05.07.2014 Views

SIMPLE Method on Non-staggered Grids - Department of ...

SIMPLE Method on Non-staggered Grids - Department of ...

SIMPLE Method on Non-staggered Grids - Department of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4. Momentum Interpolati<strong>on</strong><br />

4.1. Momentum interpolati<strong>on</strong> for steady-state problem<br />

BP = bP + ⎡⎣ 1−αu αu⎤⎦ aPuP<br />

[Eq.(13)]. For the<br />

n−1<br />

Note that for the steady problems ( )<br />

velocity comp<strong>on</strong>ent u at nodes P and E, Eq. (12) can be written as<br />

u<br />

u<br />

P<br />

E<br />

( )<br />

( a )<br />

P<br />

P<br />

( )<br />

( a )<br />

αu ∑<br />

i<br />

au<br />

i i<br />

+ Bp α<br />

P uΔy pe − pw<br />

P<br />

= − (14)<br />

( )<br />

( a )<br />

P<br />

E<br />

P<br />

P<br />

( )<br />

( a )<br />

αu ∑<br />

i<br />

au<br />

i i<br />

+ Bp α<br />

E uΔy pe − pw<br />

E<br />

= − (15)<br />

Mimicking the formulati<strong>on</strong> <strong>of</strong> u<br />

E<br />

interface velocity at the cell face e.<br />

u<br />

e<br />

( )<br />

( a )<br />

P<br />

e<br />

P<br />

E<br />

and u<br />

P<br />

, we can obtain the following expressi<strong>on</strong> for the<br />

( )<br />

( a )<br />

αu ∑<br />

i<br />

au<br />

i i<br />

+ Bp α<br />

e uΔy pE − pP<br />

= − (16)<br />

P<br />

e<br />

where the terms <strong>on</strong> the right-hand side with subscript e should be interpolated in an<br />

appropriate manner. The interface velocity at cell faces w, n, and s can be obtained<br />

similarly.<br />

In Rhie and Chow’s momentum interpolati<strong>on</strong>, the first term and 1 ( aP ) in sec<strong>on</strong>d<br />

e<br />

term <strong>of</strong> the Eq.(16) are linearly interpolated from their counterparts in Eqs.(14) and (15):<br />

⎛∑ au + B ⎞ ⎛∑ au + B ⎞ ⎛∑ au + B ⎞<br />

⎜ ⎟ ⎜ ⎟ ( 1 fe<br />

) ⎜ ⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

i i i p + i i i p + i i i p<br />

= fe<br />

+ −<br />

aP a<br />

e P<br />

a<br />

E P P<br />

(17)<br />

1 + 1 + 1<br />

= f + − (18)<br />

a a a<br />

e<br />

( ) ( )<br />

( 1 fe<br />

) ( )<br />

P e P E P P<br />

where f + e<br />

is a linear interpolati<strong>on</strong> factor defines as<br />

+ Δx<br />

P<br />

f<br />

e<br />

= (19)<br />

2δ x<br />

e<br />

In order to have a better understanding <strong>of</strong> Eq. (16), substituting ( au B a )<br />

Eq. (17) and ( ∑ au + B a ) , ( au B a )<br />

i i i p P P<br />

o o<br />

(16) and omitting the term au , we obtain<br />

P<br />

P<br />

i i i p P E<br />

∑ + from<br />

i i i p P e<br />

∑ + from Eqs. (14) and (15) into Eq.<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!