18.07.2014 Views

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.3 Normalizations<br />

In the previous sections, we transformed non-homogeneous <strong>in</strong>equalities <strong>in</strong>to homogeneous ones. On the other<br />

h<strong>and</strong>, homogeneous <strong>in</strong>equalities also can be normalized <strong>in</strong> various ways. We <strong>of</strong>fer two alternative solutions<br />

<strong>of</strong> the problem 8 by normalizations :<br />

(IMO 2001/2) Let a, b, c be positive real numbers. Prove that<br />

a<br />

√<br />

a2 + 8bc +<br />

b<br />

√<br />

b2 + 8ca +<br />

c<br />

√<br />

c2 + 8ab ≥ 1.<br />

Third Solution. We make the substitution x =<br />

a<br />

a+b+c , y =<br />

b<br />

a+b+c , z =<br />

xf(x 2 + 8yz) + yf(y 2 + 8zx) + zf(z 2 + 8xy) ≥ 1,<br />

c<br />

a+b+c .2 The problem is<br />

where f(t) = 1 √<br />

t<br />

. S<strong>in</strong>ce f is convex on R + <strong>and</strong> x + y + z = 1, we apply (the weighted) Jensen’s <strong>in</strong>equality<br />

to obta<strong>in</strong><br />

xf(x 2 + 8yz) + yf(y 2 + 8zx) + zf(z 2 + 8xy) ≥ f(x(x 2 + 8yz) + y(y 2 + 8zx) + z(z 2 + 8xy)).<br />

Note that f(1) = 1. S<strong>in</strong>ce the function f is strictly decreas<strong>in</strong>g, it suffices to show that<br />

1 ≥ x(x 2 + 8yz) + y(y 2 + 8zx) + z(z 2 + 8xy).<br />

Us<strong>in</strong>g x + y + z = 1, we homogenize it as (x + y + z) 3 ≥ x(x 2 + 8yz) + y(y 2 + 8zx) + z(z 2 + 8xy). However,<br />

this is easily seen from<br />

(x + y + z) 3 − x(x 2 + 8yz) − y(y 2 + 8zx) − z(z 2 + 8xy) = 3[x(y − z) 2 + y(z − x) 2 + z(x − y) 2 ] ≥ 0.<br />

In the above solution, we normalized to x + y + z = 1. We now prove it by normaliz<strong>in</strong>g to xyz = 1.<br />

Fourth Solution. We make the substitution x = bc<br />

a<br />

, y = ca<br />

2 b<br />

, z = ab<br />

2 c<br />

. Then, we get xyz = 1 <strong>and</strong> the <strong>in</strong>equality<br />

2<br />

becomes<br />

1 1 1<br />

√ + √ + √ ≥ 1<br />

1 + 8x 1 + 8y 1 + 8z<br />

which is equivalent to<br />

∑<br />

√<br />

(1 + 8x)(1 + 8y) ≥<br />

√<br />

(1 + 8x)(1 + 8y)(1 + 8z).<br />

cyclic<br />

After squar<strong>in</strong>g both sides, it’s equivalent to<br />

8(x + y + z) + 2 √ (1 + 8x)(1 + 8y)(1 + 8z) ∑ √<br />

1 + 8x ≥ 510.<br />

Recall that xyz = 1. The AM-GM <strong>in</strong>equality gives us x + y + z ≥ 3,<br />

(1 + 8x)(1 + 8y)(1 + 8z) ≥ 9x 8 9 · 9y<br />

8<br />

9 · 9z<br />

8<br />

9 = 729 <strong>and</strong><br />

∑<br />

Us<strong>in</strong>g these three <strong>in</strong>equalities, we get the result.<br />

cyclic<br />

cyclic<br />

√<br />

1 + 8x ≥<br />

∑<br />

cyclic<br />

(IMO 1983/6) Let a, b, c be the lengths <strong>of</strong> the sides <strong>of</strong> a triangle. Prove that<br />

a 2 b(a − b) + b 2 c(b − c) + c 2 a(c − a) ≥ 0.<br />

2 Divid<strong>in</strong>g by a + b + c gives the equivalent <strong>in</strong>equalityPcyclic<br />

a<br />

r<br />

a+b+c<br />

a 2<br />

(a+b+c) 2 + 8bc<br />

(a+b+c) 2 ≥ 1.<br />

√<br />

9x 8 9 ≥ 9(xyz) 4<br />

27 = 9.<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!