18.07.2014 Views

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Problem 14. Let a, b, c be positive real numbers satisfy<strong>in</strong>g a + b + c = 1. Show that<br />

Solution. We want to establish that<br />

Set x =<br />

√<br />

bc<br />

a , y = √ ca<br />

b , z = √<br />

a<br />

a + bc + b<br />

√<br />

abc<br />

b + ca + c + ab ≤ 1 + 3√ 3<br />

4 .<br />

1<br />

1 + bc a<br />

+ 1<br />

1 + ca b<br />

+<br />

√<br />

ab<br />

c<br />

1 + ab<br />

c<br />

ab<br />

c<br />

. We need to prove that<br />

≤ 1 + 3√ 3<br />

4 .<br />

1<br />

1 + x 2 + 1<br />

1 + y 2 + z<br />

1 + z 2 ≤ 1 + 3√ 3<br />

4 ,<br />

where x, y, z > 0 <strong>and</strong> xy + yz + zx = 1. It’s not hard to show that there exists A, B, C ∈ (0, π) with<br />

The <strong>in</strong>equality becomes<br />

x = tan A 2 , y = tan B 2 , z = tan C , <strong>and</strong> A + B + C = π.<br />

2<br />

or<br />

or<br />

1<br />

1 + ( 1<br />

)<br />

tan A 2<br />

+<br />

2<br />

1 + ( tan C 2<br />

)<br />

tan B 2<br />

+<br />

2<br />

1 + ( tan C 2<br />

1 + 1 2 (cos A + cos B + s<strong>in</strong> C) ≤ 1 + 3√ 3<br />

4<br />

cos A + cos B + s<strong>in</strong> C ≤ 3√ 3<br />

2 .<br />

) 2<br />

≤ 1 + 3√ 3<br />

4<br />

Note that cos A + cos B = 2 cos ( ) (<br />

A+B<br />

2 cos A−B<br />

) ∣ 2 . S<strong>in</strong>ce A−B ∣<br />

2<br />

< π 2<br />

, this means that<br />

( ) ( )<br />

A + B<br />

π − C<br />

cos A + cos B ≤ 2 cos = 2 cos .<br />

2<br />

2<br />

It will be enough to show that<br />

( ) π − C<br />

2 cos + s<strong>in</strong> C ≤ 3√ 3<br />

2<br />

2 ,<br />

where C ∈ (0, π). This is a one-variable <strong>in</strong>equality. 3 It’s left as an exercise for the reader.<br />

Problem 15. (Iran 1998) Prove that, for all x, y, z > 1 such that 1 x + 1 y + 1 z = 2,<br />

√ x + y + z ≥<br />

√<br />

x − 1 +<br />

√<br />

y − 1 +<br />

√<br />

z − 1.<br />

First Solution. We beg<strong>in</strong> with the algebraic substitution a = √ x − 1, b = √ y − 1, c = √ z − 1. Then, the<br />

condition becomes<br />

1<br />

1 + a 2 + 1<br />

1 + b 2 + 1<br />

1 + c 2 = 2 ⇔ a2 b 2 + b 2 c 2 + c 2 a 2 + 2a 2 b 2 c 2 = 1<br />

<strong>and</strong> the <strong>in</strong>equality is equivalent to<br />

√<br />

a2 + b 2 + c 2 + 3 ≥ a + b + c ⇔ ab + bc + ca ≤ 3 2 .<br />

Let p = bc, q = ca, r = ab. Our job is to prove that p + q + r ≤ 3 2 where p2 + q 2 + r 2 + 2pqr = 1. By the<br />

exercise 7, we can make the trigonometric substitution<br />

(<br />

p = cos A, q = cos B, r = cos C for some A, B, C ∈ 0, π )<br />

with A + B + C = π.<br />

2<br />

What we need to show is now that cos A + cos B + cos C ≤ 3 2<br />

. It follows from Jensen’s <strong>in</strong>equality.<br />

3<br />

Differentiate! Shi<strong>in</strong>g-shen Chern<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!