24.06.2014 Views

Geochemical energy sources for microbial primary production in the ...

Geochemical energy sources for microbial primary production in the ...

Geochemical energy sources for microbial primary production in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

22 C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

Table 2<br />

Temperatures measured at different locations <strong>in</strong> a shrimp swarm at<br />

Ra<strong>in</strong>bow (upper) and TAG (lower) as displayed <strong>in</strong> Fig. 2 (SD: standard<br />

deviation, N: number of data)<br />

Sampl<strong>in</strong>g po<strong>in</strong>t T m<strong>in</strong> [°C] T mean [°C] T max [°C] SD [°C] N<br />

1 5.3 6.2 6.7 0.4 12<br />

2 5.3 6.2 7.1 0.4 27<br />

3 6.4 7.7 9 0.6 29<br />

4 9.7 11.9 14.5 1.3 33<br />

5 6.8 8.5 11.3 1 26<br />

6 7.3 10.9 15.8 2.2 29<br />

7 7.2 12.3 18.2 2.2 28<br />

8 9.3 10.6 14.6 1.2 30<br />

9 7.4 9.3 12.7 1.2 32<br />

10 11.4 16 17.3 1.3 28<br />

1 5.3 7.2 11.9 1.2 97<br />

2 2.8 5.3 7.9 1.2 94<br />

3 3.3 5.9 9.1 1.3 97<br />

4 4 7.1 13.3 1.7 86<br />

5 5.1 6.4 8.2 0.7 97<br />

6 4 7.5 12.6 1.6 85<br />

7 3.6 6 8.5 1.1 96<br />

8 4.1 9 17.4 2.5 90<br />

9 4 10.2 16.6 3.2 96<br />

10 3.6 4.6 5.4 0.4 97<br />

Alternatively, oxygen was directly measured us<strong>in</strong>g an<br />

amperometric microelectrode (EXOMAR 2005). Fluid subsamples<br />

were preserved <strong>in</strong> gas-tight flasks under <strong>the</strong> addition<br />

of Hg 2 Cl 2 <strong>for</strong> CO 2 and CH 4 on-shore GC-analysis (ATOS<br />

samples). Applied analytical methods are described <strong>in</strong> Sarrad<strong>in</strong><br />

et al. (1998). Total iron was preserved <strong>in</strong> acidified sub-samples<br />

and analyzed on-shore us<strong>in</strong>g <strong>the</strong> ferroz<strong>in</strong>e method after<br />

reduction of ferric iron with ascorbic acid.<br />

2.4. <strong>Geochemical</strong> model<strong>in</strong>g<br />

<strong>Geochemical</strong> calculations were per<strong>for</strong>med apply<strong>in</strong>g <strong>the</strong><br />

computation code PHREEQC (version 2.8) (Parkhust and<br />

Appelo, 1999) <strong>in</strong> order to simulate <strong>the</strong> chemical composition<br />

of <strong>the</strong> mix<strong>in</strong>g zone as function of temperature <strong>in</strong> <strong>the</strong> shrimp<br />

environment. The program is based on chemical equilibria <strong>in</strong><br />

aqueous solutions <strong>in</strong>teract<strong>in</strong>g with m<strong>in</strong>erals. The PHREEQC<br />

database accounts <strong>for</strong> temperature effects on <strong>the</strong>rmodynamic<br />

constants but not <strong>for</strong> <strong>the</strong> <strong>in</strong>fluence of high pressure (about<br />

23 MPa at 2300 m depth and 35 MPa at 3500 m depth). As<br />

hypo<strong>the</strong>sized <strong>in</strong> Le Bris et al. (2003) <strong>the</strong> effect of pressure<br />

should be of m<strong>in</strong>or importance <strong>for</strong> <strong>the</strong> <strong>in</strong>vestigated reactions<br />

<strong>in</strong> <strong>the</strong> temperature range (2–30 °C). The <strong>the</strong>rmodynamic<br />

constants <strong>for</strong> <strong>the</strong> considered chemical species were def<strong>in</strong>ed<br />

from <strong>the</strong> PHREEQC database, except <strong>for</strong> aqueous ferrous<br />

iron-sulfide complexes. For <strong>the</strong>se complexes, <strong>the</strong> database<br />

has been upgraded us<strong>in</strong>g data from Rickard and Morse<br />

(2005). Accord<strong>in</strong>g to <strong>the</strong>se authors, only Fe(HS) + displays a<br />

certa<strong>in</strong> congruency among authors with a determ<strong>in</strong>ed log K<br />

close to 5.2. Additionally, soluble iron-sulfide molecular<br />

clusters (FeSaq) are expected to dom<strong>in</strong>ate labile iron-sulfide<br />

<strong>for</strong>ms <strong>in</strong> hydro<strong>the</strong>rmal fluids (Lu<strong>the</strong>r et al., 2001). Accord<strong>in</strong>g<br />

to Theberge and Lu<strong>the</strong>r (1997), <strong>the</strong>se complexes will <strong>for</strong>m at<br />

saturation of <strong>the</strong> medium with respect to precipitated ironmonosulfide<br />

FeS. The Ks used <strong>in</strong> our calculation <strong>for</strong> this<br />

precipitate corresponds to <strong>the</strong> value def<strong>in</strong>ed by Benn<strong>in</strong>g et al.<br />

(2000). Full equilibration between <strong>the</strong> dissolved species and<br />

<strong>the</strong> solid phase was not allowed, unless specified.<br />

The progressive mix<strong>in</strong>g of <strong>the</strong> end-member fluid with<br />

seawater was modeled assum<strong>in</strong>g that <strong>the</strong> chemistry of <strong>the</strong><br />

hydro<strong>the</strong>rmal fluid at Ra<strong>in</strong>bow corresponds to <strong>the</strong> composition<br />

recorded <strong>in</strong> 1997 as presented <strong>in</strong> Charlou et al. (2002)<br />

and Douville et al. (2002). The end-member composition<br />

used <strong>for</strong> TAG refers to Edmonds et al. (1996). Theseendmembers<br />

are termed ‘reference end-members’ <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g<br />

sections. This def<strong>in</strong>ition does not <strong>in</strong>fer a stable composition<br />

of <strong>the</strong> end-members over years, but ra<strong>the</strong>r provides<br />

a comparison basis from which <strong>the</strong> composition of <strong>the</strong> local<br />

source fluid could be estimated. Fitt<strong>in</strong>g <strong>the</strong> model outputs to<br />

empirical data enabled to quantify <strong>the</strong> depletion of Fe II and<br />

S − II <strong>in</strong> <strong>the</strong> local source fluids with respect to <strong>the</strong> conservative<br />

dilution of <strong>the</strong> reference end-members. The concentration<br />

of methane <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g gradient was estimated by<br />

similar adjustment to <strong>the</strong> field data.<br />

Fur<strong>the</strong>rmore, different scenarios were considered to<br />

account <strong>for</strong> oxygen consumption by electron donors which<br />

could spontaneously occur <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone or <strong>in</strong> <strong>the</strong><br />

sampl<strong>in</strong>g bottles. For this purpose O 2 -pH and O 2 -T data-sets<br />

Table 3<br />

Compilation of <strong>the</strong>rmal data (mean values and ranges) <strong>in</strong> <strong>the</strong> immediate<br />

environment of <strong>the</strong> shrimp <strong>in</strong> different swarms at <strong>the</strong> Mid-Atlantic<br />

Ridge (RB: Ra<strong>in</strong>bow, SP: Snake Pit, L: Logatchev)<br />

Site Location T [°C] Reference<br />

Diverse Swarm 10–40 Gebruk et al.<br />

(1993)<br />

SP Swarm 10–15 (5–37) Segonzac et al.<br />

(1993)<br />

L Swarm N20 Gebruk et al.<br />

(1993)<br />

RB Swarm 9–25 Desbruyères et al.<br />

(2000)<br />

RB Swarm 13.2 Desbruyères et al.<br />

(2001)<br />

RB Swarm 11 (4.7–25) Geret et al. (2002)<br />

RB Swarm 1 11.8 (3.9–16.6) this study<br />

(ATOS 2001)<br />

RB Swarm 2 8.7 (4.5–18.3) this study<br />

(ATOS 2001)<br />

RB Swarm 3 11.5 (3.2–18) this study<br />

(EXOMAR 2005)<br />

TAG Swarm 7 (2.8–17.4) this study<br />

(EXOMAR 2005)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!