18.07.2014 Views

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pro<strong>of</strong>. Case 1. b 1 ≥ a 2 : It follows from a 1 ≥ a 1 +a 2 −b 1 <strong>and</strong> from a 1 ≥ b 1 that a 1 ≥ max(a 1 +a 2 −b 1 , b 1 ) so<br />

that max(a 1 , a 2 ) = a 1 ≥ max(a 1 +a 2 −b 1 , b 1 ). From a 1 +a 2 −b 1 ≥ b 1 +a 3 −b 1 = a 3 <strong>and</strong> a 1 +a 2 −b 1 ≥ b 2 ≥ b 3 ,<br />

we have max(a 1 + a 2 − b 1 , a 3 ) ≥ max(b 2 , b 3 ). Apply the theorem 8 twice to obta<strong>in</strong><br />

∑<br />

x a 1<br />

y a 2<br />

z a 3<br />

= ∑<br />

z a 3<br />

(x a 1<br />

y a 2<br />

+ x a 2<br />

y a 1<br />

)<br />

sym<br />

≥<br />

cyclic<br />

∑<br />

z a3 (x a1+a2−b1 y b1 + x b1 y a1+a2−b1 )<br />

cyclic<br />

= ∑<br />

x b 1<br />

(y a 1+a 2 −b 1<br />

z a 3<br />

+ y a 3<br />

z a 1+a 2 −b 1<br />

)<br />

≥<br />

cyclic<br />

∑<br />

x b 1<br />

(y b 2<br />

z b 3<br />

+ y b 3<br />

z b 2<br />

)<br />

cyclic<br />

= ∑ sym<br />

x b1 y b2 z b3 .<br />

Case 2. b 1 ≤ a 2 : It follows from 3b 1 ≥ b 1 + b 2 + b 3 = a 1 + a 2 + a 3 ≥ b 1 + a 2 + a 3 that b 1 ≥ a 2 + a 3 − b 1<br />

<strong>and</strong> that a 1 ≥ a 2 ≥ b 1 ≥ a 2 + a 3 − b 1 . Therefore, we have max(a 2 , a 3 ) ≥ max(b 1 , a 2 + a 3 − b 1 ) <strong>and</strong><br />

max(a 1 , a 2 + a 3 − b 1 ) ≥ max(b 2 , b 3 ). Apply the theorem 8 twice to obta<strong>in</strong><br />

∑<br />

x a 1<br />

y a 2<br />

z a 3<br />

= ∑<br />

x a 1<br />

(y a 2<br />

z a 3<br />

+ y a 3<br />

z a 2<br />

)<br />

sym<br />

≥<br />

cyclic<br />

∑<br />

x a1 (y b1 z a2+a3−b1 + y a2+a3−b1 z b1 )<br />

cyclic<br />

= ∑<br />

y b1 (x a1 z a2+a3−b1 + x a2+a3−b1 z a1 )<br />

≥<br />

cyclic<br />

∑<br />

y b 1<br />

(x b 2<br />

z b 3<br />

+ x b 3<br />

z b 2<br />

)<br />

cyclic<br />

= ∑ sym<br />

x b1 y b2 z b3 .<br />

Remark 3.2.2. The equality holds if <strong>and</strong> only if x = y = z. However, if we allow x = 0 or y = 0 or z = 0,<br />

then one may easily check that the equality holds when a 1 , a 2 , a 3 > 0 <strong>and</strong> b 1 , b 2 , b 3 > 0 if <strong>and</strong> only if<br />

x = y = z or x = y, z = 0 or y = z, x = 0 or z = x, y = 0.<br />

We can use Muirhead’s theorem to prove Nesbitt’s <strong>in</strong>equality.<br />

(Nesbitt) For all positive real numbers a, b, c, we have<br />

a<br />

b + c +<br />

b<br />

c + a +<br />

c<br />

a + b ≥ 3 2 .<br />

Pro<strong>of</strong> 6. Clear<strong>in</strong>g the denom<strong>in</strong>ators <strong>of</strong> the <strong>in</strong>equality, it becomes<br />

2 ∑<br />

cyclic<br />

a(a + b)(a + c) ≥ 3(a + b)(b + c)(c + a) or ∑ sym<br />

a 3 ≥ ∑ sym<br />

(IMO 1995) Let a, b, c be positive numbers such that abc = 1. Prove that<br />

1<br />

a 3 (b + c) + 1<br />

b 3 (c + a) + 1<br />

c 3 (a + b) ≥ 3 2 .<br />

a 2 b.<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!