15.07.2014 Views

05 Classification of.. - Department of Earth and Planetary Sciences

05 Classification of.. - Department of Earth and Planetary Sciences

05 Classification of.. - Department of Earth and Planetary Sciences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Classification</strong> <strong>of</strong> Chondritic Meteorites 93<br />

Table 4<br />

<strong>Classification</strong> scheme for shock metamorphism in chondrites.<br />

Shock<br />

stage<br />

Description Effect resulting from equilibration peak shock pressure Shock<br />

pressure<br />

Olivine Plagioclase Orthopyroxene (GPa) a<br />

S1 Unshocked Sharp optical extinction, ,4–5<br />

irregular fractures<br />

S2 Very Undulutory extinction, Undulutory extinction, Undulutory extinction, 5–10<br />

weakly<br />

shocked<br />

irregular fractures irregular fractures irregular <strong>and</strong> some<br />

planar fractures<br />

S3<br />

Weakly<br />

shocked<br />

Planar fractures,<br />

undulutory extinction,<br />

irregular fractures<br />

Undulutory extinction<br />

Clinoenstatite lamellae<br />

on (100),<br />

undulutory extinction,<br />

planar <strong>and</strong><br />

irregular fractures<br />

15–20<br />

S4 Moderately Weak mosaicism, Undulutory extinction, 30–35<br />

shocked planar fractures partially isotropic,<br />

planar deformation<br />

features<br />

S5 Strongly Strong mosaicism, Maskelynite 45–55<br />

shocked planar fractures,<br />

planar deformation<br />

fractures<br />

S6 Very Solid-state<br />

Shock melted<br />

Majorite, melting 75–90<br />

strongly recrystallization<br />

(normal glass)<br />

shocked <strong>and</strong> staining, ringwoodite,<br />

melting<br />

Shock<br />

Whole-rock melting (impact melt rocks <strong>and</strong> melt breccias)<br />

melted<br />

Sources: Stöffler et al. (1991) <strong>and</strong> Rubin et al. (1997).<br />

Shock effects in ordinary chondrites are characterized by effects in olivine <strong>and</strong> plagioclase; shock levels in carbonaceous chondrites are<br />

characterized by effects mostly in olivine (Scott et al., 1992); shock levels in enstatite chondrites are characterized by effects mostly in<br />

orthopyroxene. The prime shock criteria for each shock stage are in italics.<br />

a Shock pressures for ordinary chondrites only.<br />

Table 5<br />

<strong>Classification</strong> <strong>of</strong> chondritic breccias.<br />

Breccia type<br />

Lithic fragments<br />

Regolith breccias<br />

Fragmental breccias<br />

Impact melt breccias<br />

Granulitic breccias<br />

Primitive breccias<br />

Description<br />

Xenolithic—clasts <strong>of</strong> different chemical class to host<br />

Cognate—impact melt fragments<br />

Fragmental debris on surface <strong>of</strong> body (contain solar-wind gases, solar flare<br />

tracks, agglutinates, etc.), usually have light–dark structure<br />

Fragmental debris with no regolith properties<br />

Unmelted debris in igneous matrices<br />

Metamorphosed fragmental breccias<br />

Type-3 ordinary chondrite breccias<br />

After Keil (1982).<br />

Tagish Lake (Figure 8(b)) is an ungrouped<br />

carbonaceous chondrite with CI <strong>and</strong> CM affinities<br />

that has higher abundances <strong>of</strong> carbon (5.8 wt.%)<br />

<strong>and</strong> presolar nanodiamonds than any other<br />

chondrite (Brown et al., 2000; Clayton <strong>and</strong><br />

Mayeda, 2001; Grady et al., 2002; Mittlefehldt,<br />

2002; Zolensky et al., 2002).<br />

The ungrouped meteorites Belgica-7904,<br />

Yamato-86720, Yamato-82162, <strong>and</strong> Dh<strong>of</strong>ar-225<br />

have petrographic, mineralogical, <strong>and</strong> chemical<br />

affinities to the CM <strong>and</strong> CI carbonaceous<br />

chondrites (e.g., Tomeoka et al., 1989; Tomeoka,<br />

1990; Paul <strong>and</strong> Lipschutz, 1990; Bisch<strong>of</strong>f <strong>and</strong><br />

Metzler, 1991; Ikeda, 1992; Hiroi et al., 1993a,<br />

1996; Clayton <strong>and</strong> Mayeda, 1999; Ivanova et al.,<br />

2002), but have distinct oxygen isotopic compositions<br />

(Figure 4). In contrast to CI <strong>and</strong> CM<br />

chondrites, these meteorites experienced aqueous<br />

alteration followed by reheating <strong>and</strong> dehydration<br />

(e.g., Akai, 1988; Yanai et al., 1995). The reheating<br />

resulted in partial loss <strong>of</strong> carbon, nitrogen, <strong>and</strong><br />

water, structural transformation <strong>of</strong> serpentine to<br />

olivine, <strong>and</strong> precipitation <strong>of</strong> abundant fine-grained<br />

troilite (possibly by decomposition <strong>of</strong> tochilinite).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!