13.06.2014 Views

Lecture Notes in Advanced Thermodynamics

Lecture Notes in Advanced Thermodynamics

Lecture Notes in Advanced Thermodynamics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

quantity variables Gibbs relation<br />

energy E(S, V, M) dE = T dS − pdV + µdM<br />

Helmholtz free energy F (T, V, M) dF = −SdT − pdV + µdM<br />

enthalpy H(S, p, M) dH = T dS + V dp + µdM<br />

Gibbs free energy G(T, p, M) dG = −SdT + V dp + µdM<br />

Table 2: Important thermodynamic potentials - variables<br />

2.3 Densities, specific quantities<br />

– the extensive and <strong>in</strong>tensive properties are constra<strong>in</strong>ts<br />

– one of the extensive variables can be elim<strong>in</strong>ated<br />

– it can be useful to choose a reference variable<br />

– usually the volume (densities) and the mass (specific quantities) are<br />

used for reference<br />

2.3.1 Densities<br />

transformation of the basic state variables<br />

– energy density:<br />

ε := E V<br />

– mass density:<br />

ρ := M V<br />

transformation of the state functions<br />

– the (E, V, M) state space can be simplified to (ε, ρ)<br />

– consider<strong>in</strong>g an extensive state function:<br />

( E<br />

ˆf(ε, ρ) := f (ε, 1, ρ) = f<br />

V , 1, M )<br />

= V f ( E<br />

, 1, )<br />

M<br />

V V<br />

=<br />

V V<br />

f(E, V, M)<br />

V<br />

specially:<br />

Ê = ε;<br />

ˆM = ρ<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!