28.07.2014 Views

Solution to selected problems.

Solution to selected problems.

Solution to selected problems.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

20. Applying I<strong>to</strong>’s formula <strong>to</strong> u ∈ C 2 (R 3 − {0}) and B t ∈ R 3 \{0}, ∀t, a.s.<br />

u(B t ) = u(x) +<br />

∫ t<br />

0<br />

∇u(B s ) · dB s + 1 2<br />

∫ t<br />

0<br />

△u(B s )ds = 1<br />

‖x‖ + 3∑<br />

i=1<br />

∫ t<br />

0<br />

∂ i u(B s )dB i s<br />

and M t = u(B t ) is a local martingale. This solves (a). Fix 1 ≤ α ≤ 3. Observe that E(u(B 0 ) α ) <<br />

∞. Let p, q be a positive number such that 1/p + 1/q = 1. Then<br />

∫<br />

E x (u(B t ) α 1 1<br />

‖x−y‖2<br />

) =<br />

R 3 ‖y‖ α e− 2t dy<br />

(2πt) 3/2<br />

∫<br />

∫<br />

1 1<br />

‖x−y‖2<br />

1 1<br />

‖x−y‖2<br />

=<br />

{B(0;1)∩B c (x;δ)} ‖y‖ α e− 2t dy +<br />

(2πt) 3/2<br />

R 3 \{B(0;1)∩B c (x;δ)} ‖y‖ α e− 2t dy<br />

(2πt) 3/2<br />

∫<br />

≤<br />

sup<br />

y∈{B(0;1)∩B c (x;δ)}<br />

+<br />

1<br />

(2πt) 3 2<br />

( ∫<br />

R 3 \{B(0;1)∩B c (x;δ)}<br />

e − ‖x−y‖2<br />

2t ·<br />

B(0;1)<br />

1<br />

‖y‖ α dy<br />

1<br />

‖y‖ αp dy ) 1/p ( ∫<br />

R 3 \{B(0;1)∩B c (x;δ)}<br />

(<br />

1<br />

‖x−y‖2<br />

e− 2t<br />

(2πt) 3/2<br />

) q<br />

dy) 1/q<br />

Pick p > 3/α > 1. Then the first term goes <strong>to</strong> 0 as t → ∞. In particular it is finite for all t ≥ 0.<br />

The first fac<strong>to</strong>r in the second term is finite while the second fac<strong>to</strong>r goes <strong>to</strong> 0 as t → ∞ since<br />

∫<br />

1 1<br />

(2πt) 3/2 (2πt)<br />

3(q−1)/2<br />

e−<br />

‖x−y‖2<br />

2t/q<br />

dy =<br />

∫<br />

1<br />

(2πt) 3(q−1)/2<br />

1 1<br />

‖x−y‖2<br />

q 3/2 e− 2t/q<br />

dy =<br />

(2πt/q) 3/2<br />

1 1<br />

(2πt) 3(q−1)/2 q 3/2<br />

and the second fac<strong>to</strong>r is finite for all t ≥ 0. (b) is shown with α = 1. (c) is shown with α = 2. It<br />

also shows that<br />

lim<br />

t→∞ Ex (u((B t ) 2 ) = 0<br />

which in turn shows (d).<br />

21. Applying integration by parts <strong>to</strong> (A ∞ − A·)(C ∞ − C . ),<br />

(A ∞ − A·)(C ∞ − C . ) = A ∞ C ∞ −<br />

∫ ·<br />

Since A, C are processes with finite variation,<br />

[A, C] t = ∑<br />

△A s △C s<br />

∫ t<br />

0<br />

(A ∞ − A s− )dC s =<br />

Substituting these equations,<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!