27.06.2012 Views

No Slide Title - Umicore

No Slide Title - Umicore

No Slide Title - Umicore

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

“Technology”<br />

metals scarcity<br />

& <strong>Umicore</strong>’s offering Q2 2011


Overview<br />

•<br />

•<br />

•<br />

Increasing need for metals<br />

Metal scarcity issues<br />

Urban mining potential<br />

• <strong>Umicore</strong>’s involvement


View of Guaralhos, Brazil<br />

Increasing need for metals


Increasing need for metals<br />

especially with emerging markets growing<br />

4<br />

Source: BHP Billiton, 2011<br />

Increasing metals need<br />

•<br />

•<br />

•<br />

With growth of<br />

population<br />

With increasing GDP<br />

per capita<br />

Consumption per<br />

capita tapers off in<br />

Western countries


Increasing need for “technology”<br />

metals metals<br />

Driven by technological evolution and environmental issues<br />

5<br />

H<br />

hydrogen<br />

Li<br />

lithium<br />

Na<br />

sodium<br />

K<br />

potassium<br />

Be<br />

beryllium<br />

Mg<br />

magnesium<br />

Ca<br />

calcium<br />

Sc<br />

scandium<br />

Ti<br />

titanium<br />

B C N O F Ne<br />

Al Si P S Cl Ar<br />

V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr<br />

vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton<br />

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe<br />

Cs Ba La-Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn<br />

Fr Ra Ac-Lr Rf Db Sg Bh Hs Mt Uun Uuu Uub Uuq<br />

He<br />

helium<br />

boron carbon nitrogen oxygen fluorine neon<br />

aluminium silicon phosphorus sulphur chlorine argon<br />

rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon<br />

caesium barium lanthanides hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon<br />

francium radium actinides rutherfordium dubnium seaborgium bohrium hassium meitnerium ununnilum unununium ununbium<br />

ununquadium<br />

Technology metals


Increasing need for “technology” metals<br />

Reflected in recent mine production<br />

6<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Mine production since 1900<br />

%<br />

mined<br />

mined<br />

in<br />

in<br />

1980-2010<br />

1980-2010<br />

% mined in 1900-1980<br />

% mined in 1900-1980<br />

Re Ga In Ru Pd Rh Ir REE Si Pt Ta Li Se Ni Co Ge Cu Bi Ag Au<br />

REE = Rare Earth Elements


Russia planting flag on <strong>No</strong>rth pole in August 2007<br />

“claiming”<br />

land for its resources<br />

Metal scarcity<br />

issues


Metal scarcity issues<br />

Absolute metal scarcity<br />

Earth crust is limited<br />

Gradual depletion of<br />

“economically” mineable<br />

resources<br />

Limited number of highly<br />

concentrated sources<br />

Some misconceptions on<br />

absolute scarcity of certain<br />

metals, e.g.:<br />

8<br />

•<br />

•<br />

•<br />

Lithium<br />

Rare earths<br />

Precious Metals<br />

Source: US Geological Survey, 2002


Metal scarcity issues<br />

Limited substitution possibilities<br />

Challenge to maintain performance which<br />

is often based on specific criticalchemical<br />

substance properties<br />

Potential substitute often comes from<br />

same metal family:<br />

9<br />

Can you substitute scarce indium<br />

by scarce Gallium?<br />

Consider side effect of substitution<br />

•<br />

•<br />

•<br />

Toxicity<br />

Recyclability<br />

Price effects<br />

Example: Opto-electric applications


Metal scarcity issues<br />

Temporary metal scarcity<br />

Temporary supply-demand imbalances<br />

10<br />

•<br />

•<br />

•<br />

Investments in mining capacity requires cash<br />

and time<br />

Creates spikes and collapses in metal prices<br />

Speculation on the commodities markets<br />

enhances the effects<br />

Geo-political issues, based on concentrated<br />

sources, similar to oil, e.g.:<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Rare Earth Elements (REE) in China<br />

Platinum in Southern Africa<br />

Palladium in Russia<br />

Lithium in the Andes<br />

Cobalt in DRC (Congo)<br />

1,250<br />

1,000<br />

750<br />

500<br />

250<br />

0<br />

1,250<br />

1,000<br />

750<br />

500<br />

250<br />

0<br />

1988<br />

1988<br />

1990<br />

1990<br />

1992<br />

1992<br />

1994<br />

1994<br />

Ru price<br />

1996<br />

$ / tr. oz.<br />

New application in<br />

hard disc drives<br />

Hoarding<br />

in Russia<br />

1998<br />

2001<br />

2003<br />

Pd price<br />

1996<br />

$ / tr.oz<br />

1998<br />

2001<br />

2003<br />

2005<br />

2005<br />

2007<br />

2007<br />

2009<br />

2009


Metal scarcity issues<br />

Structural scarcity for “technology”<br />

Many “technology” metals come as<br />

a by-product from primary mining<br />

for “base” metals<br />

Supply of many “technology metals”<br />

is price-inelastic<br />

11<br />

•<br />

•<br />

Increased demand can only be met<br />

by primary production if demand for<br />

major metal rises accordingly<br />

Short term demand surges lead to<br />

price peaks<br />

metals<br />

Source: C. Hagelüken, C.E.M. Meskers: Complex lifecycles of precious and<br />

special metals in Linkages of Sustainability. Strüngmann Forum<br />

Report vol. 4. T. Graedel, E. van der Voet (eds.) Cambridge, MA,<br />

MIT Press 2009.


Urban mining potential


Urban mining potential<br />

“Deposits” can be much richer than primary mining ores<br />

Primary mining<br />

13<br />

•<br />

•<br />

~5 g/t Au in ore<br />

Similar for PGMs<br />

Urban mining<br />

•<br />

•<br />

•<br />

200-250 g/t Au in PC circuit boards<br />

300-350 g/t Au in cell phones<br />

2000 g/t PGM in automotive<br />

catalysts


Urban mining potential<br />

Low loadings/unit but volume counts, e.g. in electronics<br />

14<br />

X250<br />

a) Mobile phones<br />

1300 M units/ year<br />

mg<br />

Ag<br />

≈<br />

X 24 mg Au ≈<br />

X 9 mg Pd ≈<br />

X 9 g Cu ≈<br />

325 t<br />

31 t<br />

12 t<br />

12,000 t<br />

Ag<br />

Au<br />

Pd<br />

Cu<br />

1300 M Li-Ion batteries<br />

X 3.8<br />

g<br />

Co<br />

≈<br />

4900 t<br />

Co<br />

Global sales, 2009<br />

X1000mg<br />

b) PCs & laptops<br />

300 M units/year<br />

Ag<br />

≈<br />

X 220 mg Au ≈<br />

X 80 mg Pd ≈<br />

X~500<br />

g<br />

Cu<br />

300 t<br />

66 t<br />

24 t<br />

Ag<br />

Au<br />

Pd<br />

≈150,000 t Cu<br />

~140 M Li-ion batteries<br />

X 65 g Co ≈<br />

9100 t<br />

a+b) Urban mine<br />

Versus primary production<br />

= 625 t Ag ≈<br />

= 97 t Au ≈<br />

= 36 t Pd ≈<br />

= 162,000 t Cu ≈<br />

= 14,000 t Co ≈<br />

Tiny metal content per piece → Significant total demand<br />

Other electronic devices add even more to these figures<br />

Co<br />

3%<br />

4%<br />

16%<br />

1%<br />

19%


Urban mining<br />

Low loadings/unit but volume counts, e.g. in cars<br />

Large total volumes<br />

15<br />

•<br />

•<br />

Global sales in 2010 of ~70 million cars<br />

Current car fleet of some1.3 billion<br />

Demand for “technology metals” rises in<br />

modern vehicles<br />

•<br />

•<br />

•<br />

Car electronics<br />

EV/HEV<br />

etc.<br />

Metal demand in automotive<br />

in 1000<br />

t/a<br />

Share* of<br />

primary<br />

production<br />

steel 100,000 10 %<br />

Al 7 300 30 %<br />

Pb** 7 000 170 %<br />

Cu 1 900 12 %<br />

Ni 140 10 %<br />

…<br />

Pt*** 0.12 65 %<br />

Pd*** 0.14 > 60 %<br />

Rh*** 0.03 110 %<br />

2008 data (rounded)<br />

* >100% → additional supply from recycling<br />

** Pb use in batteries (mainly automotive)<br />

*** Pt, Pd, Rh mainly in autocatalysts


Urban mining potential<br />

Offers significant environmental and ethical advantages<br />

Urban mining prevents impact from non-recycling,<br />

such as hazardous emissions and use on land<br />

Recycling mitigates environmental impacts of<br />

mining<br />

16<br />

•<br />

•<br />

Less land & water use, less pressure on ecosystem<br />

Lower energy consumption and lower CO2 footprint<br />

for majority of metals<br />

<strong>Umicore</strong> Hoboken produces 70,000 t metals/year<br />

emitting theoretically ~1M t CO 2 less than primary<br />

metal production<br />

Recycling also offers ethical sourcing possibilities<br />

•<br />

Supply chain transparency can be increased<br />

tonne CO 2 /<br />

tonne primary<br />

metal<br />

10,000<br />

200<br />

10<br />

0<br />

≈<br />

≈<br />

Pt<br />

In<br />

Cu<br />

Au<br />

Pd<br />

Sn<br />

Ru<br />

Ag<br />

Co<br />

Source:Ecoinvent 2.0, EMPA/ETH-<br />

Zürich, 2007


<strong>Umicore</strong> flagship recycling plant<br />

in Hoboken, Belgium<br />

<strong>Umicore</strong>’s involvement


<strong>Umicore</strong>’s involvement<br />

Key growth axes aligned with global megatrends<br />

Resource scarcity<br />

Market position<br />

<strong>Umicore</strong> is the largest recycler of precious<br />

metals, able to recycle up to 20 different<br />

metals<br />

Growth opportunity<br />

Expand recycling through UHT technology<br />

Market position<br />

<strong>Umicore</strong> supplies key innovative materials for<br />

high-efficiency solar cells and other<br />

photovoltaic applications<br />

Growth opportunity<br />

Develop <strong>Umicore</strong>’s presence in PV materials<br />

18<br />

More stringent emission control<br />

Market position<br />

<strong>Umicore</strong> provides catalysts for 1 out of 3 cars<br />

in the world, with smaller position for trucks &<br />

non-road vehicles<br />

Growth opportunity<br />

Expand autocat activity into new segments<br />

Renewable energy Electrification of the automobile<br />

Market position<br />

<strong>Umicore</strong> is a leading producer of key<br />

materials for rechargeable batteries for<br />

portable electronics<br />

Growth opportunity<br />

Expand battery materials activity into (H)EVs


<strong>Umicore</strong>’s involvement<br />

Exposed to global markets<br />

64 production sites<br />

+ 34 other sites/offices<br />

14,386 employees worldwide,<br />

of which 4,828 in associated companies<br />

19<br />

South<br />

America<br />

7%<br />

Turnover by destination<br />

Asia<br />

Pacific<br />

17%<br />

<strong>No</strong>rth<br />

America<br />

8%<br />

Africa<br />

5%<br />

Europe<br />

63%<br />

Direct customer exposure mostly to<br />

Europe<br />

End-user market exposure worldwide


<strong>Umicore</strong>’s involvement<br />

Business model based on efficient use of resources<br />

(Precious) metals price passed through to customer<br />

Reducing metal content, while improving product performance, creates win-win<br />

Recycling (own) production scrap and end-of-life materials allows to close the loop,<br />

thereby aiming to minimize environmental impact<br />

20<br />

Total value<br />

recovered<br />

Recycling cost<br />

Focus<br />

on<br />

Metals<br />

Application<br />

know-how<br />

Chemistry<br />

material<br />

Material science<br />

solutions<br />

Metallurgy<br />

Recycling<br />

Material<br />

solutions<br />

Focus<br />

on<br />

End product<br />

performance<br />

Material cost


<strong>Umicore</strong>’s involvement<br />

Recovery of “critical” “technology”<br />

21<br />

H<br />

hydrogen<br />

Li<br />

Li<br />

lithium<br />

Na<br />

sodium<br />

K<br />

potassium<br />

Be<br />

beryllium<br />

beryllium<br />

Mg<br />

magnesium<br />

Ca<br />

calcium<br />

Sc<br />

scandium<br />

Ti<br />

titanium<br />

metals<br />

B C N O F Ne<br />

Al Si P S Cl Ar<br />

V Cr Mn<br />

Mn Fe Co Co Ni Ni Cu<br />

Cu Zn Zn Ga Ge As As Se Br Kr<br />

vanadium chromium manganese<br />

iron cobalt nickel copper<br />

zinc gallium germanium arsenic selenium bromine<br />

krypton<br />

Rb Sr Y Zr Nb Mo Tc Ru Ru Rh Rh Pd Pd Ag<br />

Ag Cd In In Sn Sn Sb Sb Te I Xe<br />

Cs Ba La-Lu Hf Ta W Re Os Ir Ir Pt Pt Au<br />

Au Hg Tl Pb Pb Bi Bi Po At Rn<br />

Fr Ra Ac-Lr Rf Db Sg Bh Hs Mt Uun Uuu Uub Uuq<br />

He<br />

helium<br />

boron carbon nitrogen oxygen fluorine<br />

neon<br />

aluminium silicon phosphorus sulphur chlorine<br />

argon<br />

rubidium strontium yttrium<br />

zirconium niobium molybdenum technetium<br />

ruthenium rhodium palladium silver<br />

cadmium indium tin antimony tellurium iodine<br />

xenon<br />

caesium barium lanthanides<br />

hafnium tantalum tungsten rhenium<br />

osmium iridium platinum gold<br />

mercury thallium lead bismuth polonium astatine<br />

radon<br />

francium radium actinides<br />

rutherfordium dubnium seaborgium bohrium<br />

hassium meitnerium ununnilum unununium<br />

ununbium<br />

ununquadium<br />

Technology metals<br />

Zn<br />

refiners<br />

Industrial residues<br />

Electronic scrap,<br />

rechargeable batteries<br />

& other Automotive &<br />

process catalysts<br />

EU critical metals<br />

(Raw Materials Initiative)<br />

<strong>Umicore</strong>’s recycled metals<br />

(partially recycled)


<strong>Umicore</strong>’s involvement<br />

Capacity to grow<br />

Materials technology company<br />

focused on Cleantech applications<br />

Growth takes environmental, social and<br />

stakeholder aspects into account<br />

Key figures<br />

(in million €) 2008 2009 2010<br />

Turnover 9,124.0 6,937.4 9,691.1<br />

Revenues 2,100.3 1,723.2 1,999.7<br />

REBIT 354.6 146.4 342.5<br />

R&D 165.0 135.7 135.0<br />

Capex 216.0 190.5 172.0<br />

ROCE 17.8% 8.1% 17.5%<br />

22<br />

Growth based on Cleantech<br />

•<br />

•<br />

60% of revenues already in Cleantech<br />

85% of R&D focused on Cleantech<br />

Targets set for period 2015-2020<br />

•<br />

•<br />

Organic revenue growth potential of<br />

10%+ on average<br />

Goal to generate average ROCE of<br />

15%+<br />

Means to finance growth available<br />

•<br />

•<br />

Gearing ratio (ND/ND+E)


Conclusions<br />

•<br />

•<br />

•<br />

•<br />

Increasing need for metals, especially “technology”<br />

Metal scarcity issues, especially for “technology”<br />

Urban mining offers a solution and has potential<br />

metals<br />

metals<br />

<strong>Umicore</strong>’s product/service exposure and its business model<br />

well aligned with these issues


Forward-looking statements<br />

This presentation contains forward-looking information that involves risks and<br />

uncertainties, including statements about <strong>Umicore</strong>’s plans, objectives, expectations and<br />

intentions.<br />

Readers are cautioned that forward-looking statements include known and unknown<br />

risks and are subject to significant business, economic and competitive uncertainties<br />

and contingencies, many of which are beyond the control of <strong>Umicore</strong>.<br />

Should one or more of these risks, uncertainties or contingencies materialize, or should<br />

any underlying assumptions prove incorrect, actual results could vary materially from<br />

those anticipated, expected, estimated or projected.<br />

As a result, neither <strong>Umicore</strong> nor any other person assumes any responsibility for the<br />

accuracy of these forward-looking statements.<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!