( T)<br />

E<br />

<br />

<br />

<br />

S<br />

BS<br />

( T)<br />

K<br />

F(T)N ( d<br />

<br />

<br />

<br />

<br />

) KN(<br />

d<br />

<br />

) <br />

d<br />

<br />

=<br />

ln( F(<br />

T) / K)<br />

<br />

s<br />

BS<br />

T<br />

1<br />

2<br />

s 2<br />

BS<br />

T<br />

22


Implied Vol<br />

8346<br />

9737<br />

11128<br />

12519<br />

13910<br />

15301<br />

16692<br />

18083<br />

19474<br />

Modeling <strong>Risk</strong> – Local Volatility<br />

Black & Scholes – Implied Volatility<br />

• Using the BS volatility s BS as a free parameter, we can invert the BS<br />

formula to back out the so-called ―BS implied volatility‖ surface of the<br />

Market<br />

market.<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

1Y<br />

2Y<br />

3Y<br />

3M<br />

Strike<br />

Example: HSI Mar 25, 2009 @ 13,910<br />

23


Modeling <strong>Risk</strong> – Local Volatility<br />

Black & Scholes – Implied Volatility<br />

s Τ<br />

Κ <br />

= s<br />

ATM<br />

Τ<br />

Κ <br />

2<br />

K 1<br />

K <br />

skew* ln<br />

convexity *ln<br />

<br />

F(<br />

T)<br />

2<br />

F(<br />

T)<br />

<br />

approximately<br />

s ( T,105%)<br />

s ( T,95%)<br />

skew =<br />

10%<br />

for 95/105 strikes relative to forward (what we used before).<br />

Formula does not hold for far OTM strikes.<br />

24


Modeling <strong>Risk</strong> – Local Volatility<br />

Recall: Pricing with Skew<br />

0.7<br />

Skew Impact on ATM Digital Puts (95-105 skew @ -5%)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Digital<br />

Put Spread 0.01%<br />

Put Spread 0.1%<br />

Put Spread 0.5%<br />

Put Spread 1%<br />

1w 1m 3m 6m 1y<br />

25


Implied Vol<br />

8346<br />

9737<br />

11128<br />

12519<br />

13910<br />

15301<br />

16692<br />

18083<br />

19474<br />

Modeling <strong>Risk</strong> – Local Volatility<br />

Black & Scholes – Implied Volatility<br />

• Observed market option prices are not consistent with the BS assumption of<br />

a single constant volatility, and not even with the assumption of a timedependent<br />

volatility.<br />

Market<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

1Y<br />

2Y<br />

3Y<br />

3M<br />

Strike<br />

Any pricing algorithm needs to “re-price” the observed option prices<br />

(otherwise we would have internal arbitrage).<br />

26


Modeling <strong>Risk</strong> – Local Volatility<br />

Dupire’s Local Volatility<br />

• Classic Solution: Dupire’s Local Volatility [2]<br />

the second most used model in equity derivatives<br />

— Idea: find s as a function of spot and time such that<br />

dS<br />

S<br />

LV<br />

LV<br />

( t)<br />

( t)<br />

= (<br />

t)<br />

dt s<br />

LV<br />

( t,<br />

S<br />

LV<br />

( t))<br />

dW ( t)<br />

reprices all market prices, ie<br />

<br />

<br />

!<br />

<br />

S ( t)<br />

K MarketCallPrice( t,<br />

K)<br />

DF( t)<br />

E<br />

LV<br />

=<br />

27


Modeling <strong>Risk</strong> – Local Volatility<br />

Dupire’s Local Volatility<br />

• Key points<br />

— Dupire’s local volatility is unique within the class of diffusions<br />

— In this class it is well-defined and given as<br />

where<br />

s ( t,<br />

S):<br />

= ~<br />

LV<br />

s<br />

~ s<br />

LV<br />

<br />

t,<br />

k<br />

<br />

2<br />

: =<br />

LV<br />

2k<br />

~<br />

C(<br />

t,<br />

k)<br />

t<br />

2<br />

~<br />

C(<br />

t,<br />

k)<br />

2<br />

k<br />

2<br />

<br />

t,<br />

<br />

S<br />

F(<br />

t)<br />

<br />

<br />

<br />

Normalized<br />

Call Prices<br />

~<br />

C ( t,<br />

k)<br />

: =<br />

MarketCallPrice t,kF(<br />

t)<br />

DF( t)<br />

F(<br />

t)<br />

<br />

<br />

28


Modeling <strong>Risk</strong> – Local Volatility<br />

Dupire’s Local Volatility<br />

Implied Volatility SPX Dec 9 2005<br />

Local Volatility SPX<br />

80<br />

80<br />

70<br />

70<br />

60<br />

60<br />

50<br />

50<br />

40<br />

40<br />

30<br />

20<br />

10<br />

0<br />

09-Dec-18<br />

09-Jun-16<br />

09-Dec-13<br />

09-Jun-11<br />

09-Dec-08<br />

30<br />

20<br />

10<br />

0<br />

09-Jun-18<br />

09-Dec-15<br />

09-Jun-13<br />

09-Dec-10<br />

09-Jun-08<br />

09-Jun-06<br />

09-Dec-05<br />

Strike/Spot<br />

Strike/Spot<br />

29


Implied Volatility<br />

Implied Volatility<br />

Modeling <strong>Risk</strong> – Local Volatility<br />

Dupire’s Local Volatility – time dependency<br />

Implied Vol<br />

flattens out in the<br />

future inside the<br />

Local Vol Model<br />

Local Vol Calibration .STOXX50E 10/10/2005<br />

Local Vol Calibration .STOXX50E 10/10/2005 shifted forward by 2 years<br />

50.0<br />

50.0<br />

45.0<br />

45.0<br />

40.0<br />

40.0<br />

35.0<br />

35.0<br />

30.0<br />

30.0<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

70% 80% 90% 100% 110% 120% 130%<br />

Strike/Spot<br />

1m<br />

4m<br />

1y<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

70%<br />

80%<br />

90%<br />

100%<br />

Strike/Spot<br />

110%<br />

120%<br />

130%<br />

1m<br />

3m<br />

6m<br />

1y<br />

30


Modeling <strong>Risk</strong> – Local Volatility<br />

Dupire’s Local Volatility<br />

• Plus<br />

— Allows to consistently price all combinations of European options.<br />

— One-factor model fast to simulate<br />

— Break Even Vol formula applies<br />

• Cons<br />

— Dynamical behaviour is not consistent<br />

— Implied Vol needs to be sensible<br />

Widely used reference model for equity derivatives.<br />

31


Thank you very much for your attention.<br />

hans.x.buehler@jpmorgan.com<br />

32


Numerical Methods<br />

References<br />

— [1] Gatheral: The Volatility Surface, Wiley, 2006<br />

— [2] Dupire: Pricing with a Smile, <strong>Risk</strong>, 7 (1), pp. 18-20, 1996<br />

— [3] Black, Scholes: The Pricing of Options and Corporate Liabilities, Journal of Political<br />

Economy, 81, pp. 637-59, 1973<br />

— [4] Carr, Madan: Option Valuation Using the Fast Fourier Transform, Journal of Computational<br />

Finance, 2, 1998<br />

— [5] Ren, Madan, Qian: Calibrating and pricing with embedded local volatility models, <strong>Risk</strong>,<br />

September 2007<br />

— [6] <strong>Buehler</strong>, Volatility Markets, VDM Verlag, 2008<br />

— [7] Merton: Option Pricing When Underlying Stock Returns are Discontinuous. Journal of<br />

Financial Economics 3 (1976) pp. 125-144, 1976<br />

— [8] Cont, Tankov: ―Financial modeling with Jump Processes‖, Chapman & Hall / CRC Press,<br />

2003<br />

— [9] <strong>Buehler</strong>, Volatility and Dividends, Working paper, 2008, http://www.math.tuberlin.de/~buehler/<br />

— [10] Glasserman, ―Monte Carlo Methods in Financial Engineering‖, Springer 2004<br />

— [11] Andersen, Piterbarg: Moment Explosions in Stochastic Volatility Models WP~2004,<br />

http://ssrn.com/abstract=559481<br />

— [12] Bermudez, <strong>Buehler</strong>, Ferraris, Jordinson, Lamnouar, Overhaus: ―Equity Hybrid<br />

Derivatives‖, Wiley, 2006<br />

33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!