18.07.2014 Views

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.4 Establish<strong>in</strong>g New Bounds<br />

We first give two alternative ways to prove Nesbitt’s <strong>in</strong>equality.<br />

(Nesbitt) For all positive real numbers a, b, c, we have<br />

a<br />

b + c +<br />

(<br />

2<br />

a<br />

Pro<strong>of</strong> 4. From<br />

b+c 2) − 1 ≥ 0, we deduce that<br />

It follows that<br />

Pro<strong>of</strong> 5. We claim that<br />

a<br />

b + c ≥ 1 4 ·<br />

∑<br />

cyclic<br />

b<br />

c + a +<br />

8a<br />

b+c − 1<br />

a<br />

b+c + 1 =<br />

a<br />

b + c ≥ ∑<br />

cyclic<br />

c<br />

a + b ≥ 3 2 .<br />

8a − b − c<br />

4(a + b + c) .<br />

8a − b − c<br />

4(a + b + c) = 3 2 .<br />

a<br />

b + c ≥ 3a 3 (<br />

)<br />

2<br />

(<br />

) or 2 a 3 3 3<br />

2 + b 2 + c 2 ≥ 3a 1 2 (b + c).<br />

2 a 3 2 + b 3 2 + c 3 2<br />

The AM-GM <strong>in</strong>equality gives a 3 2 +b 3 2 +b 3 2 ≥ 3a 1 2 b <strong>and</strong> a 3 2 +c 3 2 +c 3 2 ≥ 3a 1 2<br />

(<br />

)<br />

c . Add<strong>in</strong>g these two <strong>in</strong>equalities<br />

yields 2 a 3 2 + b 3 2 + c 3 2 ≥ 3a 1 2 (b + c), as desired. Therefore, we have<br />

∑<br />

cyclic<br />

a<br />

b + c ≥ 3 2<br />

∑<br />

cyclic<br />

a 3 2<br />

a 3 2 + b 3 2 + c 3 2<br />

= 3 2 .<br />

Some cyclic <strong>in</strong>equalities can be proved by f<strong>in</strong>d<strong>in</strong>g new bounds. Suppose that we want to establish that<br />

∑<br />

F (x, y, z) ≥ C.<br />

If a function G satisfies<br />

cyclic<br />

(1) F (x, y, z) ≥ G(x, y, z) for all x, y, z > 0, <strong>and</strong><br />

(2) ∑ cyclic<br />

G(x, y, z) = C for all x, y, z > 0,<br />

then, we deduce that<br />

∑<br />

F (x, y, z) ≥ ∑<br />

G(x, y, z) = C.<br />

cyclic<br />

For example, if a function F satisfies<br />

F (x, y, z) ≥<br />

cyclic<br />

x<br />

x + y + z<br />

for all x, y, z > 0, then, tak<strong>in</strong>g the cyclic sum yields<br />

∑<br />

F (x, y, z) ≥ 1.<br />

cyclic<br />

As we saw <strong>in</strong> the above two pro<strong>of</strong>s <strong>of</strong> Nesbitt’s <strong>in</strong>equality, there are various lower bounds.<br />

Problem 19. Let a, b, c be the lengths <strong>of</strong> a triangle. Show that<br />

a<br />

b + c +<br />

b<br />

c + a +<br />

c<br />

a + b < 2.<br />

22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!