24.06.2014 Views

Effect of Phosphorus on the Synechococcus Cell Cycle in Surface ...

Effect of Phosphorus on the Synechococcus Cell Cycle in Surface ...

Effect of Phosphorus on the Synechococcus Cell Cycle in Surface ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 1996, p. 2527–2533 Vol. 62, No. 7<br />

0099-2240/96/$04.000<br />

Copyright 1996, American Society for Microbiology<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Phosphorus</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Synechococcus</strong> <strong>Cell</strong> <strong>Cycle</strong> <strong>in</strong><br />

<strong>Surface</strong> Mediterranean Waters dur<strong>in</strong>g Summer<br />

DANIEL VAULOT, 1 * NATHALIE LEBOT, 1 DOMINIQUE MARIE, 1 AND ERI FUKAI 2<br />

Stati<strong>on</strong> Biologique, CNRS et Université Pierre et Marie Curie, BP 74 29682 Rosc<str<strong>on</strong>g>of</str<strong>on</strong>g>f Cedex, 1 and Stati<strong>on</strong> Zoologique,<br />

06230 Villefranche sur Mer, 2 France<br />

Received 27 December 1995/Accepted 4 March 1996<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus (P) and nitrogen (N) additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> <strong>Synechococcus</strong> cell cycle was tested with<br />

natural populati<strong>on</strong>s from <strong>the</strong> Mediterranean Sea <strong>in</strong> summer. In <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> stimulati<strong>on</strong>, <strong>the</strong> <strong>Synechococcus</strong><br />

cell cycle was synchr<strong>on</strong>ized to <strong>the</strong> light-dark cycle. DNA syn<strong>the</strong>sis began around 1600, a maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> S-phase<br />

cells was observed at around dusk (2100), and a maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> G 2 -phase cells was observed at around 2400.<br />

Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P (as PO 4 3 ) caused, <strong>in</strong> all cases, a decrease <strong>in</strong> <strong>the</strong> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong> G 2 at around 1800, no change<br />

at around 2400, and an <strong>in</strong>crease at around 1200 <strong>the</strong> next day, while additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N (as NO 3 ) had no effect. We<br />

hypo<strong>the</strong>size that P additi<strong>on</strong> <strong>in</strong>duced a shorten<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> G 1 phase, result<strong>in</strong>g <strong>in</strong> cells enter<strong>in</strong>g and leav<strong>in</strong>g <strong>the</strong><br />

S and G 2 phases earlier. These data suggest very str<strong>on</strong>gly that <strong>the</strong> <strong>Synechococcus</strong> cells were P limited ra<strong>the</strong>r<br />

than N limited dur<strong>in</strong>g this period <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> year. In most cases, additi<strong>on</strong>s as low as 20 nM P <strong>in</strong>duced a cell cycle<br />

resp<strong>on</strong>se. From dose-resp<strong>on</strong>se curves, we established that <strong>the</strong> P c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong>duc<strong>in</strong>g a 50% change <strong>in</strong> <strong>the</strong><br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong> G 2 was low, close to 10 nM, at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sampl<strong>in</strong>g period (30 June) and<br />

<strong>in</strong>creased to about 50 nM by <strong>the</strong> end (9 July), suggest<strong>in</strong>g a decrease <strong>in</strong> <strong>the</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> P limitati<strong>on</strong>. This study<br />

extends recent observati<strong>on</strong>s that oligotrophic systems may be P ra<strong>the</strong>r than N limited at certa<strong>in</strong> times <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

year.<br />

The questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> which nutrient(s) limits phytoplankt<strong>on</strong><br />

growth <strong>in</strong> oceanic waters is still very open. In <strong>the</strong> 1980s, <strong>the</strong><br />

c<strong>on</strong>sensus was that nitrogen (N) was <strong>the</strong> key limit<strong>in</strong>g nutrient<br />

<strong>in</strong> most mar<strong>in</strong>e systems, lead<strong>in</strong>g to <strong>the</strong> c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> new and<br />

regenerated producti<strong>on</strong>, based <strong>on</strong> oxidized (nitrates) and reduced<br />

(amm<strong>on</strong>ia) forms <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen, respectively (17). However,<br />

this paradigm was shattered recently by <strong>the</strong> recogniti<strong>on</strong><br />

that <strong>in</strong> some regi<strong>on</strong>s (HNLC [high nutrients, low chlorophyll]<br />

areas [14]), photosyn<strong>the</strong>tic biomass rema<strong>in</strong>s low despite high<br />

nitrate levels. For some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se regi<strong>on</strong>s, such as <strong>the</strong> equatorial<br />

Pacific or <strong>the</strong> Antarctic, it was suggested, and <strong>the</strong>n dem<strong>on</strong>strated,<br />

that <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> (Fe), result<strong>in</strong>g from a low aerosol<br />

<strong>in</strong>put, was limit<strong>in</strong>g phytoplankt<strong>on</strong> biomass (29, 30). Ano<strong>the</strong>r<br />

nutrient that has attracted recent attenti<strong>on</strong> is phosphorus (P).<br />

Some regi<strong>on</strong>s subjected to freshwater <strong>in</strong>put, such as <strong>the</strong> Chesapeake<br />

Bay, may shift from N to P limitati<strong>on</strong> between summer<br />

and w<strong>in</strong>ter (20). Heterotrophic bacteria may also be P limited<br />

<strong>in</strong> <strong>the</strong>se areas (50). The Mediterranean Sea is an area for<br />

which <strong>the</strong> idea <str<strong>on</strong>g>of</str<strong>on</strong>g> P limitati<strong>on</strong> has been repeatedly <strong>in</strong>voked (3)<br />

because seawater exhibits an N/P ratio (31) larger than <strong>the</strong><br />

<strong>in</strong>tracellular Redfield ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 16:1 found <strong>in</strong> phytoplankt<strong>on</strong>,<br />

possibly because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> P by adsorpti<strong>on</strong> <strong>on</strong> Fe-rich<br />

dust particles (26). However, it is not clear whe<strong>the</strong>r P is limit<strong>in</strong>g<br />

phytoplankt<strong>on</strong> growth everywhere and at all times <strong>in</strong> <strong>the</strong><br />

Mediterranean Sea. For example, N is probably limit<strong>in</strong>g <strong>in</strong><br />

w<strong>in</strong>ter <strong>in</strong> <strong>the</strong> western bas<strong>in</strong> (36).<br />

One reas<strong>on</strong> for <strong>the</strong> c<strong>on</strong>t<strong>in</strong>u<strong>in</strong>g debate <strong>on</strong> what nutrient limits<br />

photosyn<strong>the</strong>tic biomass <strong>in</strong> oceanic systems is <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> adequate<br />

methods to dem<strong>on</strong>strate that a given nutrient is limit<strong>in</strong>g.<br />

The comparis<strong>on</strong> between <strong>the</strong> <strong>in</strong> situ dissolved N/P ratio and <strong>the</strong><br />

Redfield ratio may suggest <strong>the</strong> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> limit<strong>in</strong>g nutrient<br />

over broad temporal and spatial scales (26, 31). However, at<br />

* Corresp<strong>on</strong>d<strong>in</strong>g author. Mail<strong>in</strong>g address: Stati<strong>on</strong> Biologique, BP 74<br />

29682 Rosc<str<strong>on</strong>g>of</str<strong>on</strong>g>f Cx, France. Ph<strong>on</strong>e: (33) 98 29 23 34. Fax: (33) 98 29 23<br />

24. Electr<strong>on</strong>ic mail address: vaulot@sb-rosc<str<strong>on</strong>g>of</str<strong>on</strong>g>f.fr.<br />

shorter scales, imbalances between <strong>the</strong>se two ratios may exist,<br />

and direct methods are necessary. These methods usually rely<br />

<strong>on</strong> bioassays performed by add<strong>in</strong>g nutrients suspected to be<br />

limit<strong>in</strong>g to <strong>in</strong>cubati<strong>on</strong> bottles (or even to open ocean areas, as<br />

recently dem<strong>on</strong>strated <strong>in</strong> <strong>the</strong> Equatorial Pacific by <strong>the</strong><br />

IRONEX experiment [29]) and m<strong>on</strong>itor<strong>in</strong>g biological parameters<br />

over time. The key problem lies <strong>in</strong> <strong>the</strong> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

relevant parameters. In many cases, photosyn<strong>the</strong>tic biomass<br />

(as chlorophyll) or producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> ( 14 C method) is used<br />

(16). However <strong>the</strong>se variables resp<strong>on</strong>d very slowly to stimulati<strong>on</strong>,<br />

usually after several days, when <strong>the</strong> community has dramatically<br />

altered its compositi<strong>on</strong> (e.g., shift<strong>in</strong>g from picoplankt<strong>on</strong><br />

to diatoms) (12). Moreover, <strong>the</strong>y reflect <strong>the</strong> net resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> community (i.e., <strong>the</strong> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> ga<strong>in</strong>s and losses) and not <strong>the</strong><br />

physiological resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> primary producers. This led to<br />

str<strong>on</strong>g debates about <strong>the</strong> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>clusi<strong>on</strong>s drawn<br />

from such experiments (2, 28). It is <strong>the</strong>refore highly desirable<br />

to m<strong>on</strong>itor biological variables that resp<strong>on</strong>d quickly, such as<br />

biophysical parameters l<strong>in</strong>ked to photosyn<strong>the</strong>sis, which can be<br />

evaluated by sophisticated fluorescence measurements (24).<br />

<strong>Cell</strong> cycle variables are also very appropriate to m<strong>on</strong>itor<br />

nutrient bioassays. In culture, phytoplankt<strong>on</strong> cells that have<br />

been deprived <str<strong>on</strong>g>of</str<strong>on</strong>g> an essential nutrient usually arrest at <strong>the</strong><br />

beg<strong>in</strong>n<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir cell cycle (G 1 phase) and <strong>the</strong>n <strong>in</strong>itiate DNA<br />

syn<strong>the</strong>sis (S phase) with<strong>in</strong> a few hours <str<strong>on</strong>g>of</str<strong>on</strong>g> be<strong>in</strong>g stimulated with<br />

a fresh additi<strong>on</strong> (48). Similar behavior has also been observed<br />

for oceanic populati<strong>on</strong>s (49). The cell cycle status <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

populati<strong>on</strong>s can be easily determ<strong>in</strong>ed by flow cytometry (6, 47,<br />

49). This is especially c<strong>on</strong>venient, s<strong>in</strong>ce it allows <strong>on</strong>e to m<strong>on</strong>itor<br />

separately <strong>the</strong> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a given autotrophic populati<strong>on</strong> (e.g.,<br />

Prochlorococcus or <strong>Synechococcus</strong> organisms or <strong>the</strong> picoeucaryotes).<br />

This should provide more clear-cut resp<strong>on</strong>ses than<br />

those observed by m<strong>on</strong>itor<strong>in</strong>g <strong>the</strong> whole community toge<strong>the</strong>r<br />

(e.g., by total chlorophyll), s<strong>in</strong>ce each populati<strong>on</strong> may have a<br />

different resp<strong>on</strong>se (some negative and some positive) such that<br />

<strong>the</strong> average resp<strong>on</strong>se may be vague.<br />

2527


2528 VAULOT ET AL. APPL. ENVIRON. MICROBIOL.<br />

In <strong>the</strong> present study, we used <strong>the</strong> cell cycle status <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

<strong>Synechococcus</strong> populati<strong>on</strong>s to determ<strong>in</strong>e whe<strong>the</strong>r <strong>the</strong>y are limited<br />

by P <strong>in</strong> <strong>the</strong> western Mediterranean Sea <strong>in</strong> summer.<br />

FIG. 1. Experimental design for nutrient additi<strong>on</strong>s. (A) Prelim<strong>in</strong>ary experiments.<br />

(B) Detailed experiments.<br />

MATERIALS AND METHODS<br />

Study site. Water was sampled at <strong>the</strong> surface from po<strong>in</strong>t B about 500 m<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fshore at <strong>the</strong> entrance <str<strong>on</strong>g>of</str<strong>on</strong>g> Villefranche Bay (4341N, 719E; depth, 80 m), a<br />

stati<strong>on</strong> located <strong>in</strong> <strong>the</strong> northwestern part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mediterranean Sea and very well<br />

characterized hydrologically (7).<br />

Diel cycle analysis. Water was sampled at po<strong>in</strong>t B roughly every 3 h between<br />

30 June 1993 at 1200 and 1 July 1993 at 1500. At <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diel cycle,<br />

a 20-liter carboy was filled with surface water, brought back to shore, and<br />

<strong>in</strong>cubated <strong>on</strong> <strong>the</strong> pier <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Stati<strong>on</strong> Zoologique <strong>in</strong> runn<strong>in</strong>g seawater with a 30%<br />

neutral density screen. Samples were <strong>the</strong>n taken from <strong>the</strong> carboy with <strong>the</strong> same<br />

frequency as at po<strong>in</strong>t B or more frequently (every 1.5 h) dur<strong>in</strong>g late even<strong>in</strong>g and<br />

early night.<br />

Nutrient enrichment type A. For a prelim<strong>in</strong>ary assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> limit<strong>in</strong>g<br />

nutrient (Fig. 1A), water sampled at po<strong>in</strong>t B around midday was aliquoted <strong>in</strong>to<br />

1-liter polycarb<strong>on</strong>ate bottles that received <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<strong>the</strong>r PO 4 -P (1 M),<br />

NO 3 -N (1 M), or both PO 4 -P and NO 3 -N (1 M) or received no additi<strong>on</strong><br />

(c<strong>on</strong>trol), and <strong>the</strong> bottles were <strong>in</strong>cubated as described above. Samples were taken<br />

at time zero and at about 24 h. This experiment was repeated twice (Table 1).<br />

Nutrient enrichment type B. For a more detailed study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> P<br />

c<strong>on</strong>centrati<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>cubati<strong>on</strong> time (Fig. 1B), water from po<strong>in</strong>t B was <strong>in</strong>cubated<br />

<strong>in</strong> 50-ml culture flasks (Nuncl<strong>on</strong>, Roskilde, Denmark) after <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ei<strong>the</strong>r PO 4 -P (<strong>in</strong> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s from 20 to 800 nM), NO 3 -N (800 nM),<br />

or both PO 4 -P and NO 3 -N (800 nM) or with no additi<strong>on</strong> as a c<strong>on</strong>trol. Samples<br />

were taken at time zero and after different <strong>in</strong>cubati<strong>on</strong> times (6, 12, and 24 h).<br />

This experiment was repeated 11 times between 30 June and 9 July 1993 (Table<br />

1).<br />

Flow cytometric analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Synechococcus</strong> cell cycle. Samples were fixed with<br />

0.1% glutaraldehyde and frozen <strong>in</strong> liquid nitrogen (46). Just prior to analysis,<br />

samples were thawed and <strong>in</strong>cubated with Hoechst 33342 (Sigma), a DNAfluorescent<br />

sta<strong>in</strong>, at 50 gml 1 and RNase at 0.1% (wt/vol) (f<strong>in</strong>al c<strong>on</strong>centrati<strong>on</strong>)<br />

at 37C for at least 1 h. This is a slight modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>ger and<br />

Landry (34), which does not <strong>in</strong>clude <strong>in</strong>cubati<strong>on</strong> at 37C with RNase. RNase was<br />

used because <strong>in</strong> its absence <strong>Synechococcus</strong> cells were sometimes poorly sta<strong>in</strong>ed<br />

and displayed a large coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> (CV) for <strong>the</strong> G 1 peak <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNA<br />

distributi<strong>on</strong>. RNase had two beneficial effects, as dem<strong>on</strong>strated for two mar<strong>in</strong>e<br />

<strong>Synechococcus</strong> stra<strong>in</strong>s, MAX01 and WH7803 (Fig. 2). First, <strong>the</strong> fluorescence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> G 1 peak was slightly higher and more stable. Sec<strong>on</strong>d, <strong>the</strong> CV for <strong>the</strong> G 1 peak<br />

was improved by about 1%. Although <strong>the</strong> improvement was small, this c<strong>on</strong>sistently<br />

improved CV is very helpful for obta<strong>in</strong><strong>in</strong>g better estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> different<br />

TABLE 1. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> all experiments performed a<br />

Expt code<br />

Incubati<strong>on</strong> start Incubati<strong>on</strong> end <str<strong>on</strong>g>Effect</str<strong>on</strong>g> b <str<strong>on</strong>g>of</str<strong>on</strong>g>: Fitted parameters<br />

Date c Time Date c Time N P N P G2 0 (%) G2 (%) P 50 (nM)<br />

A01 30 June 1200 1 July 1200 NA d NA NA<br />

A02 1 July 1500 2 July 1200 NA NA NA<br />

r 2<br />

B01 30 June 1200 30 June 1759 20.1 11.8 16.5 0.98<br />

B02 30 June 1800 30 June 2355 <br />

B03 30 June 2400 1 July 0600 ND <br />

B04 1 July 0600 1 July 1205 ND<br />

B05 1 July 1200 1 July 1800 22.0 13.7 13.3 0.95<br />

1 July 2359 ND 8.4 2.6 6.3 0.72<br />

2 July 1210 ND ND 6.1 12.3 8.9 0.85<br />

B06 1 July 1500 1 July 2359 <br />

2 July 1015 8.6 4.8 4.5 0.73<br />

2 July 1540 ND <br />

B07 2 July 1500 3 July 1510 <br />

B11 6 July 1200 6 July 1810 37.0 23.0 77.9 0.97<br />

B12 7 July 1200 7 July 1824 ND<br />

8 July 1025 ND 4.1 14.4 54.1 0.89<br />

B13 8 July 1100 9 July 1130 0.0 21.4 55.0 0.85<br />

B14 9 July 1600 9 July 2150 23.9 12.9 36.5 0.81<br />

10 July 1530 <br />

a Water sampled from po<strong>in</strong>t B <str<strong>on</strong>g>of</str<strong>on</strong>g>f Villefranche-sur-Mer was <strong>in</strong>cubated for various times after P and/or N additi<strong>on</strong> (Fig. 1). Experiments that were started at <strong>the</strong> same<br />

time were given <strong>the</strong> same code. At <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>cubati<strong>on</strong>, <strong>the</strong> effect <strong>on</strong> <strong>the</strong> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Synechococcus</strong> cells <strong>in</strong> G 2 was recorded. When an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> P additi<strong>on</strong> was<br />

observed, a model curve was fit with three parameters (equati<strong>on</strong> 1). The r 2 value provides an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> fit.<br />

b <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>on</strong> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong> G 2 . , no effect; , decrease; , <strong>in</strong>crease; ND, not determ<strong>in</strong>ed.<br />

c All dates are <strong>in</strong> 1993.<br />

d NA, not applicable.


VOL. 62, 1996 EFFECT OF PHOSPHORUS ON SYNECHOCOCCUS CELL CYCLE 2529<br />

when water was <strong>in</strong>cubated under simulated <strong>in</strong> situ c<strong>on</strong>diti<strong>on</strong>s.<br />

The <strong>Synechococcus</strong> cell cycle was clearly synchr<strong>on</strong>ized (Fig. 4).<br />

S phase began at around 1600 with a sharp maximum at 2100<br />

(close to sunset). The fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong> G 2 began to <strong>in</strong>crease<br />

around that time and decl<strong>in</strong>ed at dawn <strong>the</strong> next morn<strong>in</strong>g.<br />

Us<strong>in</strong>g <strong>the</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> Carpenter and Chang (9), we estimated a<br />

divisi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.73 day 1 , that is, slightly <strong>in</strong> excess <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e<br />

doubl<strong>in</strong>g per day. Water <strong>in</strong>cubated at 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface light<br />

<strong>in</strong>tensity also exhibited a synchr<strong>on</strong>ized cycle, although <strong>the</strong> percentage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong> S phase peaked 3 h earlier than it did <strong>in</strong> situ<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> an advanced <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA replicati<strong>on</strong> (Fig. 4).<br />

FIG. 2. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> RNase <strong>on</strong> DNA sta<strong>in</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Synechococcus</strong> cells with Hoechst<br />

33342. (A) Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fluorescence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> G 1 peak related to that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.95-m-diameter beads. (B) CV <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> G 1 peak. Circles, stra<strong>in</strong> MAX01; triangles,<br />

stra<strong>in</strong> WH7803; open symbols, <strong>in</strong>cubati<strong>on</strong>s at room temperature without<br />

RNase; closed symbols, <strong>in</strong>cubati<strong>on</strong> at 37C with RNase.<br />

cell cycle phase fracti<strong>on</strong>s. Moreover, with some difficult samples (not shown) <strong>the</strong><br />

CV was improved by RNase additi<strong>on</strong> much more than for <strong>the</strong> samples presented<br />

<strong>in</strong> Fig. 2. The positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> RNase could be due to <strong>the</strong> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<strong>the</strong>r<br />

rRNA or mRNA. The former may n<strong>on</strong>specifically b<strong>in</strong>d some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Hoechst<br />

33342 sta<strong>in</strong>, and <strong>the</strong> latter, when still attached to DNA, may prevent an optimal<br />

accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sta<strong>in</strong>.<br />

Samples were <strong>the</strong>n analyzed <strong>on</strong> an EPICS 541 flow cytometer as described<br />

previously (6). <strong>Synechococcus</strong> cells were discrim<strong>in</strong>ated <strong>on</strong> <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir<br />

right-angle scatter (a parameter related to size) and chlorophyll fluorescence<br />

(Fig. 3, top). The corresp<strong>on</strong>d<strong>in</strong>g DNA histogram was recorded (Fig. 3, bottom)<br />

by us<strong>in</strong>g <strong>the</strong> CYTOPC s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (44), and <strong>the</strong> percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong> <strong>the</strong> cell cycle<br />

phases G 1 , S, and G 2 were computed by us<strong>in</strong>g MCYCLE (Phoenix Flow Systems,<br />

San Diego, Calif.).<br />

RESULTS<br />

<strong>Synechococcus</strong> cell cycle <strong>in</strong> <strong>the</strong> Mediterranean Sea. Dur<strong>in</strong>g<br />

<strong>the</strong> period <str<strong>on</strong>g>of</str<strong>on</strong>g> study (late June to early July 1993), <strong>Synechococcus</strong><br />

cyanobacteria (Fig. 3) were <strong>the</strong> most abundant populati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phytoplankt<strong>on</strong> at po<strong>in</strong>t B <str<strong>on</strong>g>of</str<strong>on</strong>g>f Villefranche-sur-Mer, with<br />

typical c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> around 20,000 cells ml 1 . Prochlorococcus<br />

organisms probably were present, s<strong>in</strong>ce div<strong>in</strong>yl-chlorophyll<br />

a, <strong>the</strong>ir marker pigment, can be measured <strong>in</strong> <strong>the</strong> water<br />

column at that time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> year (7), but <strong>the</strong>y could not be<br />

detected, probably because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir very weak fluorescence.<br />

The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<strong>the</strong>tic picoeucaryotes was<br />

around 1,000 cells ml 1 . Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir abundance, <strong>Synechococcus</strong><br />

bacteria <strong>the</strong>refore c<strong>on</strong>stituted <strong>the</strong> most appropriate<br />

populati<strong>on</strong> for cell cycle analysis. By improv<strong>in</strong>g a previously<br />

used DNA sta<strong>in</strong><strong>in</strong>g protocol (see Materials and Methods), we<br />

obta<strong>in</strong>ed well-resolved DNA distributi<strong>on</strong>s with ei<strong>the</strong>r <strong>on</strong>e or<br />

two peaks (Fig. 3), which we call G 1 and G 2 by analogy to <strong>the</strong><br />

eucaryotic cell cycle phases (49), separated by cells <strong>in</strong> <strong>the</strong><br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> replicat<strong>in</strong>g DNA (S phase). The CV <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> G 1 peak<br />

was <strong>on</strong> average 15%, allow<strong>in</strong>g for a correct separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

cell cycle phases.<br />

Our first step was to establish <strong>the</strong> phas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Synechococcus</strong><br />

cycle <strong>in</strong> situ and to determ<strong>in</strong>e whe<strong>the</strong>r it was disturbed<br />

FIG. 3. Flow cytometric analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <strong>Synechococcus</strong> populati<strong>on</strong>s from<br />

surface waters <strong>in</strong> Villefranche Bay (1 July 1993, 0300), sta<strong>in</strong>ed with Hoechst<br />

33342 after <strong>in</strong>cubati<strong>on</strong> with RNase. (Upper panel) Right-angle scatter (a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cell size) versus chlorophyll fluorescence. (Lower panel) DNA versus<br />

chlorophyll fluorescence. The <strong>in</strong>set shows <strong>the</strong> <strong>Synechococcus</strong> DNA distributi<strong>on</strong><br />

<strong>on</strong> a l<strong>in</strong>ear scale, with a major peak <strong>in</strong> G 1 and a m<strong>in</strong>or peak <strong>in</strong> G 2 .


2530 VAULOT ET AL. APPL. ENVIRON. MICROBIOL.<br />

Moreover, <strong>the</strong> maximum percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong> <strong>the</strong> S and G 2<br />

phases were, respectively, slightly higher and lower than <strong>the</strong>y<br />

were <strong>in</strong> situ. In fact, <strong>the</strong>se changes compensated each o<strong>the</strong>r,<br />

such that <strong>the</strong> estimated divisi<strong>on</strong> rate <strong>in</strong> <strong>the</strong> bottle (0.78 day 1 )<br />

was nearly identical to that <strong>in</strong> situ.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient additi<strong>on</strong> <strong>on</strong> <strong>Synechococcus</strong> cell cycle. In<br />

order to test <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient additi<strong>on</strong> <strong>on</strong> <strong>the</strong> <strong>Synechococcus</strong><br />

cell cycle, we designed two types <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments (Fig. 1).<br />

The <strong>in</strong>itial (A) experiments c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>cubat<strong>in</strong>g 1-liter bottles<br />

with four types <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>s dur<strong>in</strong>g 24 h. <strong>Cell</strong> cycle distributi<strong>on</strong>s<br />

were obta<strong>in</strong>ed by flow cytometry at both <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g<br />

and <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>cubati<strong>on</strong>. On both occasi<strong>on</strong>s when A<br />

experiments were performed (Fig. 5; Table 1), <strong>the</strong>y clearly<br />

dem<strong>on</strong>strated that populati<strong>on</strong>s orig<strong>in</strong>at<strong>in</strong>g from a midday sample<br />

and <strong>in</strong>cubated with ei<strong>the</strong>r P or both P and N exhibited,<br />

after 24 h, an <strong>in</strong>creased proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong> G 2 <strong>in</strong> comparis<strong>on</strong><br />

with a c<strong>on</strong>trol or with cells receiv<strong>in</strong>g <strong>on</strong>ly N. These <strong>in</strong>itial<br />

experiments raised several questi<strong>on</strong>s. First, how does <strong>the</strong> cell<br />

cycle resp<strong>on</strong>se vary with <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P added? Sec<strong>on</strong>d,<br />

is <strong>the</strong> resp<strong>on</strong>se always <strong>the</strong> same, no matter when <strong>in</strong>cubati<strong>on</strong><br />

starts or stops?<br />

To address <strong>the</strong>se questi<strong>on</strong>s, we performed <strong>the</strong> B experiments,<br />

which <strong>in</strong>cluded P additi<strong>on</strong> <strong>in</strong> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s<br />

as well as variati<strong>on</strong>s <strong>in</strong> both <strong>the</strong> start time and <strong>in</strong>cubati<strong>on</strong><br />

durati<strong>on</strong> (Fig. 1; Table 1). These experiments c<strong>on</strong>firmed <strong>the</strong> A<br />

experiments. At 800 nM, N additi<strong>on</strong> did not change <strong>the</strong> cell<br />

cycle compared with c<strong>on</strong>trols, while jo<strong>in</strong>t N and P additi<strong>on</strong>s<br />

had <strong>the</strong> same effect as P additi<strong>on</strong> al<strong>on</strong>e. Moreover, <strong>the</strong> effect<br />

<strong>on</strong> <strong>the</strong> cell cycle was clearly related to <strong>the</strong> added P c<strong>on</strong>centrati<strong>on</strong><br />

(Fig. 6). This effect could be adequately modeled by a<br />

hyperbolic functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> form:<br />

G2 G2 0 G2 [1 exp ln2 P<br />

P 50] (1)<br />

FIG. 4. Diel variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Synechococcus</strong> cells <strong>in</strong> <strong>the</strong> S (F)<br />

and G 2 () phases <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cell cycle. (A) <strong>Surface</strong> samples from po<strong>in</strong>t B <str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

Villefranche-sur-Mer. (B) Samples from a bottle filled with water taken from<br />

po<strong>in</strong>t B at 1200 <strong>on</strong> 30 June 1993 and <strong>in</strong>cubated at 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface light<br />

<strong>in</strong>tensity <strong>in</strong> a circulat<strong>in</strong>g seawater bath. The dashed l<strong>in</strong>e corresp<strong>on</strong>ds to midnight,<br />

and <strong>the</strong> black box corresp<strong>on</strong>ds to night hours. Error bars corresp<strong>on</strong>d to standard<br />

deviati<strong>on</strong>s for two <strong>in</strong>dependent cell cycle analyses, except <strong>in</strong> panel A for <strong>the</strong> first<br />

two datum po<strong>in</strong>ts <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 July, for which <strong>on</strong>ly <strong>on</strong>e determ<strong>in</strong>ati<strong>on</strong> was made.<br />

where G2 is <strong>the</strong> observed percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong> G 2 at <strong>the</strong> end<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>cubati<strong>on</strong> and P is <strong>the</strong> added P c<strong>on</strong>centrati<strong>on</strong> (<strong>in</strong> nanomolar).<br />

The fitted parameters were G2 0 , G2, and P 50 :G2 0 is<br />

<strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong> G 2 <strong>in</strong> <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> P additi<strong>on</strong>, G2<br />

is <strong>the</strong> change (positive or negative [see below]) as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

saturat<strong>in</strong>g P additi<strong>on</strong>, and P 50 is <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> that <strong>in</strong>duced<br />

a 50% effect compared with <strong>the</strong> maximum effect. Equati<strong>on</strong> 1,<br />

when it could be fitted (i.e., when a significant effect could be<br />

detected), accounted for a very high percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variance<br />

<strong>in</strong> <strong>the</strong> data (Table 1).<br />

FIG. 5. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient additi<strong>on</strong>s <strong>on</strong> <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Synechococcus</strong> G 2 -phase cells <strong>in</strong> <strong>the</strong> A experiments. <strong>Surface</strong> samples were taken at around no<strong>on</strong> from po<strong>in</strong>t<br />

B <str<strong>on</strong>g>of</str<strong>on</strong>g>f Villefranche-sur-Mer <strong>on</strong> 30 June and 1 July 1993, spiked with 1 M PO 4 -P, 1 M NO 3 -N, or both, and <strong>in</strong>cubated for 24 h. C<strong>on</strong>trol, no additi<strong>on</strong>.


VOL. 62, 1996 EFFECT OF PHOSPHORUS ON SYNECHOCOCCUS CELL CYCLE 2531<br />

FIG. 6. Experiment B13 (Table 1), started <strong>on</strong> 8 July 1993 at 1100 and ended<br />

<strong>on</strong> 9 July 1993 at 1130. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>creased PO 4 -P additi<strong>on</strong> <strong>on</strong> <strong>the</strong> percentage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Synechococcus</strong> G 2 -phase cells after 24 h <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>cubati<strong>on</strong> is shown. N, additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NO 3 -N at 800 nM; B, additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both PO 4 -P and NO 3 -N at 800 nM. The l<strong>in</strong>e<br />

corresp<strong>on</strong>ds to equati<strong>on</strong> 1 (G2 21%, P 50 55 nM PO 4 -P).<br />

The observed effect was clearly dependent <strong>on</strong> <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

day (Fig. 7), as expected from <strong>the</strong> phas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Synechococcus</strong><br />

cell cycle (Fig. 4). We observed a negative effect <strong>on</strong> <strong>the</strong> percentage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong> G 2 when <strong>the</strong> <strong>in</strong>cubati<strong>on</strong> was stopped <strong>in</strong> late<br />

afterno<strong>on</strong> <strong>on</strong> <strong>the</strong> same day it was started (Fig. 7A), no effect<br />

when <strong>the</strong> <strong>in</strong>cubati<strong>on</strong> was stopped at around midnight (Fig. 7B),<br />

and a positive effect when <strong>the</strong> <strong>in</strong>cubati<strong>on</strong> was stopped <strong>in</strong> early<br />

afterno<strong>on</strong> <strong>on</strong> <strong>the</strong> next day (Fig. 7C). This trend is c<strong>on</strong>firmed<br />

when <strong>the</strong> entire data set is exam<strong>in</strong>ed (Fig. 8A). Positive effects<br />

occurred around 1200, negative effects occurred between 1800<br />

and 2200, and <strong>the</strong>re was no effect for o<strong>the</strong>r end<strong>in</strong>g times. In<br />

c<strong>on</strong>trast, <strong>the</strong> start time did not seem to have any effect (Table<br />

1). F<strong>in</strong>ally, <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> that <strong>in</strong>duced a 50% effect (P 50 )<br />

was not c<strong>on</strong>stant dur<strong>in</strong>g <strong>the</strong> experimental period. Instead, it<br />

was very low (5 to 20 nM) <strong>in</strong> <strong>the</strong> first days <str<strong>on</strong>g>of</str<strong>on</strong>g> July, <strong>in</strong>creased to<br />

80 nM around 6 July, and <strong>the</strong>n decreased slowly <strong>the</strong>reafter<br />

(Fig. 8B).<br />

synchr<strong>on</strong>ized to <strong>the</strong> diel cycle <strong>in</strong> surface Mediterranean waters.<br />

As is <strong>the</strong> case for surface Prochlorococcus populati<strong>on</strong>s at <strong>the</strong><br />

equator (47), <strong>the</strong> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells<br />

<strong>in</strong> <strong>the</strong> S phase co<strong>in</strong>cided with sunset (Fig. 4A). It should be<br />

noted that sunset occurs much later <strong>in</strong> <strong>the</strong> Mediterranean Sea<br />

<strong>in</strong> summer (2100) than at <strong>the</strong> equator (1730). The <strong>Synechococcus</strong><br />

synchr<strong>on</strong>y was not as tight as <strong>the</strong> Prochlorococcus synchr<strong>on</strong>y,<br />

however, s<strong>in</strong>ce some cells had already begun to enter<br />

<strong>the</strong> S phase <strong>in</strong> late morn<strong>in</strong>g (Fig. 4A). When a field sample was<br />

<strong>in</strong>cubated <strong>in</strong> a bottle receiv<strong>in</strong>g 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface solar irradiance,<br />

cells were still synchr<strong>on</strong>ized (Fig. 4B). However, <strong>the</strong><br />

peak <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> S phase occurred about 3 h earlier (1800). Interest<strong>in</strong>gly,<br />

<strong>the</strong> S phase <str<strong>on</strong>g>of</str<strong>on</strong>g> natural Prochlorococcus populati<strong>on</strong>s is<br />

also triggered earlier at 30 m (where cells receive about 20% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> surface light) than at <strong>the</strong> surface, suggest<strong>in</strong>g that elevated<br />

light levels may cause a delay <strong>in</strong> DNA syn<strong>the</strong>sis, possibly as a<br />

protective mechanism aga<strong>in</strong>st UV damage (47). The high degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>y observed for <strong>Synechococcus</strong> organisms resulted<br />

<strong>in</strong> a divisi<strong>on</strong> rate slightly greater than <strong>on</strong>ce per day,<br />

which is <strong>in</strong> agreement with previous estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Synechococcus</strong><br />

growth <strong>in</strong> <strong>the</strong>se waters (19).<br />

In cultured mar<strong>in</strong>e <strong>Synechococcus</strong> stra<strong>in</strong>s, two types <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

cycle distributi<strong>on</strong>s have been observed (1, 4, 5). One type<br />

displays more than two peaks, which have DNA c<strong>on</strong>tents corresp<strong>on</strong>d<strong>in</strong>g<br />

to 1, 2, and 3, etc., genome copies (e.g., for mar<strong>in</strong>e<br />

stra<strong>in</strong> WH7803); this is called <strong>the</strong> asynchr<strong>on</strong>y phenotype (4),<br />

because it is suggestive <str<strong>on</strong>g>of</str<strong>on</strong>g> an asynchr<strong>on</strong>ous <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> replicati<strong>on</strong><br />

forks, <strong>in</strong> c<strong>on</strong>trast to <strong>the</strong> classical model <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial<br />

chromosome replicati<strong>on</strong> (21). Clearly, such a phenotype was<br />

DISCUSSION<br />

<strong>Synechococcus</strong> cell cycle phas<strong>in</strong>g. Numerous studies have<br />

revealed that <strong>in</strong> culture, phytoplankt<strong>on</strong> divisi<strong>on</strong> and <strong>the</strong> cell<br />

cycle are closely regulated by light-dark cycles (13, 18). Although<br />

<strong>the</strong> exact mechanisms that <strong>in</strong>duce cells to synchr<strong>on</strong>ize<br />

to light-dark cycles are still unknown, mount<strong>in</strong>g evidence dem<strong>on</strong>strates<br />

that a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular processes, as well as<br />

many genes, express circadian rhythmicity, not <strong>on</strong>ly <strong>in</strong> eucaryotes<br />

(33) but also <strong>in</strong> procaryotes (25, 27). However, very little<br />

is known about <strong>the</strong> phas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cell cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong><br />

<strong>in</strong> mar<strong>in</strong>e waters. Early studies based <strong>on</strong> microscopic observati<strong>on</strong>s<br />

revealed, for example, that d<strong>in</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate divisi<strong>on</strong> was<br />

phased to <strong>the</strong> diel cycle and took place at night (41). For<br />

<strong>Synechococcus</strong> cells, <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> paired cells peaked at<br />

around sunset <strong>in</strong> <strong>the</strong> Sargasso Sea (8), suggest<strong>in</strong>g that <strong>the</strong> cell<br />

cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> this procaryote is also phased <strong>in</strong> situ. However, highquality<br />

data <strong>on</strong> <strong>the</strong> cell cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> natural populati<strong>on</strong>s have been<br />

obta<strong>in</strong>ed <strong>on</strong>ly recently with <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA-fluorescent sta<strong>in</strong>s,<br />

such as DAPI (4,6-diamid<strong>in</strong>o-2-phenyl<strong>in</strong>dole) or Hoechst<br />

33342 (10, 11). In particular, this technique revealed that <strong>the</strong><br />

cell cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Prochlorococcus photosyn<strong>the</strong>tic procaryote is<br />

highly synchr<strong>on</strong>ized to <strong>the</strong> diel cycle <strong>in</strong> both <strong>the</strong> equatorial<br />

Pacific and <strong>the</strong> tropical Atlantic (38, 47). The present data set<br />

dem<strong>on</strong>strates that <strong>the</strong> <strong>Synechococcus</strong> cell cycle is also highly<br />

FIG. 7. Experiment B05 (Table 1), started <strong>on</strong> 1 July 1993 at 1200. The effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>cubati<strong>on</strong> end time <strong>on</strong> <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Synechococcus</strong> cells <strong>in</strong> <strong>the</strong> G 2 phase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cell cycle is shown. The l<strong>in</strong>es corresp<strong>on</strong>d to equati<strong>on</strong> 1 (see Table 1 for <strong>the</strong><br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fitted parameters).


2532 VAULOT ET AL. APPL. ENVIRON. MICROBIOL.<br />

FIG. 8. B experiments. (A) Relati<strong>on</strong> between <strong>the</strong> maximum change <strong>in</strong> G 2<br />

(G2 [equati<strong>on</strong> 1]) and <strong>the</strong> time at which <strong>the</strong> <strong>in</strong>cubati<strong>on</strong> ends (<strong>in</strong> hours from<br />

midnight). (B). Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> P c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong>duc<strong>in</strong>g a 50% effect <strong>on</strong> <strong>the</strong><br />

cell cycle (P 50 [equati<strong>on</strong> 1]) dur<strong>in</strong>g early July 1993. The solid l<strong>in</strong>e corresp<strong>on</strong>ds to<br />

a spl<strong>in</strong>e fit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data.<br />

not observed <strong>in</strong> natural Mediterranean populati<strong>on</strong>s. The o<strong>the</strong>r<br />

type displays a bimodal cell cycle (e.g., for stra<strong>in</strong> WH8103)<br />

match<strong>in</strong>g <strong>the</strong> normal eucaryotic phenotype and corresp<strong>on</strong>ds to<br />

what was observed dur<strong>in</strong>g this study. In cultured stra<strong>in</strong>s, however,<br />

cells are poorly phased and a significant part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

populati<strong>on</strong> always rema<strong>in</strong>s <strong>in</strong> S or G 2 dur<strong>in</strong>g darkness, such<br />

that <strong>the</strong> G 1 fracti<strong>on</strong> never reaches 100% (1, 5). In natural<br />

Mediterranean populati<strong>on</strong>s, synchr<strong>on</strong>y was tighter, with <strong>the</strong> G 1<br />

fracti<strong>on</strong> reach<strong>in</strong>g up to 100% (Fig. 4). The better synchr<strong>on</strong>y<br />

under field c<strong>on</strong>diti<strong>on</strong>s might be due to <strong>the</strong> temporal modulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> natural sunlight. In cultures, light is usually turned <strong>on</strong><br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g>f abruptly, while <strong>in</strong> nature it gradually <strong>in</strong>creases and<br />

decreases <strong>in</strong> a s<strong>in</strong>e wave-like fashi<strong>on</strong>. For example, <strong>the</strong> nearperfect<br />

synchr<strong>on</strong>y observed <strong>in</strong> nature for <strong>the</strong> closely related<br />

Prochlorococcus procaryote (47) cannot be reproduced <strong>in</strong> light<strong>on</strong>,<br />

light-<str<strong>on</strong>g>of</str<strong>on</strong>g>f cultures (45a).<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> P additi<strong>on</strong> <strong>on</strong> <strong>the</strong> <strong>Synechococcus</strong> cell cycle. Our<br />

nutrient enrichment experiments were performed under simulated<br />

<strong>in</strong> situ c<strong>on</strong>diti<strong>on</strong>s, which <strong>in</strong>duced <strong>the</strong> S phase to occur<br />

earlier than it does under natural c<strong>on</strong>diti<strong>on</strong>s (see above). However,<br />

s<strong>in</strong>ce all bottles were subjected to similar c<strong>on</strong>diti<strong>on</strong>s,<br />

different treatments can be unambiguously compared. In all<br />

cases, cell cycle distributi<strong>on</strong>s were not different <strong>in</strong> N-supplemented<br />

and c<strong>on</strong>trol bottles. In c<strong>on</strong>trast, additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> P as well<br />

N plus P always had identical effects, which could be ei<strong>the</strong>r<br />

positive, negative, or null <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>in</strong><br />

G 2 . The directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effect was clearly dependent <strong>on</strong> <strong>the</strong><br />

time at which <strong>the</strong> <strong>in</strong>cubati<strong>on</strong> was ended (Fig. 7 and 8A). The<br />

most parsim<strong>on</strong>ious explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this effect is that P additi<strong>on</strong><br />

caused an advance <strong>in</strong> <strong>the</strong> last part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Synechococcus</strong> cell<br />

cycle, such that <strong>the</strong> G 2 phase took place around midday ra<strong>the</strong>r<br />

than at sunset. This hypo<strong>the</strong>sis accounts for <strong>the</strong> fact that <strong>the</strong><br />

relative change <strong>in</strong> G 2 (G2) was always positive around no<strong>on</strong><br />

and negative around dusk. The advance <strong>in</strong> G 2 tim<strong>in</strong>g was most<br />

likely due to <strong>the</strong> shorten<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> G 1 phase <strong>in</strong> resp<strong>on</strong>se to P<br />

additi<strong>on</strong>. Although S may also have been shortened, <strong>the</strong> observed<br />

advance is too large (8 to 10 h) to be accounted for<br />

solely by a reducti<strong>on</strong> <strong>in</strong> <strong>the</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S, which lasts 2.7 and<br />

4.5 h under <strong>in</strong>cubati<strong>on</strong> and <strong>in</strong> situ c<strong>on</strong>diti<strong>on</strong>s, respectively, as<br />

computed accord<strong>in</strong>g to <strong>the</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> Carpenter and Chang (9)<br />

from <strong>the</strong> data <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 4. S<strong>in</strong>ce we did not m<strong>on</strong>itor a full diel<br />

cycle after P additi<strong>on</strong>, we do not know whe<strong>the</strong>r P additi<strong>on</strong><br />

simply shifted <strong>the</strong> whole cell cycle with respect to <strong>the</strong> diel cycle<br />

or if it allowed a sec<strong>on</strong>d wave <str<strong>on</strong>g>of</str<strong>on</strong>g> cells to replicate <strong>the</strong>ir DNA<br />

<strong>in</strong> <strong>the</strong> late afterno<strong>on</strong> and to divide at night, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong><br />

populati<strong>on</strong> growth rate much bey<strong>on</strong>d <strong>on</strong>e divisi<strong>on</strong> per day. The<br />

fact that P additi<strong>on</strong> shortens <strong>the</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> G 1 (and, c<strong>on</strong>versely,<br />

that P limitati<strong>on</strong> <strong>in</strong>creases it) agrees with what is<br />

known about mar<strong>in</strong>e phytoplankt<strong>on</strong> cell cycle c<strong>on</strong>trol by envir<strong>on</strong>mental<br />

factors (45). For example, both nitrogen and light<br />

limitati<strong>on</strong>s usually <strong>in</strong>duce cells to spend more time <strong>in</strong> G 1 (35).<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus has been much less studied. A recent<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> Prochlorococcus spp. dem<strong>on</strong>strates, however, that P<br />

starvati<strong>on</strong> affects not <strong>on</strong>ly <strong>the</strong> G 1 phase but also both S and G 2<br />

(37).<br />

Ecological c<strong>on</strong>sequences. Although it is close to shore, po<strong>in</strong>t<br />

B <str<strong>on</strong>g>of</str<strong>on</strong>g>f Villefranche-sur-Mer represents typical Mediterranean<br />

Sea oligotrophic c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> summer, with a permanent <strong>the</strong>rmocl<strong>in</strong>e<br />

and nitrate levels below <strong>the</strong> detecti<strong>on</strong> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> classical<br />

methods (100 nM), except for short periods when str<strong>on</strong>g w<strong>in</strong>d<strong>in</strong>duced<br />

mix<strong>in</strong>g takes place (7). P c<strong>on</strong>centrati<strong>on</strong>s are also very<br />

low <strong>in</strong> summer (42). The present data clearly dem<strong>on</strong>strate that<br />

<strong>the</strong> cell cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Synechococcus</strong> genus, an important<br />

photosyn<strong>the</strong>tic procaryote, is c<strong>on</strong>trolled by phosphorus and not<br />

by nitrogen <strong>in</strong> summer. It is likely that <strong>the</strong> <strong>Synechococcus</strong><br />

divisi<strong>on</strong> rate was also <strong>in</strong>creased follow<strong>in</strong>g P additi<strong>on</strong>, despite its<br />

already high value (close to <strong>on</strong>e doubl<strong>in</strong>g per day) under <strong>the</strong><br />

natural P-limited c<strong>on</strong>diti<strong>on</strong>s (Fig. 4). O<strong>the</strong>r evidence dem<strong>on</strong>strates<br />

that, dur<strong>in</strong>g <strong>the</strong> same period, bacteria were also physiologically<br />

P limited at this site (43), suggest<strong>in</strong>g that phosphorus<br />

may c<strong>on</strong>trol both auto- and heterotrophic populati<strong>on</strong>s<br />

simultaneously. Estimated values for <strong>the</strong> biologically available<br />

P (between 1 and 30 nM, depend<strong>in</strong>g <strong>on</strong> methods and assumpti<strong>on</strong>s<br />

[43]) co<strong>in</strong>cide with <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s that accelerated<br />

<strong>the</strong> <strong>Synechococcus</strong> cell cycle, as represented by P 50 <strong>in</strong><br />

equati<strong>on</strong> 1 (Fig. 8B). These very low values also agree with<br />

those known to limit <strong>the</strong> Prochlorococcus growth rate (30 nM<br />

[37]) or to <strong>in</strong>duce <strong>Synechococcus</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phosphateb<strong>in</strong>d<strong>in</strong>g<br />

prote<strong>in</strong> PhoS (40) (below 50 nM [39]).<br />

The <strong>in</strong>crease <strong>in</strong> <strong>the</strong> P 50 c<strong>on</strong>centrati<strong>on</strong> between 1 July and 7<br />

July may have corresp<strong>on</strong>ded to a brief relaxati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> severity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> P limitati<strong>on</strong> dur<strong>in</strong>g that period as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>crease <strong>in</strong><br />

<strong>the</strong> P c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> <strong>the</strong> mixed layer. Indeed, <strong>the</strong> meteorological<br />

record shows a slight <strong>in</strong>crease <strong>in</strong> average w<strong>in</strong>d speed<br />

from3ms 1 <strong>on</strong> 1 July to 5.4 m s 1 <strong>on</strong> 4 July, which may have<br />

been sufficient to <strong>in</strong>ject phosphorus from below <strong>the</strong> <strong>the</strong>rmocl<strong>in</strong>e<br />

(23). An <strong>in</strong>crease <strong>in</strong> P turnover time was <strong>in</strong>deed observed<br />

dur<strong>in</strong>g <strong>the</strong> same period (43). After July 7, <strong>the</strong> P 50 c<strong>on</strong>centrati<strong>on</strong><br />

dropped aga<strong>in</strong>, probably <strong>in</strong> resp<strong>on</strong>se to <strong>in</strong>creased P limitati<strong>on</strong>,<br />

follow<strong>in</strong>g <strong>the</strong> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed-layer P by both<br />

auto- and heterotrophs.<br />

Our data re<strong>in</strong>force a grow<strong>in</strong>g body <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence that P limitati<strong>on</strong><br />

might be much more widespread <strong>in</strong> oligotrophic envir<strong>on</strong>ments<br />

than previously thought. For example, <strong>the</strong> tropical<br />

Pacific may shift from N to P limitati<strong>on</strong> dur<strong>in</strong>g El Niño years<br />

(22). In <strong>the</strong> Sargasso Sea, <strong>the</strong> N/P ratio is usually <strong>in</strong> excess <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Redfield ratio (32), and recent evidence po<strong>in</strong>ts to bacteria<br />

be<strong>in</strong>g P limited (15). The shift from N- to P-limited mar<strong>in</strong>e<br />

ecosystems has important c<strong>on</strong>sequences for our c<strong>on</strong>ceptualizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> biogeochemical fluxes, s<strong>in</strong>ce <strong>the</strong>se two elements have<br />

different rem<strong>in</strong>eralizati<strong>on</strong> pathways and rates (42). Exam<strong>in</strong>a-


VOL. 62, 1996 EFFECT OF PHOSPHORUS ON SYNECHOCOCCUS CELL CYCLE 2533<br />

ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cell cycle resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> specific autotrophic (and<br />

possibly heterotrophic) populati<strong>on</strong>s to nutrient additi<strong>on</strong>s c<strong>on</strong>stitutes<br />

a powerful tool to assess limit<strong>in</strong>g nutrients <strong>in</strong> oceanic<br />

waters.<br />

ACKNOWLEDGMENTS<br />

This work was funded by c<strong>on</strong>tract MAS2-CT93-0063 from <strong>the</strong> European<br />

Community.<br />

We thank F. Partensky for his detailed comments.<br />

REFERENCES<br />

1. Armbrust, E. V., J. D. Bowen, R. J. Ols<strong>on</strong>, and S. W. Chisholm. 1989. <str<strong>on</strong>g>Effect</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> light <strong>on</strong> <strong>the</strong> cell cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> a mar<strong>in</strong>e <strong>Synechococcus</strong> stra<strong>in</strong>. Appl. Envir<strong>on</strong>.<br />

Microbiol. 55:425–432.<br />

2. Banse, K. 1990. Does ir<strong>on</strong> really limit phytoplankt<strong>on</strong> producti<strong>on</strong> <strong>in</strong> <strong>the</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fshore subarctic Pacific? Limnol. Oceanogr. 35:772–775.<br />

3. Berland, B. R., D. J. B<strong>on</strong><strong>in</strong>, and S. Y. Maestr<strong>in</strong>i. 1980. Azote ou phosphore?<br />

C<strong>on</strong>sidérati<strong>on</strong>s sur le “paradoxe nutriti<strong>on</strong>nel” de la mer Méditerranée.<br />

Oceanol. Acta 3:135–142.<br />

4. B<strong>in</strong>der, B. J., and S. W. Chisholm. 1990. Relati<strong>on</strong>ship between DNA cycle<br />

and growth rate <strong>in</strong> <strong>Synechococcus</strong> sp. stra<strong>in</strong> PCC 6301. J. Bacteriol. 172:<br />

2313–2319.<br />

5. B<strong>in</strong>der, B. J., and S. W. Chisholm. 1995. <strong>Cell</strong> cycle regulati<strong>on</strong> <strong>in</strong> mar<strong>in</strong>e<br />

<strong>Synechococcus</strong> sp. stra<strong>in</strong>s. Appl. Envir<strong>on</strong>. Microbiol. 61:708–717.<br />

6. Boucher, N., D. Vaulot, and F. Partensky. 1991. Flow cytometric determ<strong>in</strong>ati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> DNA <strong>in</strong> cultures and oceanic populati<strong>on</strong>s. Mar.<br />

Ecol. Prog. Ser. 71:75–84.<br />

7. Bustillos-Guzman, J., H. Claustre, and J. C. Marty. 1995. Specific phytoplankt<strong>on</strong><br />

signatures and <strong>the</strong>ir relati<strong>on</strong>ship to hydrographic c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> <strong>the</strong><br />

coastal northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 124:247–258.<br />

8. Campbell, L., and E. J. Carpenter. 1986. Diel patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> cell divisi<strong>on</strong> <strong>in</strong><br />

mar<strong>in</strong>e <strong>Synechococcus</strong> spp. (Cyanobacteria): use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> divid<strong>in</strong>g<br />

cells technique to measure growth rate. Mar. Ecol. Prog. Ser. 32:139–148.<br />

9. Carpenter, E. J., and J. Chang. 1988. Species-specific phytoplankt<strong>on</strong> growth<br />

rates via diel DNA syn<strong>the</strong>sis cycles. I. C<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> method. Mar. Ecol.<br />

Prog. Ser. 43:105–111.<br />

10. Chang, J., and E. J. Carpenter. 1991. Species-specific phytoplankt<strong>on</strong> growth<br />

rates via diel DNA syn<strong>the</strong>sis cycles. V. Applicati<strong>on</strong> to natural populati<strong>on</strong>s <strong>in</strong><br />

L<strong>on</strong>g Island Sound. Mar. Ecol. Prog. Ser. 78:115–122.<br />

11. Chang, J., and E. J. Carpenter. 1994. Active growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oceanic<br />

d<strong>in</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate Ceratium teres <strong>in</strong> <strong>the</strong> Caribbean and Sargasso Seas estimated<br />

by cell cycle analysis. J. Phycol. 30:375–381.<br />

12. Chavez, F. P., K. R. Buck, K. H. Coale, J. H. Mart<strong>in</strong>, G. R. DiTullio, N. A.<br />

Welschmeyer, A. C. Jacobs<strong>on</strong>, and R. T. Barber. 1991. Growth rates, graz<strong>in</strong>g,<br />

s<strong>in</strong>k<strong>in</strong>g, and ir<strong>on</strong> limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equatorial Pacific phytoplankt<strong>on</strong>. Limnol.<br />

Oceanogr. 36:1816–1833.<br />

13. Chisholm, S. W. 1981. Temporal patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> cell divisi<strong>on</strong> <strong>in</strong> unicellular algae.<br />

Can. Bull. Fish. Aquat. Sci. 210:150–181.<br />

14. Chisholm, S. W., and F. M. M. Morel (ed.). 1991. What c<strong>on</strong>trols phytoplankt<strong>on</strong><br />

producti<strong>on</strong> <strong>in</strong> nutrient-rich areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> open sea? Limnol. Oceanogr.<br />

36:1507–1970.<br />

15. Cotner, J. B., E. R. Peele, E. Bentzen, and J. W. Ammerman. <str<strong>on</strong>g>Phosphorus</str<strong>on</strong>g>limited<br />

plankt<strong>on</strong> growth <strong>in</strong> <strong>the</strong> Sargasso Sea. Submitted for publicati<strong>on</strong>.<br />

16. DiTullio, G. R., D. A. Hutch<strong>in</strong>s, and K. N. Bruland. 1993. Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong><br />

and major nutrients c<strong>on</strong>trols phytoplankt<strong>on</strong> growth and species compositi<strong>on</strong><br />

<strong>in</strong> <strong>the</strong> tropical North Pacific Ocean. Limnol. Oceanogr. 38:495–508.<br />

17. Dugdale, R. C., and J. J. Goer<strong>in</strong>g. 1967. Uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> new and regenerated<br />

forms <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <strong>in</strong> primary productivity. Limnol. Oceanogr. 12:196–206.<br />

18. Edmunds, L. N., and K. J. Adams. 1981. Clocked cell cycle clocks. Science<br />

211:1002–1013.<br />

19. Ferrier-Pagès, C., and F. Rassoulzadegan. 1994. Seas<strong>on</strong>al impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

microzooplankt<strong>on</strong> <strong>on</strong> pico- and nanoplankt<strong>on</strong> growth rates <strong>in</strong> <strong>the</strong> northwest<br />

Mediterranean Sea. Mar. Ecol. Prog. Ser. 108:283–294.<br />

20. Fisher, T. R., E. R. Peele, J. W. Ammerman, and L. W. J. Hard<strong>in</strong>g. 1992.<br />

Nutrient limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> <strong>in</strong> Chesapeake Bay. Mar. Ecol. Prog.<br />

Ser. 82:51–63.<br />

21. Helmstetter, C. E., and S. Cooper. 1968. DNA syn<strong>the</strong>sis dur<strong>in</strong>g <strong>the</strong> divisi<strong>on</strong><br />

cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> rapidly grow<strong>in</strong>g Escherichia coli B/r. J. Mol. Biol. 31:507–518.<br />

22. Karl, D. M., R. M. Letelier, D. Heble, L. Tupas, J. Dore, J. R. Christian, and<br />

C. W<strong>in</strong>n. 1995. Ecosystem changes <strong>in</strong> <strong>the</strong> North Pacific subtropical gyre<br />

attributed to <strong>the</strong> 1991–1992 El Niño. Nature (L<strong>on</strong>d<strong>on</strong>) 373:230–234.<br />

23. Kle<strong>in</strong>, P., and B. Coste. 1984. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>d-stress variability <strong>on</strong> nutrient<br />

transport <strong>in</strong>to <strong>the</strong> mixed layer. Deep-Sea Res. 31:21–37.<br />

24. Kolber, Z. S., R. T. Barber, K. H. Coale, S. E. Fitzwater, R. M. Greene, K. S.<br />

Johns<strong>on</strong>, S. L<strong>in</strong>dley, and P. G. Falkowski. 1994. Ir<strong>on</strong> limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong><br />

photosyn<strong>the</strong>sis <strong>in</strong> <strong>the</strong> equatorial Pacific Ocean. Nature (L<strong>on</strong>d<strong>on</strong>)<br />

371:145–148.<br />

25. K<strong>on</strong>do, T., C. A. Strayer, R. D. Kulkarni, W. Taylor, M. Ishiura, S. S.<br />

Golden, and C. A. Johns<strong>on</strong>. 1993. Circadian rhythms <strong>in</strong> prokaryotes: luciferase<br />

as a reporter <str<strong>on</strong>g>of</str<strong>on</strong>g> circadian gene expressi<strong>on</strong> <strong>in</strong> cyanobacteria. Proc. Natl.<br />

Acad. Sci. USA 90:5672–5676.<br />

26. Krom, M. D., N. Kress, S. Brenner, and L. I. Gord<strong>on</strong>. 1991. <str<strong>on</strong>g>Phosphorus</str<strong>on</strong>g><br />

limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary producti<strong>on</strong> <strong>in</strong> <strong>the</strong> eastern Mediterranean Sea. Limnol.<br />

Oceanogr. 36:424–432.<br />

27. Liu, Y., N. F. Ts<strong>in</strong>oremas, C. H. Johns<strong>on</strong>, N. V. Lebedeva, S. S. Golden, M.<br />

Ishiura, and T. K<strong>on</strong>do. 1995. Circadian orchestrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> <strong>in</strong><br />

cyanobacteria. Genes Dev. 9:1469–1478.<br />

28. Mart<strong>in</strong>, J. H., W. K. Broenkow, S. E. Fitzwater, and R. M. Gord<strong>on</strong>. 1990. Yes<br />

it does: a reply to <strong>the</strong> comment by Banse. Limnol. Oceanogr. 35:775–777.<br />

29. Mart<strong>in</strong>, J. H., K. H. Coale, K. S. Johns<strong>on</strong>, S. E. Fitzwater, R. M. Gord<strong>on</strong>,<br />

S. J. Tanner, C. N. Hunter, V. A. Elrod, J. L. Nowicki, T. L. Coley, R. T.<br />

Barber, S. L<strong>in</strong>dley, A. J. Wats<strong>on</strong>, K. Van Scoy, C. S. Law, M. I. Liddicoat, R.<br />

L<strong>in</strong>g, T. Stant<strong>on</strong>, J. Stockel, C. Coll<strong>in</strong>s, A. Anders<strong>on</strong>, R. Bidigare, M. Ondrusek,<br />

M. Latasa, F. J. Millero, K. Lee, W. Yao, J. Z. Zhang, G. Friederich,<br />

C. Sakamoto, F. Chavez, K. Buck, Z. Kolber, R. Greene, P. Falkowski, S. W.<br />

Chisholm, F. Hoge, R. Swift, J. Yungel, S. Turner, P. Night<strong>in</strong>gale, A. Hatt<strong>on</strong>,<br />

P. Liss, and N. W. T<strong>in</strong>dale. 1994. Test<strong>in</strong>g <strong>the</strong> ir<strong>on</strong> hypo<strong>the</strong>sis <strong>in</strong> ecosystems<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> equatorial Pacific Ocean. Nature (L<strong>on</strong>d<strong>on</strong>) 371:123–129.<br />

30. Mart<strong>in</strong>, J. H., R. M. Gord<strong>on</strong>, and S. E. Fitzwater. 1990. Ir<strong>on</strong> <strong>in</strong> Antarctic<br />

waters. Nature (L<strong>on</strong>d<strong>on</strong>) 345:156–158.<br />

31. McGill, D. A. 1965. The relative supplies <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate, nitrate and silicate <strong>in</strong><br />

<strong>the</strong> Mediterranean Sea. Rapp. Comm. Int. Mer Medit. 18:737–744.<br />

32. Michaels, A. F., A. H. Knap, R. L. Dow, K. Gundersen, R. J. Johns<strong>on</strong>, J.<br />

Sorensen, A. Close, G. A. Knauer, S. E. Lohrenz, V. A. Asper, M. Tuel, and<br />

R. Bidigare. 1994. Seas<strong>on</strong>al patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean biogeochemistry at <strong>the</strong> U.S.<br />

JGOFS Bermuda Atlantic Time-Series Study site. Deep-Sea Res. 41:1013–<br />

1038.<br />

33. Millar, A. J., I. A. Carré, C. A. Strayer, N.-H. Chua, and S. A. Kay. 1995.<br />

Circadian clock mutants <strong>in</strong> Arabidopsis identified by luciferase imag<strong>in</strong>g.<br />

Science 267:1161–1163.<br />

34. M<strong>on</strong>ger, B. C., and M. R. Landry. 1993. Flow cytometric analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> mar<strong>in</strong>e<br />

bacteria with Hoechst 33342. Appl. Envir<strong>on</strong>. Microbiol. 59:905–911.<br />

35. Ols<strong>on</strong>, R. J., D. Vaulot, and S. W. Chisholm. 1986. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

stresses <strong>on</strong> <strong>the</strong> cell cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> two mar<strong>in</strong>e phytoplankt<strong>on</strong> species. Plant Physiol.<br />

80:918–925.<br />

36. Owens, N. J. P., A. P. Rees, E. M. S. Woodward, and R. F. C. Mantoura.<br />

1989. Size-fracti<strong>on</strong>ated primary producti<strong>on</strong> and nitrogen assimilati<strong>on</strong> <strong>in</strong> <strong>the</strong><br />

north-western Mediterranean Sea dur<strong>in</strong>g January 1989, p. 126–135. In J.-M.<br />

Mart<strong>in</strong> and H. Barth (ed.), Water Polluti<strong>on</strong> Research Reports, 13. EROS<br />

2000 (European River Ocean System) Project Workshop. Commissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

European Communities, Brussels.<br />

37. Parpais, J., D. Marie, F. Partensky, P. Mor<strong>in</strong>, and D. Vaulot. 1996. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phosphorus starvati<strong>on</strong> <strong>on</strong> <strong>the</strong> cell cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> photosyn<strong>the</strong>tic prokaryote<br />

Prochlorococcus spp. Mar. Ecol. Prog. Ser., 132:265–274.<br />

38. Partensky, F., J. Blanchot, F. Lanto<strong>in</strong>e, J. Neveux, and D. Marie. Vertical<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> picophytoplankt<strong>on</strong> at different trophic sites <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> subtropical<br />

nor<strong>the</strong>astern Atlantic Ocean. Deep-Sea Res., <strong>in</strong> press.<br />

39. Scanlan, D. J. Pers<strong>on</strong>al communicati<strong>on</strong>.<br />

40. Scanlan, D. J., N. H. Mann, and N. G. Carr. 1993. The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

picoplankt<strong>on</strong>ic mar<strong>in</strong>e cyanobacterium <strong>Synechococcus</strong> species WH7803 to<br />

phosphate starvati<strong>on</strong> <strong>in</strong>volves a prote<strong>in</strong> homologous to <strong>the</strong> periplasmic phosphate-b<strong>in</strong>d<strong>in</strong>g<br />

prote<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Escherichia coli. Mol. Microbiol. 10:181–191.<br />

41. Swift, E., and E. G. Durb<strong>in</strong>. 1972. The phased divisi<strong>on</strong> and cytological<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Pyrocystis spp. can be used to estimate doubl<strong>in</strong>g times <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>ir populati<strong>on</strong>s <strong>in</strong> <strong>the</strong> sea. Deep-Sea Res. 19:189–198.<br />

42. Th<strong>in</strong>gstad, T. F., and F. Rassoulzadegan. 1995. Nutrient limitati<strong>on</strong>s, microbial<br />

food webs, and ‘biological C-pumps’: suggested <strong>in</strong>teracti<strong>on</strong>s <strong>in</strong> a P-<br />

limited Mediterranean. Mar. Ecol. Prog. Ser. 117:299–306.<br />

43. Th<strong>in</strong>gstad, T. F., U. L. Zweifel, and F. Rassoulzadegan. Unpublished data.<br />

44. Vaulot, D. 1989. CYTOPC: process<strong>in</strong>g s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware for flow cytometric data.<br />

Signal Noise 2:8.<br />

45. Vaulot, D. 1995. The cell cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>: coupl<strong>in</strong>g cell growth to<br />

populati<strong>on</strong> growth, p. 303–322. In I. Jo<strong>in</strong>t (ed.), NATO ASI series, G 38.<br />

Molecular ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic microbes. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>.<br />

45a.Vaulot, D. Unpublished data.<br />

46. Vaulot, D., C. Courties, and F. Partensky. 1989. A simple method to preserve<br />

oceanic phytoplankt<strong>on</strong> for flow cytometric analyses. Cytometry 10:629–635.<br />

47. Vaulot, D., D. Marie, R. J. Ols<strong>on</strong>, and S. W. Chisholm. 1995. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Prochlorococcus, a photosyn<strong>the</strong>tic prokaryote, <strong>in</strong> <strong>the</strong> equatorial Pacific<br />

Ocean. Science 268:1480–1482.<br />

48. Vaulot, D., R. J. Ols<strong>on</strong>, S. M. Merkel, and S. W. Chisholm. 1987. <strong>Cell</strong> cycle<br />

resp<strong>on</strong>se to nutrient starvati<strong>on</strong> <strong>in</strong> two mar<strong>in</strong>e phytoplankt<strong>on</strong> species. Mar.<br />

Biol. 95:625–630.<br />

49. Vaulot, D., and F. Partensky. 1992. <strong>Cell</strong> cycle distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> prochlorophytes<br />

<strong>in</strong> <strong>the</strong> North Western Mediterranean Sea. Deep-Sea Res. 39:727–742.<br />

50. Zweifel, U. L., J. Wikner, A. Hagstrom, E. Lundberg, and B. Norrman. 1995.<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved organic carb<strong>on</strong> <strong>in</strong> a coastal ecosystem. Limnol.<br />

Oceanogr. 40:299–305.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!