29.07.2014 Views

TUTORIAL 5 SOLUTIONS #8.10.47 The Pareto distribution has ...

TUTORIAL 5 SOLUTIONS #8.10.47 The Pareto distribution has ...

TUTORIAL 5 SOLUTIONS #8.10.47 The Pareto distribution has ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>TUTORIAL</strong> 5 <strong>SOLUTIONS</strong><br />

<strong>#8.10.47</strong> <strong>The</strong> <strong>Pareto</strong> <strong>distribution</strong> <strong>has</strong> been<br />

used in economics as a model for a density<br />

function with a slowly decaying tail:<br />

f(x|x 0 ,θ)=θx θ 0 x−θ−1 , x ≥ x 0 ,θ >1.<br />

Assume that x 0 > 0 is given and that<br />

X 1 ,...,X n is an i.i.d. sample.<br />

a. Find the method of moments estimate of<br />

θ.<br />

b. Find the mle of θ.<br />

c. Find the asymptotic variance of the mle.<br />

d. Find a sufficient statistic for θ.<br />

Solution<br />

a. Let µ = E(X 1 ). <strong>The</strong>n<br />

µ =<br />

∫ ∞<br />

x 0<br />

xθx θ 0 x−θ−1 dx<br />

1


= θx θ 0 ( x−θ+1<br />

−θ +1 )|∞ x 0<br />

= x 0θ<br />

θ − 1 .<br />

Thus θ = µ/(µ − x 0 ) and the method of<br />

moments estimate of θ is<br />

ˆθ =ˆµ 1 /(ˆµ 1 − x 0 )= ¯X/( ¯X − x 0 ).<br />

b. <strong>The</strong> loglikelihood function is<br />

n∏<br />

l(θ) = log[ θx θ 0 x−θ−1 i<br />

]<br />

Thus<br />

i=1<br />

= n log(θ)+nθ log(x 0 )<br />

n∑<br />

−(θ +1) log(x i ), x ≥ x 0 .<br />

i=1<br />

l ′ (θ) = n θ + n log(x 0) −<br />

n∑<br />

log(x i ).<br />

i=1<br />

2


Solving for l ′ (θ) = 0, the mle of θ is given<br />

by<br />

n<br />

˜θ = ∑ ni=1<br />

log(X i ) − n log(x 0 ) .<br />

c. <strong>The</strong> asymptotic variance of the mle is<br />

1/[nI(θ)]. Now<br />

I(θ) =−E[ ∂2<br />

∂θ 2 log f(X 1|θ)]<br />

= −E{ ∂2<br />

∂θ 2[log(θ)<br />

+θ log(x 0 ) − (θ + 1) log(X 1 )]}<br />

= 1 θ 2.<br />

Hence the asymptotic variance of the mle ˜θ<br />

is θ 2 /n.<br />

3


d. Observe that the joint pdf of X =<br />

(X 1 ,...,X n )is<br />

n∏<br />

f(x|θ) =<br />

where<br />

i=1<br />

θx θ 0 x−θ−1 i<br />

= θ n x nθ<br />

0 ( n ∏<br />

i=1<br />

= g(t, θ)h(x),<br />

t =<br />

n∏<br />

x i ,<br />

i=1<br />

x i ) −θ−1<br />

g(t, θ) =θ n x nθ<br />

0 t−θ−1 ,<br />

h(x) =1.<br />

By the factorization theorem, T (X) = ∏ n<br />

i=1 X i<br />

is sufficient for θ.<br />

4


#8.10.53 Let X 1 ,...,X n be i.i.d. uniform<br />

on [0,θ].<br />

a. Find the method of moments estimate of<br />

θ and its mean and variance.<br />

b. Find the mle of θ.<br />

c. Find the probability density of the mle,<br />

and calculate its mean and variance. Compare<br />

the variance, the bias, and the mean<br />

squared error to those of the method of<br />

moments estimate.<br />

d. Find a modification of the mle that renders<br />

it unbiased.<br />

Solution<br />

a. Let µ = E(X 1 ). <strong>The</strong>n<br />

and θ =2µ.<br />

µ = 1 θ<br />

∫ θ<br />

0<br />

xdx = θ 2 ,<br />

5


Thus the method of moments estimate of<br />

θ is<br />

ˆθ =2ˆµ 1 =2¯X.<br />

Also,<br />

E(ˆθ) =2E( ¯X) =2( θ 2 )=θ,<br />

Var(ˆθ) = Var(2 ¯X) = 4 n Var(X 1)= θ2<br />

3n ,<br />

since<br />

Var(X 1 )= 1 ∫ θ<br />

x 2 dx − (EX<br />

θ<br />

1 ) 2 = θ2<br />

12 .<br />

b. <strong>The</strong> likelihood function is<br />

n∏ 1<br />

lik(θ) =<br />

θ I{x i ≤ θ}<br />

i=1<br />

0<br />

= 1<br />

θ nI{max(x 1,...,x n ) ≤ θ}.<br />

<strong>The</strong> maximum of lik(θ) occurs at θ = max(x 1 ,<br />

...,x n ) and hence the mle of θ is<br />

˜θ = max(X 1 ,...,X n ).<br />

6


c. Observe that the cdf of ˜θ is given by<br />

F˜θ(x) =P (˜θ ≤ x)<br />

= P (max(X 1 ,...,X n ) ≤ x)<br />

n∏<br />

= P (X i ≤ x)<br />

i=1<br />

=( x θ )n .<br />

<strong>The</strong> pdf f˜θ(x) is<br />

f˜θ(x) = d<br />

dx F˜θ(x) = nxn−1<br />

θ n ,<br />

whenever 0 ≤ x ≤ θ. Also,<br />

E(˜θ) = 1 ∫ θ<br />

θ n nx n dx =<br />

nθ<br />

0 n +1 ,<br />

bias = E(˜θ) − θ = −<br />

θ<br />

n +1 ,<br />

Var( ˜θ) = 1 ∫ θ<br />

θ n nx n+1 dx − ( nθ<br />

n +1 )2<br />

=<br />

0<br />

nθ 2<br />

(n +1) 2 (n +2) .<br />

7


<strong>The</strong> MSE of ˜θ is<br />

MSE(˜θ) =Var(˜θ) + Bias 2<br />

=<br />

=<br />

nθ 2<br />

(n +1) 2 (n +2) +(− θ<br />

n +1 )2<br />

2θ 2<br />

(n + 1)(n +2) .<br />

Comparison of ˆθ and ˜θ<br />

Even though ˆθ is an unbiased estimator<br />

of θ while ˜θ is a biased estimator of θ, the<br />

MSE of ˜θ is dramatically smaller (for large<br />

n) than the MSE of ˆθ.<br />

d. <strong>The</strong> following modification of the mle<br />

makes it unbiased:<br />

θ ∗ (n +1)˜θ<br />

=<br />

n<br />

since<br />

E(θ ∗ )= n +1<br />

n<br />

E(˜θ) =θ.<br />

8


#8.10.57 This problem is concerned with<br />

the estimation of the variance of a normal<br />

<strong>distribution</strong> with unknown mean from a sample<br />

X 1 ,...,X n of i.i.d. normal random variables.<br />

In answering the following questions,<br />

use the fact that (from <strong>The</strong>orem B of Section<br />

6.3)<br />

(n − 1)s 2<br />

∼ χ 2 n−1<br />

σ 2<br />

and that the mean and variance of a chisquare<br />

random variable with r df are r and<br />

2r respectively.<br />

a. Which of the following estimates is unbiased?<br />

s 2 = 1 n∑<br />

(X<br />

n − 1 i − ¯X) 2 ,<br />

i=1<br />

ˆσ 2 = 1 n∑<br />

(X<br />

n i − ¯X) 2 .<br />

i=1<br />

9


. Which of the estimates given in part (a)<br />

<strong>has</strong> the smaller MSE?<br />

c. For what value of ρ does<br />

n∑<br />

ρ (X i − ¯X) 2<br />

i=1<br />

have the minimal MSE?<br />

Solution<br />

a. Recall from Section 6.3 that (n−1)s 2 /σ 2 ∼<br />

χ 2 n−1 <strong>distribution</strong>. Hence<br />

(n − 1)s2<br />

E<br />

σ 2 = n − 1<br />

which implies that<br />

E(s 2 )=σ 2 ,<br />

E(ˆσ 2 )= n − 1<br />

n σ2 .<br />

Thus s 2 is an unbiased estimate of σ 2 .<br />

10


. Since (n − 1)s 2 /σ 2 ∼ χ 2 n−1 <strong>distribution</strong>,<br />

we have<br />

(n − 1)s2<br />

Var(<br />

σ 2 )=2(n − 1).<br />

Thus<br />

Var(s 2 )=<br />

2σ4<br />

n − 1 ,<br />

Var(ˆσ 2 ) = Var( n − 1 2(n −<br />

n s2 1)σ4<br />

)=<br />

n 2 ,<br />

MSE(s 2 ) = Var(s 2 )+[E(s 2 ) − σ 2 ] 2<br />

= 2σ4<br />

n − 1 ,<br />

MSE(ˆσ 2 ) = Var(ˆσ 2 )+[E(ˆσ 2 ) − σ 2 ] 2<br />

=<br />

=<br />

2(n − 1)σ4<br />

n 2 + σ4<br />

n 2<br />

(2n − 1)σ4<br />

n 2 .<br />

11


Consequently we conclude that ˆσ 2 <strong>has</strong> the<br />

smaller MSE since<br />

c. Let<br />

MSE(ˆσ 2 ) < MSE(s 2 ).<br />

n<br />

ˆσ ρ 2 = ρ ∑<br />

(X i − ¯X) 2 .<br />

i=1<br />

<strong>The</strong>n ˆσ 2 ρ =(n − 1)ρs2 . As in part (b), we<br />

have<br />

E(ˆσ ρ)=(n 2 − 1)ρσ 2 ,<br />

Var(ˆσ ρ)=(n 2 − 1) 2 ρ 2 Var(s 2 )<br />

=2(n − 1)ρ 2 σ 4 .<br />

12


Finally,<br />

and<br />

MSE(ˆσ ρ)<br />

2<br />

=Var(ˆσ ρ)+[E(ˆσ 2 ρ) 2 − σ 2 ] 2<br />

=2(n − 1)ρ 2 σ 4 +[nρσ 2 − (ρ +1)σ 2 ] 2<br />

= σ 4 (1 + 2ρ − 2nρ − ρ 2 + n 2 ρ 2 ).<br />

d<br />

dρ MSE(ˆσ2 ρ )<br />

= σ 4 (2 − 2n − 2ρ +2n 2 ρ).<br />

Solving for (d/dρ)MSE(ˆσ ρ 2 ) = 0, we obtain<br />

ρ = 1<br />

n +1 .<br />

ˆσ ρ 2 <strong>has</strong> the smallest MSE when ρ =1/(n +<br />

1).<br />

13


#8.10.60 Let X 1 ,...,X n be an i.i.d. sample<br />

from an exponential <strong>distribution</strong> with<br />

the density function<br />

f(x|τ) = 1 τ e−x/τ , 0 ≤ x


g. Find the form of an exact confidence interval<br />

for τ.<br />

Solution<br />

a. Writing X =(X 1 ,...,X n ), the loglikelihood<br />

function is<br />

n∏ 1<br />

l(τ) = log<br />

τ e−x i/τ<br />

Also,<br />

i=1<br />

= −n log(τ) − 1 τ<br />

l ′ (τ) =− n τ + 1<br />

τ 2<br />

n ∑<br />

i=1<br />

n∑<br />

x i .<br />

i=1<br />

x i .<br />

Solving for l ′ (τ) = 0, the mle of τ is<br />

ˆτ = ¯X.<br />

15


. We note from Chapter 4.5 of the text<br />

that<br />

S = X 1 + ···+ X n ∼ Γ(n, 1 τ ).<br />

Hence the pdf of ¯X = S/n is<br />

f ¯X(x) =<br />

sn−1<br />

τ n Γ(n) e−s/τ | ds<br />

dx |<br />

= nn x n−1<br />

τ n Γ(n) e−nx/τ , x > 0,<br />

which is the pdf of the Γ(n, n/τ) <strong>distribution</strong>.<br />

c. and d. Since ¯X ∼ Γ(n, n/τ), we have<br />

E( ¯X) =τ,<br />

Var( ¯X) = τ 2<br />

n .<br />

From the CLT, ( ¯X − τ)/ √ τ 2 /n is approximately<br />

distributed as N(0, 1) for large n.<br />

16


e. <strong>The</strong> Cramér-Rao lower bound is 1/[nI(τ)]<br />

where<br />

I(τ) =−E[ ∂2<br />

∂τ 2 log(1 τ e−X1/τ )]<br />

= − 1<br />

τ 2 + E(2X 1<br />

τ 3 )<br />

= 1<br />

τ 2,<br />

since E(X 1 ) = τ. This implies that the<br />

Cramér-Rao lower bound is<br />

[nI(τ)] −1 = τ 2 /n.<br />

This lower bound equals the variance of ¯X.<br />

Hence we conclude that there is no other<br />

unbiased estimate of τ with a smaller variance<br />

than ¯X.<br />

17


f. From part (c), we have ( ¯X −τ)/ √ τ 2 /n<br />

is approximately distributed as N(0, 1) for<br />

large n.<br />

Hence an approximate 100(1 − α)% CI for<br />

τ is<br />

¯X ± z 1−α/2<br />

τ<br />

√ n<br />

≈ ¯X ± z 1−α/2<br />

¯X√n ,<br />

or equivalently the set of τ’s satisfying<br />

τ<br />

τ − z 1−α/2 √ ≤ ¯X τ<br />

≤ τ + z n 1−α/2 √ . n<br />

18


g. Note that ¯X <strong>has</strong> exactly the Γ(n, n/τ)<br />

<strong>distribution</strong>.<br />

Let G τ (α) denote the 100α percentile of<br />

the Γ(n, n/τ) <strong>distribution</strong>, i.e.<br />

P ( ¯X ≤ G τ (α)) = α.<br />

<strong>The</strong>n an exact 100(1 − α)% CI for τ is<br />

given by the set of τ’s satisfying<br />

G τ (α/2) ≤ ¯X ≤ G τ (1 − α/2).<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!