15.07.2014 Views

05 Classification of.. - Department of Earth and Planetary Sciences

05 Classification of.. - Department of Earth and Planetary Sciences

05 Classification of.. - Department of Earth and Planetary Sciences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

100<br />

<strong>Classification</strong> <strong>of</strong> Meteorites<br />

classified as a CV anomalous (Koeberl et al.,<br />

1987; Rubin, 1988b; Weisberg et al., 1996b), <strong>and</strong><br />

CK anomalous (Kallemeyn, 1996).<br />

Figure 13 Combined elemental maps <strong>of</strong> the: (a) CK4<br />

carbonaceous chondrite breccia Karoonda <strong>and</strong> (b) the<br />

H/L3.6 ordinary chondrite Tieschitz. Karoonda consists<br />

<strong>of</strong> coarse-grained matrix containing abundant plagioclase<br />

(pl) <strong>and</strong> high-Ca pyroxene (cpx) grains, <strong>and</strong> rare<br />

poorly recognized chondrules <strong>and</strong> AOAs. Outlined<br />

region contains rare plagioclase grains <strong>and</strong> wellrecognized<br />

chondrules <strong>and</strong> may represent CK material<br />

<strong>of</strong> lower petrologic type. Tieschitz contains abundant<br />

type I <strong>and</strong> type II chondrules <strong>of</strong> porhyritic (PO, POP,<br />

PP), radial pyroxene (RP), <strong>and</strong> cryptocrystalline (CC)<br />

textures; Al-rich chondrules <strong>and</strong> CAIs are rare. Most<br />

chondrules are surrounded by Al-rich (bluish) finegrained<br />

material composed <strong>of</strong> a nepheline-like phase<br />

resulted from in situ aqeuous alteration (source<br />

Hutchison et al., 1998).<br />

Ningqiang is an ungrouped carbonaceous<br />

chondrite that shares many petrologic, as well<br />

as oxygen isotopic <strong>and</strong> TL characteristics with<br />

CV <strong>and</strong> CK chondrites (Rubin et al., 1988b;<br />

Kallemeyn et al., 1991; Koeberl et al.,<br />

1987; Mayeda et al., 1988; Guimon et al., 1995;<br />

Kallemeyn, 1996). As a result, it has been<br />

1.<strong>05</strong>.2.4.2 Ordinary chondrites<br />

H, L, <strong>and</strong> LL chondrites. Ordinary chondrites<br />

(Figure 13(b)) are characterized by: (i) magnesium-normalized<br />

refractory lithophile abundances<br />

,0.85 £ CI chondrites (Figure 2);<br />

(ii) oxygen isotopic compositions plotting above<br />

the terrestrial fractionation line (Figure 4);<br />

(iii) high abundance <strong>of</strong> chondrules with nonporphyritic<br />

<strong>and</strong> FeO-rich (type-II) chondrules being<br />

common <strong>and</strong> aluminum-rich chondrules being<br />

rare; (iv) rarity <strong>of</strong> CAIs <strong>and</strong> AOAs; <strong>and</strong> (v) a large<br />

range in degree <strong>of</strong> metamorphism (petrologic<br />

types 3–6), with several type 3.0–3.1 ordinary<br />

chondrites (e.g., Semarkona <strong>and</strong> Bishunpur)<br />

showing evidence for aqueous alteration<br />

(e.g., Hutchison et al., 1987, 1998; Alex<strong>and</strong>er<br />

et al., 1989; Sears <strong>and</strong> Weeks, 1991; Sears et al.,<br />

1980, 1991).<br />

Abundance ratios (CI- <strong>and</strong> Mg-normalized) <strong>of</strong><br />

the refractory lithophile elements <strong>and</strong> <strong>of</strong> selenium<br />

<strong>and</strong> zinc are very similar for the three ordinary<br />

chondrite groups; siderophile element abundances<br />

decrease <strong>and</strong> oxidation state increases through the<br />

sequence H–L–LL (Figures 2 <strong>and</strong> 7). Based on<br />

evidence for differences in impact history (there is<br />

an H-chondrite cluster <strong>of</strong> cosmic-ray exposure ages<br />

at ,7 Ma <strong>and</strong> an L-chondrite cluster <strong>of</strong> outgassing<br />

ages ,900 Ma; Keil, 1964; Heymann, 1967;<br />

Crabb <strong>and</strong> Schultz, 1981) <strong>and</strong> the scarcity <strong>of</strong><br />

evidence for intergroup mixing in ordinary chondrite<br />

breccias, it is generally accepted that the H, L,<br />

<strong>and</strong> LL chondrites are formed in at least three<br />

separate parent asteroids (Kallemeyn et al., 1989).<br />

A number <strong>of</strong> taxonomic parameters are used to<br />

resolve the individual ordinary chondrite groups.<br />

Small, systematic textural differences among<br />

the ordinary chondrite groups are observed for<br />

metal abundances <strong>and</strong> chondrule size (Table 2).<br />

On a plot <strong>of</strong> cobalt concentration in kamacite<br />

versus Fa content in olivine, there is a hiatus<br />

between H <strong>and</strong> L, but no hiatus between L <strong>and</strong><br />

LL chondrites (Figure 14). Olivine composition<br />

is not a reliable indicator <strong>of</strong> group<br />

for unequilibrated ordinary chondrites <strong>of</strong> low<br />

petrologic type (,3.5) <strong>and</strong> siderophile element<br />

abundances are used instead (Kallemeyn et al.,<br />

1989; Sears et al., 1991). Several chondrites<br />

(Bjurböle, Cynthiana, Knyahinya, Qidong, Xi<br />

Ujimgin) fall between the main L <strong>and</strong> LL<br />

clusters (Figure 14), possibly indicating formation<br />

on a separate parent asteroid (Kallemeyn<br />

et al., 1989). Based on abundance <strong>of</strong> siderophile<br />

elements <strong>and</strong> compositions <strong>of</strong> olivine <strong>and</strong> kamacite<br />

(Figure 14) that are intermediate between<br />

H <strong>and</strong> L chondites, Tieschitz (Figure 13(b)) <strong>and</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!