18.07.2014 Views

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

Topics in Inequalities - Theorems and Techniques Hojoo ... - Index of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Here is an <strong>in</strong>genious solution <strong>of</strong><br />

(KMO W<strong>in</strong>ter Program Test 2001) Prove that, for all a, b, c > 0,<br />

√<br />

(a2 b + b 2 c + c 2 a) (ab 2 + bc 2 + ca 2 ) ≥ abc + 3√ (a 3 + abc) (b 3 + abc) (c 3 + abc)<br />

Second Solution. (based on work by an w<strong>in</strong>ter program participant) We obta<strong>in</strong><br />

√<br />

(a2 b + b 2 c + c 2 a) (ab 2 + bc 2 + ca 2 )<br />

=<br />

2√ 1 [b(a2 + bc) + c(b 2 + ca) + a(c 2 + ab)] [c(a 2 + bc) + a(b 2 + ca) + b(c 2 + ab)]<br />

≥ 1 (√<br />

bc(a 2 + bc) + √ ca(b 2 + ca) + √ )<br />

ab(c 2 + ab)<br />

(Cauchy − Schwarz)<br />

2<br />

≥ 3 2<br />

√<br />

3 √bc(a2<br />

+ bc) · √ca(b 2 + ca) · √ab(c 2 + ab)<br />

(AM − GM)<br />

= 1 √<br />

3<br />

(a3 + abc) (b<br />

2<br />

3 + abc) (c 3 + abc) + 3√ (a 3 + abc) (b 3 + abc) (c 3 + abc)<br />

≥ 1 √<br />

3<br />

2 √ a<br />

2<br />

3 · abc · 2 √ b 3 · abc · 2 √ c 3 · abc + 3√ (a 3 + abc) (b 3 + abc) (c 3 + abc) (AM − GM)<br />

= abc + 3√ (a 3 + abc) (b 3 + abc) (c 3 + abc).<br />

We now illustrate normalization techniques to establish classical theorems. Us<strong>in</strong>g the same idea <strong>in</strong> the<br />

pro<strong>of</strong> <strong>of</strong> the Cauchy-Schwarz <strong>in</strong>equality, we f<strong>in</strong>d a natural generalization :<br />

Theorem 3.4.2. Let a ij (i, j = 1, · · · , n) be positive real numbers. Then, we have<br />

(a 11 n + · · · + a 1n n ) · · · (a n1 n + · · · + a nn n ) ≥ (a 11 a 21 · · · a n1 + · · · + a 1n a 2n · · · a nn ) n .<br />

Pro<strong>of</strong>. S<strong>in</strong>ce the <strong>in</strong>equality is homogeneous, as <strong>in</strong> the pro<strong>of</strong> <strong>of</strong> the theorem 11, we can normalize to<br />

(a i1 n + · · · + a <strong>in</strong> n ) 1 n<br />

= 1 or a i1 n + · · · + a <strong>in</strong> n = 1 (i = 1, · · · , n).<br />

Then, the <strong>in</strong>equality takes the form a 11 a 21 · · · a n1 + · · · + a 1n a 2n · · · a nn ≤ 1 or ∑ n<br />

i=1 a i1 · · · a <strong>in</strong> ≤ 1. Hence,<br />

it suffices to show that, for all i = 1, · · · , n,<br />

a i1 · · · a <strong>in</strong> ≤ 1 n , where a i1 n + · · · + a <strong>in</strong> n = 1.<br />

To f<strong>in</strong>ish the pro<strong>of</strong>, it rema<strong>in</strong>s to show the follow<strong>in</strong>g homogeneous <strong>in</strong>equality :<br />

Theorem 3.4.3. (AM-GM <strong>in</strong>equality) Let a 1 , · · · , a n be positive real numbers. Then, we have<br />

a 1 + · · · + a n<br />

n<br />

≥ n√ a 1 · · · a n .<br />

Pro<strong>of</strong>. S<strong>in</strong>ce it’s homogeneous, we may rescale a 1 , · · · , a n<br />

so that a 1 · · · a n = 1. 4 We want to show that<br />

a 1 · · · a n = 1 =⇒ a 1 + · · · + a n ≥ n.<br />

The pro<strong>of</strong> is by <strong>in</strong>duction on n. If n = 1, it’s trivial. If n = 2, then we get a 1 + a 2 − 2 = a 1 + a 2 − 2 √ a 1 a 2 =<br />

( √ a 1 − √ a 2 ) 2 ≥ 0. Now, we assume that it holds for some positive <strong>in</strong>teger n ≥ 2. And let a 1 , · · · , a n+1<br />

be positive numbers such that a 1 · · · a n a n+1 =1. We may assume that a 1 ≥ 1 ≥ a 2 . (Why?) It follows that<br />

a 1 a 2 + 1 − a 1 − a 2 = (a 1 − 1)(a 2 − 1) ≤ 0 so that a 1 a 2 + 1 ≤ a 1 + a 2 . S<strong>in</strong>ce (a 1 a 2 )a 3 · · · a n = 1, by the<br />

<strong>in</strong>duction hypothesis, we have a 1 a 2 + a 3 + · · · + a n+1 ≥ n. Hence, a 1 + a 2 − 1 + a 3 + · · · + a n+1 ≥ n.<br />

The follow<strong>in</strong>g simple observation is not tricky :<br />

a i<br />

4 Set x i =<br />

(a 1···a n ) n<br />

1<br />

(i = 1, · · · , n). Then, we get x 1 · · · x n = 1 <strong>and</strong> it becomes x 1 + · · · + x n ≥ n.<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!