28.07.2014 Views

Quantile/expectile regression, and extreme data analysis

Quantile/expectile regression, and extreme data analysis

Quantile/expectile regression, and extreme data analysis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong><br />

<strong>analysis</strong><br />

© T. W. Yee<br />

University of Auckl<strong>and</strong><br />

18 July 2012 @ Cagliari<br />

t.yee@auckl<strong>and</strong>.ac.nz<br />

http://www.stat.auckl<strong>and</strong>.ac.nz/~yee<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 1/101 1 / 101


Outline of this document<br />

Outline of this document<br />

1 LMS quantile <strong>regression</strong><br />

2 Expectile <strong>regression</strong><br />

3 Asymmetric MLE<br />

4 Asymmetric Laplace distribution<br />

5 Extreme value <strong>data</strong> <strong>analysis</strong><br />

6 Concluding remarks<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 2/101 2 / 101


LMS quantile <strong>regression</strong><br />

Introduction to quantile <strong>regression</strong> I<br />

Some motivation<br />

Q: Why quantile <strong>regression</strong>?<br />

A: Because<br />

there is no information loss: cdf F contains all the information about<br />

a r<strong>and</strong>om variable,<br />

sometimes the tails are of more interest than in the central area.<br />

Applications of quantile <strong>regression</strong> come from many fields. Here are<br />

some.<br />

Medical examples include investigating height, weight, body mass<br />

index (BMI) as a function of age of the person. Historically, the<br />

construction of ‘growth charts’ was probably the first example of<br />

age-related reference intervals. Another example is Campbell <strong>and</strong><br />

Newman (1971)—the ultrasonographic assessment of fetal growth has<br />

become clinically routine.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 3/101 3 / 101


LMS quantile <strong>regression</strong><br />

Introduction to quantile <strong>regression</strong> II<br />

Some motivation<br />

Economics, e.g., it has been used to study determinants of wages,<br />

discrimination effects, <strong>and</strong> trends in income inequality. See<br />

Koenker (2005) for more references.<br />

Education, e.g., the performance of students in public schools on<br />

st<strong>and</strong>ardized exams as a function of socio-economic variables such as<br />

parents’ income <strong>and</strong> educational attainment.<br />

Climate <strong>data</strong>, e.g., the Melbourne temperature <strong>data</strong> exhibits bimodal<br />

behaviour.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 4/101 4 / 101


LMS quantile <strong>regression</strong><br />

Introduction to quantile <strong>regression</strong> III<br />

Some motivation<br />

40<br />

Today's Max Temperature<br />

30<br />

20<br />

10<br />

10 20 30 40<br />

Yesterday's Max Temperature<br />

Figure: Melbourne temperature <strong>data</strong> ( ◦ C). These are daily maximum<br />

temperatures during 1981–1990, n = 3650. Y = each day’s maximum<br />

temperature, X = the previous day’s maximum temperature.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 5/101 5 / 101


LMS quantile <strong>regression</strong><br />

Introduction to quantile <strong>regression</strong> IV<br />

Some motivation<br />

Figure: Map of Australia.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 6/101 6 / 101


LMS quantile <strong>regression</strong><br />

Growth chart example<br />

Boys’ height.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 7/101 7 / 101


LMS quantile <strong>regression</strong><br />

Growth chart example<br />

Girls’ height <strong>and</strong> weight.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 8/101 8 / 101


LMS quantile <strong>regression</strong><br />

Three subclasses I<br />

The R package VGAM implements 3 subclasses of models for<br />

quantile/<strong>expectile</strong> <strong>regression</strong>.<br />

1 LMS-type methods. These transform the response to some<br />

parametric distribution (e.g., Box-Cox to N(0, 1)). Estimated<br />

quantiles on the transformed scale are back-transformed on to the<br />

original scale Cole <strong>and</strong> Green (1992).<br />

2 Expectile <strong>regression</strong> methods. If quantiles can be described as being<br />

based on first-order moments then <strong>expectile</strong>s are second-order<br />

moments.<br />

3 Asymmetric Laplace distribution (ALD) models. These exploit the<br />

property that the MLE of the location parameter of an ALD<br />

corresponds to the classical quantile <strong>regression</strong> estimator Koenker <strong>and</strong><br />

Bassett (1978).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 9/101 9 / 101


LMS quantile <strong>regression</strong><br />

LMS quantile <strong>regression</strong> I<br />

First method: the Cole-Green method<br />

Will use an approximate r<strong>and</strong>om sample of 700 adults. 18 ≤ age ≤ 85.<br />

Y = Body Mass Index (BMI; weight ÷ height 2 , kg m −2 ), a measure of<br />

obesity.<br />

60<br />

●<br />

●<br />

50<br />

●<br />

●<br />

BMI<br />

40<br />

30<br />

20<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

● ● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ● ●<br />

● ●<br />

● ●<br />

● ●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

● ● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ● ●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●● ● ● ●<br />

● ●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

20 30 40 50 60 70 80<br />

age<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 10/101/ 101


LMS quantile <strong>regression</strong><br />

LMS quantile <strong>regression</strong> II<br />

First method: the Cole-Green method<br />

For scatterplot <strong>data</strong> (x i , y i ), the LMS method assumes a Box-Cox power<br />

transformation of the y i , given x i , is st<strong>and</strong>ard normal. That is,<br />

⎧<br />

( Y<br />

Z =<br />

⎪⎨<br />

⎪⎩<br />

) λ(x)<br />

− 1<br />

µ(x)<br />

σ(x) λ(x)<br />

( )<br />

1 Y<br />

σ(x) log µ(x)<br />

, λ(x) ≠ 0;<br />

, λ(x) = 0,<br />

(1)<br />

is N(0, 1). “LMS” ≡ λ, µ, σ. Because σ > 0, default is<br />

η(x) = (λ(x), µ(x), log(σ(x))) T .<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 11/101/ 101


LMS quantile <strong>regression</strong><br />

LMS quantile <strong>regression</strong> III<br />

First method: the Cole-Green method<br />

Given ̂η, the 100α% quantile (e.g., α = 50 for median) is<br />

[<br />

̂µ(x) 1 + ̂λ(x)<br />

1/ λ(x)<br />

̂σ(x) Φ (α/100)] −1 b<br />

. (2)<br />

i.e., apply the inverse Box-Cox transformation to N(0, 1) quantiles. Easy!<br />

A problem with the LMS method is to find justification for the underlying<br />

method.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 12/101/ 101


LMS quantile <strong>regression</strong><br />

Using the gamma model avoids a range of problems:<br />

It has finite expectations of the required derivatives of the likelihood<br />

function (not so for the normal version, particularly when σ is small.)<br />

The off-diagonal elements of the W i are 0 (or ≈ 0) (relative to the<br />

diagonal elts).<br />

Unlike the normal case, the range of transformation does not depend<br />

on λ. Thus, in the gamma model Y ranges over (0, ∞) for all λ, µ<br />

<strong>and</strong> σ.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 13/101/ 101<br />

Second Method: The LMS Gamma Method†<br />

Lopatatzidis <strong>and</strong> Green (1998) proposed transforming Y to a gamma<br />

distribution—it has some theoretical <strong>and</strong> practical advantages. Then<br />

W<br />

= (Y /µ) λ<br />

is assumed gamma with unit mean <strong>and</strong> variance λ 2 σ 2 . The 100α percentile<br />

of Y at x is µ(x) Wα<br />

1/λ(x) where W α is the equivalent deviate of size α for<br />

the gamma distribution with mean 1 <strong>and</strong> variance λ(x) 2 σ(x) 2 .


LMS quantile <strong>regression</strong><br />

Third Method: The Yeo-Johnson transformation† I<br />

Yeo <strong>and</strong> Johnson (2000) introduce a new power transformation which is<br />

well defined on the whole real line, <strong>and</strong> potentially useful for improving<br />

normality:<br />

ψ(λ, y) =<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

λ = 1 = the identity transformation.<br />

(y + 1) λ − 1<br />

(y ≥ 0, λ ≠ 0),<br />

λ<br />

log(y + 1) (y ≥ 0, λ = 0),<br />

− (−y + 1)2−λ − 1<br />

(y < 0, λ ≠ 2),<br />

2 − λ<br />

− log(−y + 1) (y < 0, λ = 2).<br />

The Yeo-Johnson transformation is equivalent to the generalized Box-Cox<br />

transformation for y > −1 where the shift constant 1 is included.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 14/101/ 101


LMS quantile <strong>regression</strong><br />

Box−Cox transformation of y<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−5<br />

−3<br />

0<br />

1<br />

3<br />

5<br />

−3<br />

−3 −2 −1 0 1 2 3<br />

y<br />

Figure: The Box-Cox transformation (y λ − 1)/λ.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 15/101/ 101


LMS quantile <strong>regression</strong><br />

Yeo−Johnson transformation of y<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−5<br />

−3<br />

0<br />

1<br />

3<br />

5<br />

−3<br />

−3 −2 −1 0 1 2 3<br />

y<br />

Figure: The Yeo-Johnson transformation ψ(λ, y).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 16/101/ 101


LMS quantile <strong>regression</strong><br />

VGAM software for quantile/<strong>expectile</strong> <strong>regression</strong><br />

VGAM family functions for quantile/<strong>expectile</strong> <strong>regression</strong>.<br />

lms.bcn() Box-Cox transformation to normality<br />

lms.bcg() Box-Cox transformation to gamma distribution<br />

lms.yjn() Yeo-Johnson transformation to normality<br />

amlnormal() Asymmetric least squares<br />

amlbinomial() Asymmetric maximum likelihood—for binomial<br />

amlpoisson() Asymmetric maximum likelihood—for Poisson<br />

amlexponential() Asymmetric maximum likelihood—for exponential<br />

alaplace1() AL ∗ (ξ) with known σ, <strong>and</strong> κ (or τ)<br />

alaplace2() AL ∗ (ξ, σ) with known κ (or τ)<br />

alaplace3() AL ∗ (ξ, σ, κ)<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 17/101/ 101


LMS quantile <strong>regression</strong><br />

lms. functions I<br />

> args(lms.bcn)<br />

function (percentiles = c(25, 50, 75), zero = c(1, 3), llambda = "identity",<br />

lmu = "identity", lsigma = "loge", elambda = list(), emu = list(),<br />

esigma = list(), dfmu.init = 4, dfsigma.init = 2, ilambda = 1,<br />

isigma = NULL, <strong>expectile</strong>s = FALSE)<br />

NULL<br />

> args(lms.bcg)<br />

function (percentiles = c(25, 50, 75), zero = c(1, 3), llambda = "identity",<br />

lmu = "identity", lsigma = "loge", elambda = list(), emu = list(),<br />

esigma = list(), dfmu.init = 4, dfsigma.init = 2, ilambda = 1,<br />

isigma = NULL)<br />

NULL<br />

> args(lms.yjn)<br />

function (percentiles = c(25, 50, 75), zero = c(1, 3), llambda = "identity",<br />

lsigma = "loge", elambda = list(), esigma = list(), dfmu.init = 4,<br />

dfsigma.init = 2, ilambda = 1, isigma = NULL, rule = c(10,<br />

5), yoffset = NULL, diagW = FALSE, iters.diagW = 6)<br />

NULL<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 18/101/ 101


LMS quantile <strong>regression</strong><br />

Cole <strong>and</strong> Green (1992) advocated estimation by penalized likelihood using<br />

splines. Their penalized log-likelihood was<br />

n∑<br />

l i − 1 2 λ λ<br />

i=1<br />

which is a special case of<br />

∫ {λ ′′ (t) } ∫<br />

2 1 {µ<br />

dt −<br />

2 λ µ<br />

′′ (t) } ∫<br />

2 1 {σ<br />

dt −<br />

2 λ σ<br />

′′ (t) } 2 dt,<br />

n∑<br />

i=1<br />

l i − 1 2<br />

p∑<br />

M∑<br />

k=1 j=1<br />

λ (j)k<br />

∫ {<br />

f ′′<br />

(j)k (x k)} 2<br />

dxk . (3)<br />

This is exactly the VGAM framework!<br />

Of the three functions, it is often a good idea to allow µ(x) to be more<br />

flexible <strong>and</strong>/or set λ <strong>and</strong> σ to be an intercept term only, e.g., s(x2, df =<br />

c(1, 4, 1)) or lms.bcn(zero = c(1, 3)).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 19/101/ 101


LMS quantile <strong>regression</strong><br />

Example with bmi.nz I<br />

> fit = vgam(BMI ~ s(age, df = c(1, 4, 1)), trace = FALSE,<br />

fam = lms.bcn(zero = NULL), bmi.nz)<br />

> qtplot(fit, pcol = "blue", tcol = "orange", lcol = "orange")<br />

20 30 40 50 60 70 80 90<br />

20<br />

30<br />

40<br />

50<br />

60<br />

age<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

25%<br />

50%<br />

75%<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 20/101<br />

18 July 2012 @ Cagliari 20 / 101


LMS quantile <strong>regression</strong><br />

Example with bmi.nz II<br />

Q: Why the decrease at older years?<br />

A:<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 21/101/ 101


LMS quantile <strong>regression</strong><br />

Example with bmi.nz III<br />

Q: Why the decrease at older years?<br />

A: Selection bias due to premature death of obese people.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 22/101/


LMS quantile <strong>regression</strong><br />

Example with bmi.nz IV<br />

> ygrid = seq(15, 43, len = 100) # BMI ranges<br />

> mycols aa = deplot(fit, x0 = 20, y = ygrid, xlab = "BMI", col = mycols[1],<br />

main = "Estimated density functions")<br />

> aa = deplot(fit, x0 = 42, y = ygrid, add = TRUE,<br />

col = mycols[2])<br />

> aa = deplot(fit, x0 = 55, y = ygrid, add = TRUE,<br />

col = mycols[3], Attach = TRUE)<br />

> legend("topright", col = mycols, lty = 1,<br />

c("20 year olds", "42 year olds", "55 year olds"))<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 23/101/


LMS quantile <strong>regression</strong><br />

Example with bmi.nz V<br />

Estimated density functions<br />

0.10<br />

20 year olds<br />

42 year olds<br />

55 year olds<br />

0.08<br />

density<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

15 20 25 30 35 40<br />

BMI<br />

Figure: Density plot at various ages.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 24/101/


LMS quantile <strong>regression</strong><br />

Example with bmi.nz VI<br />

> aa@post$deplot # Contains density function values<br />

$new<strong>data</strong><br />

age<br />

1 55<br />

$y<br />

[1] 15.00 15.28 15.57 15.85 16.13 16.41 16.70 16.98 17.26<br />

[10] 17.55 17.83 18.11 18.39 18.68 18.96 19.24 19.53 19.81<br />

[19] 20.09 20.37 20.66 20.94 21.22 21.51 21.79 22.07 22.35<br />

[28] 22.64 22.92 23.20 23.48 23.77 24.05 24.33 24.62 24.90<br />

[37] 25.18 25.46 25.75 26.03 26.31 26.60 26.88 27.16 27.44<br />

[46] 27.73 28.01 28.29 28.58 28.86 29.14 29.42 29.71 29.99<br />

[55] 30.27 30.56 30.84 31.12 31.40 31.69 31.97 32.25 32.54<br />

[64] 32.82 33.10 33.38 33.67 33.95 34.23 34.52 34.80 35.08<br />

[73] 35.36 35.65 35.93 36.21 36.49 36.78 37.06 37.34 37.63<br />

[82] 37.91 38.19 38.47 38.76 39.04 39.32 39.61 39.89 40.17<br />

[91] 40.45 40.74 41.02 41.30 41.59 41.87 42.15 42.43 42.72<br />

[100] 43.00<br />

$density<br />

[1] 4.589e-05 7.826e-05 1.293e-04 2.076e-04 3.240e-04<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 25/101/


LMS quantile <strong>regression</strong><br />

Example with bmi.nz VII<br />

[6] 4.927e-04 7.308e-04 1.059e-03 1.501e-03 2.083e-03<br />

[11] 2.835e-03 3.785e-03 4.965e-03 6.403e-03 8.125e-03<br />

[16] 1.016e-02 1.251e-02 1.520e-02 1.822e-02 2.157e-02<br />

[21] 2.524e-02 2.920e-02 3.341e-02 3.783e-02 4.242e-02<br />

[26] 4.712e-02 5.188e-02 5.662e-02 6.129e-02 6.582e-02<br />

[31] 7.016e-02 7.425e-02 7.803e-02 8.147e-02 8.453e-02<br />

[36] 8.717e-02 8.937e-02 9.112e-02 9.241e-02 9.324e-02<br />

[41] 9.362e-02 9.356e-02 9.307e-02 9.219e-02 9.094e-02<br />

[46] 8.935e-02 8.745e-02 8.528e-02 8.286e-02 8.024e-02<br />

[51] 7.745e-02 7.452e-02 7.149e-02 6.838e-02 6.523e-02<br />

[56] 6.205e-02 5.888e-02 5.573e-02 5.262e-02 4.957e-02<br />

[61] 4.660e-02 4.371e-02 4.092e-02 3.823e-02 3.564e-02<br />

[66] 3.318e-02 3.083e-02 2.860e-02 2.648e-02 2.449e-02<br />

[71] 2.261e-02 2.084e-02 1.919e-02 1.764e-02 1.620e-02<br />

[76] 1.486e-02 1.361e-02 1.245e-02 1.138e-02 1.039e-02<br />

[81] 9.480e-03 8.638e-03 7.864e-03 7.152e-03 6.500e-03<br />

[86] 5.902e-03 5.355e-03 4.854e-03 4.398e-03 3.981e-03<br />

[91] 3.601e-03 3.256e-03 2.942e-03 2.656e-03 2.397e-03<br />

[96] 2.162e-03 1.949e-03 1.756e-03 1.582e-03 1.424e-03<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 26/101/


LMS quantile <strong>regression</strong><br />

Example with bmi.nz VIII<br />

Two general quantile <strong>regression</strong> problems<br />

1 Most methods cannot h<strong>and</strong>le count <strong>data</strong>, proportions, etc.<br />

Q: LMS-quantile <strong>regression</strong> won’t h<strong>and</strong>le the Melbourne temperature<br />

<strong>data</strong>. Why?<br />

A:<br />

2 Some methods suffer from the “serious embarrassment” 1 of quantile<br />

crossing, e.g., a point (x 0 , y 0 ) may be classified as below the 20th but<br />

above the 30th percentile!<br />

1 see, e.g., He (1997), Sec. 2.5 of Koenker (2005).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 27/101/


LMS quantile <strong>regression</strong><br />

Two quantile <strong>regression</strong> problems<br />

oooooo oooo<br />

o<br />

o<br />

o<br />

ooo<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o o o<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0<br />

5<br />

10<br />

15<br />

x<br />

y<br />

Some Poisson <strong>data</strong>.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 28/101<br />

18 July 2012 @ Cagliari 28 / 101


LMS quantile <strong>regression</strong><br />

Some Poisson <strong>data</strong> with 50 <strong>and</strong> 95 percentiles from qpois().<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 29/101/ Two quantile <strong>regression</strong> problems<br />

y<br />

15<br />

10<br />

5<br />

0<br />

o<br />

o<br />

o o<br />

o<br />

o<br />

o o<br />

o<br />

ooo<br />

o o o<br />

o<br />

o<br />

o o o o o o o o<br />

o oo<br />

o<br />

o<br />

o oo<br />

o oo<br />

o o<br />

o o o<br />

o<br />

o o o o oo o oo<br />

o<br />

o<br />

o oo<br />

o o<br />

o o o o o<br />

o o<br />

oo<br />

o o o o o<br />

o o<br />

o o o o<br />

o<br />

o oo<br />

oo<br />

oo<br />

o o o o<br />

o<br />

o<br />

oo<br />

o<br />

o o<br />

o o o<br />

o oo<br />

o<br />

o o o oo<br />

o o o o<br />

o<br />

o oo<br />

o<br />

o o o oo<br />

oo<br />

o<br />

oo<br />

oo<br />

o o o o<br />

o o o<br />

o o<br />

o o o o ooo<br />

o o<br />

o o o<br />

o o<br />

oo<br />

oo<br />

o oo<br />

oo o o o o<br />

o o<br />

o o o o oo o o o<br />

o<br />

oo<br />

o<br />

o oo<br />

o<br />

o<br />

o o<br />

o<br />

o o<br />

o oo<br />

o o o<br />

o o o o<br />

o<br />

o o o<br />

o o o o o o<br />

o<br />

o oo oo oo oo<br />

o<br />

o<br />

o o o<br />

o<br />

o<br />

ooo<br />

o o o<br />

ooo<br />

o<br />

o o o o o<br />

o o o<br />

o<br />

o o o o o ooo<br />

o<br />

o<br />

o<br />

oo<br />

o o<br />

oo<br />

o ooo<br />

o o<br />

o o o oo<br />

oo<br />

oo o<br />

o<br />

oo<br />

oooooo oooo oooo<br />

ooo<br />

oo<br />

ooo<br />

ooo<br />

ooo<br />

o<br />

o<br />

o<br />

oo<br />

o ooo<br />

o<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

x


Expectile <strong>regression</strong><br />

Expectile <strong>regression</strong><br />

<strong>Quantile</strong>s:<br />

minimize wrt ξ the quantity E [ρ τ (Y − ξ)] where<br />

ρ τ (u) = u · (τ − I (u < 0)), 0 < τ < 1, (4)<br />

is known as a check function. I call this the “classical” method Koenker<br />

<strong>and</strong> Bassett (1978). See package quantreg.<br />

Expectiles:<br />

[ ]<br />

minimize wrt µ the quantity E ρ [2]<br />

ω (Y − µ) where<br />

ρ [2]<br />

ω (u) = u 2 · |ω − I (u < 0)|, 0 < ω < 1. (5)<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 30/101/


Expectile <strong>regression</strong><br />

Interpretation I<br />

Both have very natural interpretations: given X = x,<br />

quantile ξ τ (x) specifies the position below which 100τ% of the<br />

(probability) mass of Y lies.<br />

<strong>expectile</strong> µ ω (x) determines the point such that 100ω% of the mean<br />

distance between it <strong>and</strong> Y comes from the mass below it.<br />

The 0.5-<strong>expectile</strong> µ( 1 2<br />

) is the mean µ.<br />

The 0.5-quantile ξ( 1 2<br />

) is the median ˜µ.<br />

<strong>Quantile</strong>s are more local whereas <strong>expectile</strong>s are more global <strong>and</strong> are<br />

affected by outliers.<br />

<strong>Quantile</strong>s traditionally are estimated by linear programming whereas<br />

<strong>expectile</strong>s use scoring.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 31/101/ 101


Expectile <strong>regression</strong><br />

Interpretation II<br />

2.0<br />

ω = 0.5<br />

ω = 0.9<br />

(a)<br />

2.0<br />

(b)<br />

1.5<br />

1.5<br />

Loss<br />

1.0<br />

1.0<br />

0.5<br />

0.5<br />

0.0<br />

0.0<br />

−2 −1 0 1 2<br />

−2 −1 0 1 2<br />

Figure: Loss functions for (a) quantile <strong>regression</strong> with τ = 0.5 (L 1 <strong>regression</strong>) <strong>and</strong><br />

τ = 0.9; (b) <strong>expectile</strong> <strong>regression</strong> with ω = 0.5 (least squares) <strong>and</strong> ω = 0.9.<br />

(a) are aka asymmetric absolute loss function or pinball loss function.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 32/101/


Expectile <strong>regression</strong><br />

Expectiles I<br />

Expectiles <strong>and</strong> centers of balance<br />

(d)<br />

c 1 c 2<br />

µ(ω = 0.1)<br />

Figure: Illustration of the interpretation of <strong>expectile</strong>s in terms of centers of<br />

balance, at positions c 1 = △ <strong>and</strong> c 2 = △. This means that (6) is satisfied<br />

with ω = 0.1. Note: the parent distribution is normal.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 33/101/


Expectile <strong>regression</strong><br />

Expectiles II<br />

Expectiles <strong>and</strong> centers of balance<br />

Even simpler interpretation is via centers of balance. From Slide 33, c 1<br />

<strong>and</strong> c 2 denote the centers of balance for the distributions to the LHS <strong>and</strong><br />

RHS of the ω-<strong>expectile</strong> µ(ω). Then<br />

ω =<br />

P[Y < µ(ω)] · (µ(ω) − c 1 )<br />

P[Y < µ(ω)] · (µ(ω) − c 1 ) + P[Y > µ(ω)] · (c 2 − µ(ω))<br />

where c 1 = E[Y |Y < µ(ω)] =<br />

is a fundamental equation. If µ(ω) = 0 then<br />

∫ µ(ω)<br />

−∞<br />

y<br />

[ ] f (y)<br />

dy<br />

F (µ(ω))<br />

(6)<br />

ω =<br />

|c 1 | · F (0)<br />

|c 1 | · F (0) + c 2 · (1 − F (0)) .<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 34/101/


Expectile <strong>regression</strong><br />

Expectiles III<br />

Expectiles <strong>and</strong> centers of balance<br />

Another fundamental equation is<br />

µ = µ(0.5) = P[Y < µ(ω)] · c 1 + P[Y > µ(ω)] · c 2 . (7)<br />

BTW c 1 is related to the expected shortfall, which is used in financial<br />

mathematics—see Slide 40.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 35/101/


Expectile <strong>regression</strong><br />

Interrelationship between <strong>expectile</strong>s <strong>and</strong> quantiles† I<br />

“Expectiles have properties that are similar to quantiles” (Newey <strong>and</strong><br />

Powell, 1987). The reason is that <strong>expectile</strong>s of a distribution F are<br />

quantiles a distribution G which is related to F (Jones, 1994).<br />

The main details are as follows.<br />

Let<br />

P(s) =<br />

∫ s<br />

−∞<br />

y f (y) dy<br />

ρ [1]<br />

τ (u) = τ − I (u ≤ 0),<br />

ρ [2]<br />

ω (u) = |u|(ω − I (u < 0)).<br />

the (first) partial moment,<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 36/101/


Expectile <strong>regression</strong><br />

Interrelationship between <strong>expectile</strong>s <strong>and</strong> quantiles† II<br />

One way of defining the ordinary τ-quantile of a continuous distribution<br />

with density f , 0 < τ < 1, is as the value of ξ that satisfies<br />

∫<br />

ρ [1]<br />

τ (y − ξ) f (y) dy = 0.<br />

In a similar way, for <strong>expectile</strong>s µ(ω), corresponds to the equation<br />

∫<br />

ρ [2]<br />

ω (y − µ(ω)) f (y) dy = 0. (8)<br />

Then solving this equation shows immediately that ω = G(µ(ω)) where<br />

G(t) =<br />

P(t) − tF (t)<br />

2(P(t) − tF (t)) + t − µ . (9)<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 37/101/


Expectile <strong>regression</strong><br />

Interrelationship between <strong>expectile</strong>s <strong>and</strong> quantiles† III<br />

Thus, G is the inverse of the <strong>expectile</strong> function, <strong>and</strong> its derivative is<br />

g(t) =<br />

µF (t) − P(t)<br />

{2(P(t) − tF (t)) + t − µ} 2 . (10)<br />

It can be shown that G is actually a distribution function (so that g is its<br />

density function). That is, the <strong>expectile</strong>s of F are precisely the quantiles<br />

of G defined here.<br />

Table: Density function, distribution function, <strong>and</strong> <strong>expectile</strong> function <strong>and</strong> r<strong>and</strong>om<br />

generation for the distribution associated with the <strong>expectile</strong>s of several<br />

st<strong>and</strong>ardized distributions. These functions are available in VGAM.<br />

Function<br />

[dpqr]eexp()<br />

[dpqr]ekoenker()<br />

[dpqr]enorm()<br />

[dpqr]eunif()<br />

Distribution<br />

Exponential<br />

Koenker<br />

Normal<br />

Uniform<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 38/101/


Expectile <strong>regression</strong><br />

Interrelationship between <strong>expectile</strong>s <strong>and</strong> quantiles† IV<br />

0.6<br />

(a) Normal<br />

2.0<br />

(b) Uniform<br />

0.5<br />

0.4<br />

0.3<br />

1.5<br />

1.0<br />

0.2<br />

0.1<br />

0.5<br />

0.0<br />

0.0<br />

−4 −2 0 2 4<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

1.0<br />

(c) Exponential<br />

0.4<br />

(d) Koenker<br />

0.8<br />

0.3<br />

0.6<br />

0.4<br />

0.2<br />

0.2<br />

0.1<br />

0.0<br />

0.0<br />

0 1 2 3 4 5<br />

−4 −2 0 2 4<br />

Figure: (a)–(c) Density plots of <strong>expectile</strong> g (purple solid lines) for the original f<br />

of st<strong>and</strong>ard normal, uniform <strong>and</strong> exponential distributions (blue dashed lines);<br />

(d) Koenker’s distribution is the same as a √ 2 T 2 density. Orange line is N(0, 1).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 39/101/


Expectile <strong>regression</strong><br />

Expected shortfall† I<br />

Value at Risk<br />

The expected shortfall (ES) 2 is a concept used in financial mathematics<br />

to measure portfolio risk. Aka<br />

Conditional Value at Risk (CVaR),<br />

expected tail loss (ETL) <strong>and</strong><br />

worst conditional expectation (WCE).<br />

The ES at the 100τ% level is the expected return on the portfolio in the<br />

worst 100τ% of the cases. It is often defined as<br />

ES(τ) = E(Y |Y < a) (11)<br />

where a is determined by P(X < a) = τ <strong>and</strong> τ is the given threshold.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 40/101/


Expectile <strong>regression</strong><br />

Expected shortfall† II<br />

Value at Risk<br />

The ES is very much related to <strong>expectile</strong>s <strong>and</strong> c 1 . That is, the<br />

solution µ(ω) of this minimization satisfies<br />

( 1 − 2ω<br />

ω<br />

)<br />

E [(Y − µ(ω)) · I (Y < µ(ω))] = µ(ω) − E(Y ). (12)<br />

Eqn (12) indicates that the solution µ(ω) is determined by the properties<br />

of the expectation of the r<strong>and</strong>om variable Y conditional on Y<br />

exceeding µ(ω). This suggests a link between <strong>expectile</strong>s <strong>and</strong> ES.<br />

Eqn (12) can be rewritten<br />

(<br />

)<br />

ω<br />

ω<br />

E [Y |Y < µ(ω)] = 1 +<br />

µ(ω)−<br />

E(Y ).<br />

(1 − 2ω)F (µ(ω)) (1 − 2ω)F (µ(ω))<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 41/101/ 101


Expectile <strong>regression</strong><br />

Expected shortfall† III<br />

Value at Risk<br />

This provides a formula for the ES of the quantile that coincides with the<br />

ω-<strong>expectile</strong>. Referring to this as the τ-quantile, we can write F (µ(ω)) = τ<br />

<strong>and</strong> rewrite the expression as<br />

(<br />

ES(τ) = 1 +<br />

ω<br />

(1 − 2ω) τ<br />

)<br />

µ(ω) −<br />

ω<br />

E(Y ). (13)<br />

(1 − 2ω) τ<br />

This equation relates the ES associated with the τ-quantile of the<br />

distribution of Y <strong>and</strong> the ω-<strong>expectile</strong> that coincides with that quantile.<br />

The equation is for ES in the lower tail of the distribution. The equation<br />

for the upper tail of the distribution is produced by replacing ω <strong>and</strong> τ<br />

with (1 − ω) <strong>and</strong> (1 − τ), respectively.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 42/101/


Expectile <strong>regression</strong><br />

Expected shortfall† IV<br />

Value at Risk<br />

Another popular measure of financial risk is the Value at Risk (VaR). The<br />

VaR (ν p , say) specifies a level of excessive losses such that the probability<br />

of a loss larger than ν p is less than p (often p = 0.01 or 0.05 is chosen).<br />

The ES is defined as the conditional expectation of the loss given that it<br />

exceeds the VaR.<br />

ES “better” than VaR:<br />

ES has but VaR lacks the sub-additivity 3 property. So the ES is an<br />

increasingly popular risk measure in financial risk management.<br />

VaR is not a coherent risk measure.<br />

VaR provides no information on the extent of excessive losses other<br />

than specifying a level that defines the excessive losses.<br />

2 Dictionary: (i). A failure to attain a specified amount or level; a shortage.<br />

(ii). The amount by which a supply falls short of expectation, need, or dem<strong>and</strong>.<br />

3 The sub-additivity of a risk measure means that the risk for the sum of two<br />

independent risky events is not greater than the sum of the risks of the two events.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 43/101/


Asymmetric MLE<br />

Asymmetric MLE I<br />

Asymmetric maximum likelihood estimation allows for <strong>expectile</strong> <strong>regression</strong><br />

based on, essentially, any distribution. Efron (1991) developed this for the<br />

exponential family.<br />

Consider the linear model<br />

Let<br />

y i = x T i β + ε i , for i = 1, . . . , n.<br />

r i (β) = y i − x T i β<br />

be a residual. The asymmetric squared error loss S w (β) is<br />

S w (β) =<br />

n∑<br />

Qw(r ∗ i (β)) (14)<br />

i=1<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 44/101/


Asymmetric MLE<br />

Asymmetric MLE II<br />

<strong>and</strong> Q ∗ w is the asymmetric squared error loss function<br />

Q ∗ w(r) =<br />

{ r 2 , r ≤ 0,<br />

w r 2 , r > 0.<br />

(15)<br />

Here w is a positive constant <strong>and</strong> is related to ω by<br />

w =<br />

ω<br />

1 − ω . (16)<br />

For normally distributed responses, asymmetric least squares (ALS)<br />

estimation is a variant of OLS estimation.<br />

Estimation is by the Newton-Raphson algorithm. Order-2<br />

convergence is fast <strong>and</strong>, here, reliable. See later for details.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 45/101/


Asymmetric MLE<br />

Asymmetric MLE III<br />

Notation<br />

t Notation<br />

Comments<br />

Y<br />

Response. Has mean µ, cdf F (y), pdf f (y)<br />

Q Y (τ) = τ-quantile of Y 0 < τ < 1<br />

ξ(τ) = ξ τ = τ-quantile Koenker <strong>and</strong> Bassett (1978), ξ( 1 ) = median<br />

2<br />

µ(ω) = µ ω = ω-<strong>expectile</strong> 0 < ω < 1, µ( 1 ) = µ, Newey <strong>and</strong> Powell (1987)<br />

2<br />

bξ(τ), bµ(ω)<br />

Sample quantiles <strong>and</strong> <strong>expectile</strong>s<br />

centile<br />

Same as quantile <strong>and</strong> percentile here<br />

<strong>regression</strong> quantile Koenker <strong>and</strong> Bassett (1978)<br />

<strong>regression</strong> <strong>expectile</strong> Newey <strong>and</strong> Powell (1987)<br />

<strong>regression</strong> percentile All forms of asymmetric fitting, Efron (1992)<br />

ρ τ (u) = u · (τ − I (u < 0)) Check function corresponding to ξ(τ)<br />

ρ [2]<br />

ω (u) = u 2 · |ω − I (u < 0)| Check function corresponding to µ(ω)<br />

u + = max(u, 0)<br />

Positive part of u<br />

u − = min(u, 0)<br />

Negative part of u<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 46/101/


Asymmetric MLE<br />

ALS notes I<br />

Here are some notes about ALS quantile <strong>regression</strong>.<br />

Usually the user will specify some desired value of the percentile, e.g.,<br />

75 or 95. Then the necessary value of w needs to be numerically<br />

solved for to obtain this. One useful property is that the percentile is<br />

a monotonic function of w, meaning one can solve for the root of a<br />

nonlinear equation.<br />

A rough relationship between w <strong>and</strong> the percentile 100α is available.<br />

Let w (α) denote the value of w such that β w equals z (α) = Φ −1 (α),<br />

the 100α st<strong>and</strong>ard normal percentile point. If there are no covariates<br />

(intercept-only model) <strong>and</strong> y i are st<strong>and</strong>ard normal then<br />

w (α) = 1 +<br />

z (α)<br />

φ ( z (α)) − (1 − α)z (α) (17)<br />

where φ(z) is the probability density function of a st<strong>and</strong>ard normal.<br />

Here are some values.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 47/101/


Asymmetric MLE<br />

ALS notes II<br />

> alpha = c(1/2, 2/3, 3/4, 0.84, 9/10, 19/20)<br />

> zalpha = qnorm(p = alpha)<br />

> walpha = 1 + zalpha/(dnorm(zalpha) - (1 - alpha)*zalpha)<br />

> round(cbind(alpha, walpha), dig = 2)<br />

alpha walpha<br />

[1,] 0.50 1.00<br />

[2,] 0.67 2.96<br />

[3,] 0.75 5.52<br />

[4,] 0.84 12.81<br />

[5,] 0.90 28.07<br />

[6,] 0.95 79.73<br />

An important invariance property: if the y i are multiplied by some<br />

constant c then the solution vector ̂β w is also multipled by c. Also, a<br />

shift in location to y i + d means the estimated intercept (the first<br />

element in x) increases by d too.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 48/101/


Asymmetric MLE<br />

ALS notes III<br />

ALS quantile <strong>regression</strong> is consistent for the true <strong>regression</strong><br />

percentiles y (α) |x in the cases where y (α) |x is linear in x. A more<br />

general proof of this is available (Newey <strong>and</strong> Powell, 1987).<br />

In view of the one-to-one mapping between <strong>expectile</strong>s <strong>and</strong> quantiles<br />

Efron (1991) proposes that the τ-quantile be estimated by the<br />

<strong>expectile</strong> for which the proportion of in-sample observations lying<br />

below the <strong>expectile</strong> is τ. This provides justification for practitioners<br />

who use <strong>expectile</strong> <strong>regression</strong> to perform quantile <strong>regression</strong>.<br />

Some <strong>expectile</strong> references: Aigner et al. (1976), Newey <strong>and</strong><br />

Powell (1987), Efron (1991), Efron (1992), Jones (1994).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 49/101/


Asymmetric MLE<br />

Example I<br />

> ooo bmi.nz fit # Expectile plot<br />

> plot(BMI ~ age, <strong>data</strong> = bmi.nz, col = "blue", las = 1,<br />

main = paste(paste(round(fit@extra$percentile, dig = 1),<br />

collapse = ", "),<br />

"<strong>expectile</strong> curves"))<br />

> with(bmi.nz, matlines(age, fitted(fit), col = 1:npred(fit),<br />

lwd = 2, lty = 1))<br />

gives<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 50/101/


Asymmetric MLE<br />

Example II<br />

60<br />

●<br />

20.1, 56.3, 85.9 <strong>expectile</strong> curves<br />

●<br />

50<br />

BMI<br />

40<br />

30<br />

20<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

● ● ●<br />

●●<br />

● ●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ●<br />

● ●<br />

● ●<br />

●<br />

● ● ● ● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ● ● ●<br />

●<br />

●●<br />

● ●●<br />

●●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ●●<br />

●<br />

● ●<br />

● ●● ● ● ● ●<br />

● ●<br />

●<br />

●● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

● ● ● ●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ● ●<br />

● ● ● ●<br />

●<br />

● ●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

● ●<br />

●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

● ● ●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●●<br />

● ●●<br />

●<br />

●<br />

●● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

● ●<br />

●<br />

● ●<br />

●● ● ● ● ● ●●<br />

● ●<br />

● ● ●<br />

● ●<br />

● ●●<br />

● ●<br />

●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

●<br />

●<br />

●● ● ● ● ●<br />

●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ● ● ●●<br />

● ●<br />

● ●<br />

● ●●● ● ●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ● ● ●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

●<br />

● ● ●<br />

● ● ●●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

● ● ● ● ● ●<br />

●<br />

●●<br />

●<br />

● ● ● ●<br />

●<br />

●<br />

●<br />

●<br />

20 30 40 50 60 70 80<br />

age<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 51/101/ 101


Asymmetric MLE<br />

More on AML <strong>regression</strong>†<br />

Efron (1992) generalized ALS estimation to families in the exponential<br />

family, <strong>and</strong> in particular, the Poisson distribution. He called this<br />

asymmetric maximum likelihood (AML) estimation.<br />

More generally,<br />

S w (β) =<br />

is minimized (cf. (14)), where<br />

n∑<br />

i=1<br />

w i D w (y i , µ i (β)) (18)<br />

D w (µ, µ ′ ) =<br />

{ D(µ, µ ′ ) if µ ≤ µ ′ ,<br />

w D(µ, µ ′ ) if µ > µ ′ .<br />

(19)<br />

Here, D is the deviance from a model in the exponential family<br />

g η (y) =<br />

exp(ηy − ψ(η)).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 52/101/


Asymmetric MLE<br />

Estimation†<br />

An iterative solution is required, <strong>and</strong> the Newton-Raphson algorithm is<br />

used. In particular, for Poisson <strong>regression</strong> with the canonical (log) link,<br />

following in from Equation (2.16) of Efron (1992),<br />

β (a+1) = b (a) + db (a)<br />

= b − ¨S −1¨S<br />

w w<br />

= (X T (WV)X) −1 X T (WV)<br />

[<br />

]<br />

η + (WV) −1 Wr<br />

(20)<br />

are the Newton-Raphson iterations (iteration number a suppressed for<br />

clarity). Here, r = y − µ(b),<br />

V = diag(v 1 (b), . . . , v n (b)) = diag(µ 1 , . . . , µ n ) contains the variances<br />

of y i <strong>and</strong> W = diag(w 1 (b), . . . , w n (b)) with w i (b) = 1 if r i (b) ≤ 0 else w.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 53/101/


Asymmetric MLE<br />

AML Poisson example I<br />

> set.seed(1234)<br />

> mydat = <strong>data</strong>.frame(x2 = sort(runif(nn mydat = transform(mydat, y = rpois(nn, exp(0 - sin(8 * x2))))<br />

> fit = vgam(y ~ s(x2, df = 3),<br />

amlpoisson(w.aml = c(0.02, 0.2, 1, 5, 50)),<br />

<strong>data</strong> = mydat)<br />

> fit@extra<br />

$w.aml<br />

[1] 0.02 0.20 1.00 5.00 50.00<br />

$M<br />

[1] 5<br />

$n<br />

[1] 200<br />

$y.names<br />

[1] "w.aml = 0.02" "w.aml = 0.2" "w.aml = 1"<br />

[4] "w.aml = 5" "w.aml = 50"<br />

$individual<br />

[1] TRUE<br />

$percentile<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 54/101/


Asymmetric MLE<br />

AML Poisson example II<br />

w.aml = 0.02 w.aml = 0.2 w.aml = 1 w.aml = 5<br />

41.5 48.0 62.0 77.5<br />

w.aml = 50<br />

94.0<br />

$deviance<br />

w.aml = 0.02 w.aml = 0.2 w.aml = 1 w.aml = 5<br />

23.26 99.95 219.45 391.95<br />

w.aml = 50<br />

666.66<br />

Then<br />

> plot(jitter(y) ~ x2, <strong>data</strong> = mydat,<br />

col = "blue", las = 1, main =<br />

paste(paste(round(fit@extra$percentile, dig = 1),<br />

collapse = ", "),<br />

"Poisson-AML curves"))<br />

> with(mydat, matlines(x2, fitted(fit), lwd = 2))<br />

gives<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 55/101/


Asymmetric MLE<br />

AML Poisson example III<br />

41.5, 48, 62, 77.5, 94 Poisson−AML curves<br />

6<br />

●<br />

●<br />

●<br />

●<br />

jitter(y)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

● ● ● ●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ●<br />

●<br />

●<br />

● ● ●<br />

● ●<br />

●<br />

● ● ●<br />

● ● ●● ●<br />

● ●●●<br />

●● ● ●<br />

●● ●<br />

● ● ●<br />

●<br />

● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●●●<br />

●● ● ●●<br />

●<br />

● ● ●● ●<br />

● ● ●<br />

● ●●<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

x2<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 56/101/


Asymmetric Laplace distribution<br />

Asymmetric Laplace distribution<br />

Distribution properties<br />

The asymmetric Laplace distribution (ALD) has a density<br />

f (y; ξ, b, τ) =<br />

=<br />

for −∞ < y < ∞, −∞ < ξ < ∞.<br />

τ(1 − τ)<br />

e −ρτ (y−ξ) (21)<br />

b<br />

{ (<br />

τ(1 − τ) exp −<br />

τ<br />

b |y − ξ|) , y ≤ ξ,<br />

b exp ( − 1−τ<br />

b |y − ξ|) (22)<br />

, y > ξ,<br />

Here, ξ is the location parameter <strong>and</strong> b is the positive scale parameter .<br />

The expected information matrix (EIM) is<br />

⎛<br />

⎞<br />

⎜<br />

⎝<br />

2<br />

− √ 8<br />

0<br />

σ 2 σ (1+κ 2 )<br />

1 −(1−κ<br />

0 2 )<br />

σ 2 σκ(1+κ 2 )<br />

− √ 8<br />

σ (1+κ 2 )<br />

−(1−κ 2 )<br />

σκ(1+κ 2 )<br />

1<br />

+ 4<br />

κ 2 (1+κ 2 ) 2<br />

⎟<br />

⎠ . (23)<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 57/101/


Asymmetric Laplace distribution<br />

VGLMs <strong>and</strong> ALD<br />

Suppose τ = (τ 1 , τ 2 , . . . , τ L ) T are either the L values of τ of interest to<br />

the practitioner or the L reference values of τ. Let ξ s be the corresponding<br />

τ s th quantile, s = 1, . . . , L. VGLMs use<br />

g 1 (ξ s (x)) = η s = β T s x, s = 1, . . . , L, (24)<br />

where g 1 is a specified parameter link function.<br />

Hence the classical approach has g 1 being the identity link:<br />

ξ s = β T s x.<br />

The central formula for us is therefore<br />

min<br />

β<br />

E[ ρ τ (Y − g −1<br />

1 (βT x))]. (25)<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 58/101/


Asymmetric Laplace distribution<br />

Two noncrossing solutions I<br />

The VGLM/VGAM framework offers two solutions.<br />

1 Use parallelism.<br />

When a parallelism assumption is made, one must choose some<br />

reference values of τ to estimate the <strong>regression</strong> coefficients of the<br />

model, viz.<br />

g 1 (ξ s (x)) = η s = β (s)1 + β T (−1) x (−1) (26)<br />

where x (−1) is x without its first element. Here the hyperplanes differ<br />

by a constant amount at a given value of x on the transformed scale.<br />

The constraint matrices are H k = 1 M for k = 2, . . . , M.<br />

The idea is the same as the proportional odds model.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 59/101/


Asymmetric Laplace distribution<br />

Two noncrossing solutions II<br />

2 The accumulative quantile <strong>regression</strong> (AQR) method.<br />

Given a vector τ with sorted values, say, the basic idea of AQR is to<br />

fit ξ τ1 (x) by the ALD (using some link function if necessary), then<br />

computing the residuals <strong>and</strong> fitting ξ τ2 (x) to the residuals using a log<br />

link. This can be continued until the last value of τ . A log link<br />

ensures that each successive quantile is greater than the previous<br />

quantile over all values of x so that they do not cross. The method<br />

gets its name because the solutions are accumulated sequentially.<br />

Informal name: the onion method.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 60/101/


Asymmetric Laplace distribution<br />

Example 1 I<br />

set.seed(123)<br />

alldat


Asymmetric Laplace distribution<br />

Example 1 II<br />

This gives<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0.2 0.4 0.6 0.8 1.0 1.2<br />

0<br />

5<br />

10<br />

15<br />

y<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 62/101<br />

18 July 2012 @ Cagliari 62 / 101


Asymmetric Laplace distribution<br />

Example 2 I<br />

Here is another example, applied to binomial proportions.<br />

A r<strong>and</strong>om sample of n = 200 observations were generated<br />

from X i ∼ Unif(0, 1) <strong>and</strong><br />

Y i ∼ Binomial ( N i = 10, µ(x i ) = logit −1 {−3 + 8x i } ) /N i . (27)<br />

Let τ = ( 1 4 , 1 2 )T .<br />

myprob


Asymmetric Laplace distribution<br />

Example 2 II<br />

1.0<br />

o o<br />

o o<br />

o o ooo<br />

o<br />

ooo<br />

oo<br />

oo o oooo o oo o o<br />

o o<br />

oo<br />

o<br />

o o<br />

o<br />

o<br />

o<br />

o o o<br />

o ooo<br />

oo<br />

0.8<br />

o<br />

o oo<br />

o<br />

o o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

o<br />

0.6<br />

o<br />

o o o<br />

o<br />

y<br />

o<br />

oo<br />

o<br />

o<br />

o<br />

o<br />

0.4<br />

o<br />

o o<br />

o o<br />

oo<br />

o<br />

oo<br />

o<br />

o ooo<br />

o o<br />

o o<br />

0.2<br />

o o<br />

o<br />

o o o<br />

o oo o o<br />

oo<br />

o o oooo<br />

oo<br />

o o<br />

o<br />

o o oo<br />

0.0<br />

oo<br />

o<br />

o<br />

oo o<br />

o<br />

o<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

x<br />

Nb. the green curve is Koenker’s estimate.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 64/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

Extreme value <strong>data</strong> <strong>analysis</strong> I<br />

A motivating example. . .<br />

Table: Subset of the Venice sea levels <strong>data</strong>. For each year from 1931 to 1981 the<br />

10 highest daily sea levels (cm) are recorded.<br />

t 1931 103 99 98 96 94 89 86 85 84 79<br />

1932 78 78 74 73 73 72 71 70 70 69<br />

1933 121 113 106 105 102 89 89 88 86 85<br />

1934 116 113 91 91 91 89 88 88 86 81<br />

1935 115 107 105 101 93 91<br />

1936 147 106 93 90 87 87 87 84 82 81<br />

1937 119 107 107 106 105 102 98 95 94 94<br />

.<br />

.<br />

1979 166 140 131 130 122 118 116 115 115 112<br />

1980 134 114 111 109 107 106 104 103 102 99<br />

1981 138 136 130 128 119 110 107 104 104 104<br />

.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 65/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 66/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 67/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

Models for Extreme Value Data<br />

Data: (y i , x i ), i = 1, . . . , n, where<br />

y i<br />

∼ F<br />

for some continuous distribution function F . Extreme value theory is the<br />

branch of statistics concerned with inferences on the tail of F . This<br />

distinguishes it from almost every other area of statistics.<br />

Many applications, e.g.,<br />

environmental science (sea-levels, wind speeds, floods),<br />

reliability modelling (weakest-link-type models),<br />

finance (e.g., insurance company at risk of bankrupcy from large<br />

claims),<br />

sport science (e.g., fastest running times for 100 m).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 68/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

Classical Theory<br />

Let M n = max(Y 1 , . . . , Y n ) where Y i are i.i.d. from a continuous cdf F .<br />

Suppose we can find normalizing constants a n > 0 <strong>and</strong> b n such that<br />

( )<br />

Mn − b n<br />

P<br />

≤ y −→ G(y) (28)<br />

a n<br />

as n → ∞, where G is some proper cdf.<br />

Then G is necessarily one of three possible types of (parametric) limiting<br />

distribution functions [aka <strong>extreme</strong> value trinity theorem]:<br />

Weibull type,<br />

Gumbel type (aka the Type I distribution, this accommodates the<br />

normal, lognormal, logistic, gamma, exponential <strong>and</strong> Weibull), <strong>and</strong><br />

Fréchet type.<br />

These types are special cases of the GEV distribution.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 69/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GEV I<br />

The generalized <strong>extreme</strong> value (GEV) distribution has cdf<br />

{ [ ( )] }<br />

y − µ<br />

−1/ξ<br />

G(y; µ, σ, ξ) = exp − 1 + ξ<br />

, (29)<br />

σ<br />

with σ > 0, −∞ < µ < ∞, 1 + ξ(y − µ)/σ > 0, where x + = max(x, 0).<br />

The µ, σ <strong>and</strong> ξ are known as the location, scale <strong>and</strong> shape parameters<br />

respectively.<br />

The 3 cases are:<br />

ξ < 0: Weibull type,<br />

ξ = 0: Gumbel type,<br />

ξ > 0: Fréchet type.<br />

For parametric models, VGAM provides maximum likelihood estimates<br />

(MLEs).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 70/101/ +


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GEV II<br />

Smith (1985) established that for:<br />

ξ < −1: MLEs do not exist,<br />

−1 < ξ < −0.5: MLEs exist but are non-regular,<br />

ξ > −0.5: MLEs are completely regular.<br />

In most environmental problems ξ > −1 so MLE works fine. And lots of<br />

<strong>data</strong> are needed to model ξ accurately.<br />

In terms of quantiles,<br />

y p<br />

= µ − σ ξ<br />

[<br />

1 − {− log(1 − p)} −ξ] ,<br />

where G(y p ) = 1 − p. In <strong>extreme</strong> value terminology, y p is the return level<br />

associated with the return period 1/p, e.g., the (return) level expected to<br />

exceed on average, once every (return period) interval of time.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 71/101/ 101


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GEV III<br />

1.0<br />

ξ = −0.25<br />

1.0<br />

ξ = 0<br />

0.8<br />

0.8<br />

0.6<br />

0.6<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

0.0<br />

0.0<br />

−2 −1 0 1 2 3<br />

−2 −1 0 1 2 3<br />

1.0<br />

0.8<br />

ξ = 0.25<br />

0.3<br />

ξ = − 0.25<br />

ξ = 0<br />

ξ = 0.25<br />

0.6<br />

0.2<br />

0.4<br />

0.2<br />

0.1<br />

0.0<br />

0.0<br />

−2 −1 0 1 2 3<br />

−2 −1 0 1 2 3<br />

Figure: GEV densities for values µ = 0, σ = 1, <strong>and</strong> ξ = − 1 4 , 0, 1 4 (Weibull-,<br />

Gumbel- <strong>and</strong> Fréchet-types respectively). The orange curve is the cdf, the dashed<br />

1<br />

purple segments divide the density into areas of<br />

10<br />

. The bottom RHS plot has<br />

the densities overlaid.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 72/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GEV IV<br />

t<br />

Distribution CDF F (y; θ) Support VGAM family<br />

( » „ «– )<br />

y − µ −1/ξ<br />

Generalized <strong>extreme</strong> value exp − 1 + ξ<br />

(µ − σ/ξ, ∞) [dpqr][e]gev()<br />

σ +<br />

» „ «– y − µ −1/ξ<br />

Generalized Pareto<br />

1 − 1 + ξ<br />

(µ, ∞) if ξ > 0,<br />

σ +<br />

(µ, µ − σ/ξ) if ξ < 0 [dpqr]gpd()<br />

j » „ «–ff<br />

y − µ<br />

Gumbel<br />

exp − exp −<br />

IR<br />

[dpqr][e]gumbel()<br />

σ<br />

Table: Some <strong>extreme</strong> value distributions currently supported by VGAM. Plotting<br />

functions include guplot(), meplot(), qtplot(), rlplot().<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 73/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GEV V<br />

Gumbel distribution<br />

From the Table on Slide 73, the Gumbel cdf is<br />

{ [ ( )]} y − µ<br />

G(y) = exp − exp −<br />

, − ∞ < y < ∞. (30)<br />

σ<br />

So to check if Y is Gumbel then plotting the sorted values y i versus the<br />

reduced values r i<br />

r i = − log(− log(p i ))<br />

should be linear. Here, p i is the ith plotting position, taken to<br />

be (i − 1 2<br />

)/n, say. Curvature upwards/downwards may indicate a<br />

Fréchet/Weibull distribution, respectively. Outliers may also be detected.<br />

See guplot() in VGAM.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 74/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GPD I<br />

The generalized Pareto distribution (GPD) is the second of the two most<br />

important distributions in <strong>extreme</strong>s <strong>data</strong> <strong>analysis</strong>.<br />

Giving rise to what is known as the threshold method, this is a common<br />

alternative approach based on exceedances over high thresholds.<br />

The idea is to pick a high threshold value u <strong>and</strong> to study all the<br />

exceedances of u, i.e., values of Y greater than u. In <strong>extreme</strong> value<br />

terminology, Y − u are the excesses. For deficits below a low threshold,<br />

these may be converted to the upper tail by M n = − min(−Y 1 , . . . , −Y n ).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 75/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GPD II<br />

The GPD was proposed by Pick<strong>and</strong>s (1975) <strong>and</strong> has cdf<br />

[<br />

G(y; µ, σ, ξ) = 1 − 1 + ξ<br />

( y − µ<br />

σ<br />

)] −1/ξ<br />

+<br />

(y − µ)<br />

, for 1 + ξ > 0 (31)<br />

σ<br />

<strong>and</strong> σ > 0. The µ, σ <strong>and</strong> ξ are the location, scale <strong>and</strong> shape parameters<br />

respectively.<br />

As with the GEV, there is a “three types theorem” to the effect that the<br />

following three cases can be considered, depending on ξ in (31).<br />

Beta-type (ξ < 0): G(y) has support on µ < y < µ − σ/ξ. It has a<br />

short tail <strong>and</strong> a finite upper endpoint.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 76/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GPD III<br />

Exponential-type (ξ = 0): G(y) = 1 − exp{−(y − µ)/σ}. The<br />

limit ξ → 0 in the survivor function 1 − G gives the shifted<br />

exponential with mean µ + σ as a special case, This is a thin (some<br />

say medium) tailed distribution with the “memoryless”<br />

property P(Y > a + b|Y > a) = P(Y > b) for all a ≥ 0, b ≥ 0.<br />

Pareto-type (ξ > 0): G(y) ∼ 1 − cy −1/ξ for some c > 0 <strong>and</strong> y > µ.<br />

The tail is heavy, <strong>and</strong> follows Pareto’s “power law.”<br />

Also, the GPD has<br />

E(Y ) = µ + σ if ξ < 1,<br />

1 − ξ<br />

σ 2<br />

Var(Y ) =<br />

(1 − 2ξ)(1 − ξ) 2 if ξ < 1 2 .<br />

The mean is returned as the fitted value if gpd(percentile = NULL).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 77/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GPD IV<br />

1.0<br />

1.0<br />

0.8<br />

0.8<br />

0.6<br />

ξ = −0.25<br />

0.6<br />

ξ = 0<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

0.0<br />

0.0<br />

0 1 2 3<br />

0 1 2 3<br />

1.0<br />

1.0<br />

0.8<br />

0.8<br />

0.6<br />

0.4<br />

ξ = 0.25<br />

0.6<br />

0.4<br />

ξ = − 0.25<br />

ξ = 0<br />

ξ = 0.25<br />

0.2<br />

0.2<br />

0.0<br />

0.0<br />

0 1 2 3<br />

0 1 2 3<br />

Figure: GPD densities for values µ = 0, σ = 1, <strong>and</strong> ξ = − 1 4 , 0, 1 4 (beta-,<br />

exponential- <strong>and</strong> Pareto-types, respectively). The orange curve is the cdf, the<br />

1<br />

dashed purple segments divide the density into areas of<br />

10<br />

. The bottom RHS plot<br />

has the densities overlaid.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 78/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GPD V<br />

Figure: Two figures from<br />

http://www.isse.ucar.edu/<strong>extreme</strong>values/back.html.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 79/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GPD VI<br />

The GPD approach is considered superior to GEV modelling for several<br />

reasons.<br />

its <strong>data</strong> is made more efficient use of. Although the GEV can be<br />

adapted to model the top r values the GPD models any number of<br />

observations above a certain threshold, therefore is more general.<br />

GPD modelling allows x to be more efficiently used to explain y.<br />

This so-called peaks over thresholds (POT) approach also<br />

assumes Y 1 , Y 2 , . . . are an i.i.d. sequence from a marginal distribution F .<br />

Suppose Y has cdf F , <strong>and</strong> let Y ∗ = Y − u givenY > u. Then<br />

P(Y ∗ ≤ y ∗ ) = P(Y ≤ u + y ∗ |Y > u) = F (u + y ∗ ) − F (u)<br />

, y ∗ > 0.<br />

1 − F (u)<br />

If P(max(Y 1 , . . . , Y n ) ≤ y) ≈ G(y) for G in (29), <strong>and</strong> for sufficiently<br />

large u, then the distribution of Y − u|Y > u is approximately that of the<br />

GPD.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 80/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GPD VII<br />

Choosing a threshold<br />

In practice, this be a delicate matter. The bias-variance tradeoff means<br />

that if u is too high then the reduction in <strong>data</strong> means higher variance.<br />

Many applications of EVT do not have sufficient <strong>data</strong> anyway because<br />

<strong>extreme</strong>s are often rare events, therefore information loss is to be<br />

particularly avoided.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 81/101/ 101


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GPD VIII<br />

Mean excess plot<br />

It can be shown that if ξ < 1 then<br />

E(Y − u | 0 < u < Y ) = σ + ξ u<br />

1 − ξ . (32)<br />

This gives a simple diagnostic for threshold selection: the residual mean<br />

life (32) should be linear in u at levels for which the model is valid.<br />

Suggests producing an empirical plot of the residual life plot <strong>and</strong> looking<br />

for linearity. Plot the sample mean of excesses over u versus u. Look for<br />

linearity; slope is ξ/(1 − ξ). This is known as a mean life residual plot or a<br />

mean excess plot (meplot() in VGAM).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 82/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GPD IX<br />

The gpd() family accepts µ as known input <strong>and</strong> internally operates on the<br />

excesses y − µ. Note that the working weights W i in the IRLS algorithm<br />

are positive-definite only if ξ > − 1 2<br />

, <strong>and</strong> this is ensured with the default<br />

link g(ξ) = log(ξ + 1 2<br />

) for argument lshape.<br />

The fitted values of gpd() are percentiles obtained from (31):<br />

y p = µ + σ [ ]<br />

p −ξ − 1 , 0 < p < 1. (33)<br />

ξ<br />

If ξ = 0 then<br />

y p = µ − σ log(1 − p). (34)<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 83/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GPD X<br />

Regularity conditions<br />

In terms of regularity, the GPD is very similar to the GEV. Smith (1985)<br />

showed that for ξ > − 1 2<br />

the information matrix is finite <strong>and</strong> the classical<br />

asymptotic theory of MLEs is applicable, while for ξ ≤ − 1 2<br />

the problem is<br />

nonregular <strong>and</strong> special procedures are needed.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 84/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

GPD XI<br />

Independence<br />

Often threshold excesses are not independent, e.g., a hot day is likely to be<br />

followed by another hot day. There are various procedures to h<strong>and</strong>le<br />

dependence, e.g., model the dependence, de-clustering, <strong>and</strong> resampling to<br />

estimate st<strong>and</strong>ard errors.<br />

When the <strong>data</strong> do not come from an i.i.d. distribution we say the resulting<br />

model is non-stationary. There is no general theory for h<strong>and</strong>ling this.<br />

Furthermore, quantities such as return periods do not make sense anymore<br />

because the distribution is changing, e.g., over time. In application areas<br />

such as climatology there is a consensus in the scientific community that<br />

climate should no longer be regarded as stationary.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 85/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

The r-Largest Order Statistics<br />

Data: (x i , y i ) T , i = 1, . . . , n, where y i = (y i1 , . . . , y iri ) T ,<br />

y i1 ≥ y i2 ≥ · · · ≥ y iri . That is, the most <strong>extreme</strong> r i values (at a fixed value<br />

of x i ). We call this block <strong>data</strong>. Given x i , the <strong>data</strong> (not just the <strong>extreme</strong>s)<br />

are assumed to be i.i.d. realizations from F .<br />

Examples<br />

1 Venice sea levels <strong>data</strong>: x = 1931 to 1981, r i = 10 except for one i.<br />

2 The top 10 runners in each age group in a school are used to estimate<br />

the 99 percentile of running speed as a function of age.<br />

3 The 10 most intelligent children in each age group in a large school<br />

are tested with the same IQ test. Fixing the definition of “gifted” as<br />

being within the top 1%, the <strong>data</strong> helps determine the cut-off score<br />

for that particular IQ test for each age group in order to screen for<br />

gifted children.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 86/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

The Block-Gumbel Model I<br />

Suppose the maxima is Gumbel (GEV with ξ = 0) <strong>and</strong> let Y (1) , . . . , Y (r) be<br />

the r largest observations, such that Y (1) ≥ · · · ≥ Y (r) . Given that ξ = 0,<br />

the joint distribution of<br />

(<br />

Y(1) − b n<br />

a n<br />

, . . . , Y )<br />

(r) − b T n<br />

a n<br />

has, for large n, a limiting distribution, having density<br />

⎧<br />

⎨ (<br />

f (y (1) , . . . , y (r) ; µ, σ) = σ −r exp<br />

⎩ − exp − y )<br />

(r) − µ<br />

r∑<br />

( ) ⎫<br />

y(j) − µ ⎬<br />

−<br />

σ<br />

σ ⎭ ,<br />

for y (1) ≥ · · · ≥ y (r) . Can treat this as an approximate likelihood.<br />

j=1<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 87/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

The Block-Gumbel Model II<br />

Smith (1986) derived quantiles allowing µ to be linear in x. Rosen <strong>and</strong><br />

Cohen (1996) extended this to allow for smoothing splines—the VGAM<br />

framework!<br />

The VGAM family function gumbel() uses η(x) = (µ(x), log σ(x)) T by<br />

default, <strong>and</strong> that the likelihood used is only an approximate likelihood.<br />

Extreme quantiles for the block-Gumbel model can be calculated as<br />

follows. If the y i1 , . . . , y iri are the r i largest observations from a population<br />

of size R i at x i then a large α = 100(1 − c i /R i )% percentile of F can be<br />

estimated by<br />

ˆµ i − ˆσ i log c i . (35)<br />

For example, for the Venice <strong>data</strong>, R i = 365 (if all the <strong>data</strong> were collected<br />

there would be one observation per day of the year resulting in 365<br />

observations) <strong>and</strong> so a 99 percentile is obtained from ˆµ i − ˆσ i log(3.65).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 88/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

The Block-Gumbel Model III<br />

The median predicted value (MPV) for a particular year is the value for<br />

which the maximum of that year has an even chance of exceeding. It<br />

corresponds to c i = log(log(2)) ≈ −0.673 in (35).<br />

From a practical point of view, one weakness of the block-Gumbel model<br />

is that one often does not have sufficient <strong>data</strong> to verify the assumption<br />

that ξ = 0.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 89/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

> fit = vglm(cbind(r1, r2, r3, r4, r5) ~ year, <strong>data</strong> = venice,<br />

gumbel(R = 365, mpv = TRUE, zero = 2, lscale = "identity"))<br />

> coef(fit, matrix = TRUE)<br />

location scale<br />

(Intercept) -780.2947 12.76<br />

year 0.4583 0.00<br />

But a preliminary VGAM fitted to all the <strong>data</strong> is<br />

> ymatrix = as.matrix(venice[,paste("r", 1:10, sep = "")])<br />

> fit1 = vgam(ymatrix ~ s(year, df = 3), <strong>data</strong> = venice,<br />

gumbel(R = 365, mpv = TRUE), na.action = na.pass)<br />

> plot(fit1, se = TRUE, lcol = "blue", scol = "darkgreen",<br />

lty = 1, lwd = 2, slwd = 2, slty = "dashed")<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 90/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

20<br />

15<br />

0.2<br />

10<br />

s(year, df = 3):1<br />

5<br />

0<br />

−5<br />

s(year, df = 3):2<br />

0.1<br />

0.0<br />

−10<br />

−0.1<br />

−15<br />

1930 1940 1950 1960 1970 1980<br />

year<br />

1930 1940 1950 1960 1970 1980<br />

year<br />

It appears that the first function, µ, is linear <strong>and</strong> the second, σ, may be<br />

constant. Let’s fit such a model.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 91/101/ 101


Extreme value <strong>data</strong> <strong>analysis</strong><br />

> fit2 = vglm(ymatrix ~ year, gumbel(R = 365, mpv = TRUE, zero = 2),<br />

venice, na.action = na.pass)<br />

> head(fitted(fit2), 4)<br />

95% 99% MPV<br />

1 67.78 88.79 110.5<br />

2 68.26 89.27 111.0<br />

3 68.75 89.75 111.4<br />

4 69.23 90.24 111.9<br />

> qtplot(fit2, lcol = c(1, 2, 5), tcol = c(1, 2, 5),<br />

mpv = TRUE, lwd = 2, pcol = "blue", tadj = 0.1)<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 92/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

●<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●<br />

● ● ●<br />

● ●<br />

●<br />

● ●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

● ●<br />

● ●<br />

● ●<br />

● ●<br />

●<br />

● ●<br />

●<br />

● ●<br />

●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

●<br />

●<br />

●<br />

●<br />

● ● ●<br />

● ●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ● ● ●<br />

● ●<br />

●<br />

● ● ● ●<br />

● ●<br />

● ●<br />

● ● ●<br />

●<br />

●<br />

● ●<br />

● ● ● ● ●<br />

●<br />

●<br />

● ● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ● ●<br />

●<br />

●<br />

● ● ● ●<br />

● ●<br />

●<br />

● ● ●<br />

● ● ● ●<br />

●<br />

● ●<br />

●<br />

●<br />

● ● ●<br />

●<br />

●<br />

MPV<br />

99%<br />

95%<br />

1930 1940 1950 1960 1970 1980<br />

year<br />

Clearly, it appears that the response is increasing over time, <strong>and</strong> that a<br />

linear model appears to do well.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 93/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

> summary(fit2)<br />

Call:<br />

vglm(formula = ymatrix ~ year, family = gumbel(R = 365, mpv = TRUE,<br />

zero = 2), <strong>data</strong> = venice, na.action = na.pass)<br />

Pearson Residuals:<br />

Min 1Q Median 3Q Max<br />

location -2.1 -0.87 -0.30 0.75 3.0<br />

log(scale) -1.7 -1.02 -0.59 0.32 4.6<br />

Coefficients:<br />

Estimate Std. Error z value<br />

(Intercept):1 -826.62 77.396 -11<br />

(Intercept):2 2.57 0.042 61<br />

year 0.48 0.040 12<br />

Number of linear predictors: 2<br />

Names of linear predictors: location, log(scale)<br />

Dispersion Parameter for gumbel family: 1<br />

Log-likelihood: -1086 on 99 degrees of freedom<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 94/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

Number of iterations: 5<br />

All the linear coefficients are significant.<br />

The rest of the <strong>analysis</strong> follows Rosen <strong>and</strong> Cohen (1996) but allows for the<br />

missing values. We’ll use fit1. Following (35),<br />

> with(venice, matplot(year, ymatrix, ylab = "sea level (cm)", type = "n"))<br />

> with(venice, matpoints(year, ymatrix, pch = "*", col = "blue"))<br />

> with(venice, lines(year, fitted(fit1)[, "99%"], lwd = 2, col = "red"))<br />

produces the 99 percentiles of the distribution. That is, for any particular<br />

year, we should expect 99% × 365 ≈ 361 observations below the line, or<br />

equivalently, 4 observations above the line. It is seen that there is a<br />

general increase in <strong>extreme</strong> sea levels over time (or that Venice is sinking).<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 95/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

sea level (cm)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

* *<br />

*<br />

*<br />

*<br />

* *<br />

*<br />

*<br />

* *<br />

*<br />

*<br />

*<br />

*<br />

* *<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

* * * * *<br />

* * * *<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

* * * * * * *<br />

* *<br />

*<br />

* *<br />

* *<br />

*<br />

*<br />

* *<br />

*<br />

* * * *<br />

* * *<br />

*<br />

* * *<br />

*<br />

* * * * * * *<br />

*<br />

*<br />

* *<br />

* * * *<br />

*<br />

* * *<br />

* * *<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

* * * * * *<br />

* * *<br />

* * *<br />

* * * *<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

* * * * * * * * * * * * * *<br />

*<br />

* * * * * * * * * *<br />

*<br />

*<br />

* * * * *<br />

*<br />

* *<br />

*<br />

* *<br />

* *<br />

1930 1940 1950 1960 1970 1980<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 96/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

To check this,<br />

> with(venice, plot(year, ymatrix[, 4], ylab = "sea level", type = "n"))<br />

> with(venice, points(year, ymatrix[, 4], pch = "4", col = "blue"))<br />

> with(venice, lines(year, fitted(fit1)[, "99%"], lty = 1, col = "red"))<br />

> with(venice, lines(smooth.spline(year, ymatrix[, 4], df = 4),<br />

col = "darkgreen", lty = 3))<br />

130<br />

4<br />

4<br />

120<br />

sea level<br />

110<br />

100<br />

90<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4 4<br />

4<br />

4 4<br />

4<br />

4<br />

4<br />

4<br />

4 4<br />

4<br />

4<br />

4<br />

4<br />

4 4<br />

4 4 4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4 4<br />

4<br />

4<br />

4 4 4<br />

80<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

1930 1940 1950 1960 1970 1980<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 97/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

This plot compares a cubic spline fitted to the fourth order statistic<br />

(4/365 ≈ 1%) values with the fitted 99 percentile values of the<br />

block-Gumbel model. Although both have approximately the same amount<br />

of smoothing, the cubic spline is less wiggly. However, the overall results<br />

are very similar.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 98/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

Finally, the following figure plots the median predicted value. It was<br />

produced by<br />

> with(venice, plot(year, ymatrix[, 1], ylab = "sea level", type = "n"))<br />

> with(venice, points(year, ymatrix[, 1], pch = "1", col = "blue"))<br />

> with(venice, lines(year, fitted(fit1)[, "MPV"], lty = 1, col = "red"))<br />

> with(venice, lines(smooth.spline(year, ymatrix[, 1], df = fit1@nl.df[1]+2<br />

col = "darkgreen", lty = 3))<br />

sea level<br />

180<br />

160<br />

140<br />

120<br />

100<br />

1<br />

1<br />

1 1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1 1<br />

1<br />

1 1 1<br />

1<br />

1<br />

1 1 1<br />

1<br />

1<br />

1 1<br />

1 1 1 1 1 1<br />

1 1 1 1<br />

1 1 1<br />

1 1<br />

1 1<br />

1 1 1<br />

1<br />

1<br />

1<br />

1<br />

80<br />

1<br />

1930 1940 1950 1960 1970 1980<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 99/101/


Extreme value <strong>data</strong> <strong>analysis</strong><br />

The MPV for a particular year is the value for which the maximum of that<br />

year has an even chance of exceeding. It is evident from this plot too that<br />

the sea level is increasing over time.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 100 100/101 / 101


Concluding remarks<br />

Concluding remarks<br />

1 The VGLM/VGAM/RR-VGLM framework naturally accomodates a<br />

rich class of methods for quantile <strong>and</strong> <strong>expectile</strong> <strong>regression</strong>.<br />

2 The framework also accomodates the two most important <strong>extreme</strong><br />

distributions.<br />

3 Both areas need more development in terms of theory <strong>and</strong> software.<br />

© T. W. Yee (University of Auckl<strong>and</strong>) <strong>Quantile</strong>/<strong>expectile</strong> <strong>regression</strong>, <strong>and</strong> <strong>extreme</strong> <strong>data</strong> <strong>analysis</strong> 18 July 2012 @ Cagliari 101 101/101 /

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!