31.07.2014 Views

13-4 Ligands in Organometallic Chemistry

13-4 Ligands in Organometallic Chemistry

13-4 Ligands in Organometallic Chemistry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter <strong>13</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

<strong>13</strong>-1 Historical Background<br />

<strong>13</strong>-2 Organic <strong>Ligands</strong> and Nomenclature<br />

<strong>13</strong>-3 The 18-Electron Rule<br />

<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

<strong>13</strong>-5 Bond<strong>in</strong>g Between Metal Atoms and Organic π Systems<br />

<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C, and M≡C Bonds<br />

<strong>13</strong>-7 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes<br />

“Inorganic <strong>Chemistry</strong>” Third Ed. Gary L. Miessler, Donald A. Tarr, 2004, Pearson Prentice Ha<br />

http://en.wikipedia.org/wiki/Expedia


<strong>13</strong>-1 Historical Background<br />

Sandwich compounds<br />

Cluster compounds


<strong>13</strong>-1 Historical Background<br />

Other examples of organometallic compounds


<strong>13</strong>-1 Historical Background<br />

<strong>Organometallic</strong> Compound<br />

<strong>Organometallic</strong> chemistry is the study of chemical compounds<br />

conta<strong>in</strong><strong>in</strong>g bonds between carbon and a metal.<br />

<strong>Organometallic</strong> chemistry comb<strong>in</strong>es aspects of <strong>in</strong>organic<br />

chemistry and organic chemistry.<br />

<strong>Organometallic</strong> compounds f<strong>in</strong>d practical use <strong>in</strong> stoichiometric<br />

and catalytically active compounds.<br />

Electron count<strong>in</strong>g is key <strong>in</strong> understand<strong>in</strong>g organometallic<br />

chemistry. The 18-electron rule is helpful <strong>in</strong> predict<strong>in</strong>g the<br />

stabilities of organometallic compounds. <strong>Organometallic</strong><br />

compounds which have 18 electrons (filled s, p, and d orbitals)<br />

are relatively stable. This suggests the compound is isolable, but<br />

it can result <strong>in</strong> the compound be<strong>in</strong>g <strong>in</strong>ert.


<strong>13</strong>-1 Historical Background<br />

In attempt to synthesize fulvalene<br />

Produced an orange solid (ferrocene)<br />

Discovery of ferrocene began the era of modern organometallic<br />

chemistry.<br />

Staggered r<strong>in</strong>gs Eclipsed r<strong>in</strong>gs Skew r<strong>in</strong>gs


<strong>13</strong>-2 Organic <strong>Ligands</strong> and Nomenclature<br />

Write hydrocarbon ligands before the metal.<br />

η<br />

superscript<br />

Bridg<strong>in</strong>g ligand - μ<br />

Subscript <strong>in</strong>dicat<strong>in</strong>g the number of metal atoms bridged.


<strong>13</strong>-2 Organic <strong>Ligands</strong> and Nomenclature


<strong>13</strong>-3 The 18-Electron Rule<br />

; count<strong>in</strong>g electrons<br />

In ma<strong>in</strong> group chemistry, the octet rule<br />

Donor Pair method<br />

Neutral Ligand method


<strong>13</strong>-3 The 18-Electron Rule<br />

; count<strong>in</strong>g electrons<br />

M-M s<strong>in</strong>gle bond counts as one electron per metal


<strong>13</strong>-3 The 18-Electron Rule<br />

; why 18 electrons?<br />

s 2 p 6 vs s 2 p 6 d 10<br />

Have to consider<br />

types of ligand<br />

Strong σ–donor<br />

ability of CO<br />

Strong π–acceptor<br />

ability of CO<br />

Good for 18-<br />

electron rule


<strong>13</strong>-3 The 18-Electron Rule<br />

; why 18 electrons?<br />

[Zn(en) 3 ] 2+ ; ?? Electron species<br />

good σ-donor not as strong as CO<br />

e g orbitals are not sufficiently<br />

antibond<strong>in</strong>g<br />

TiF 6<br />

2-<br />

; ?? Electron species<br />

σ-donor<br />

π-donor<br />

What happen?


Ligand field theory;<br />

Pi-Bond<strong>in</strong>g<br />

metal-to-ligand π bond<strong>in</strong>g<br />

or π back-bond<strong>in</strong>g<br />

-Increase stability<br />

-Low-sp<strong>in</strong> configuration<br />

-Result of transfer of<br />

negative charge away from<br />

the metal ion<br />

Ligand-to metal π bond<strong>in</strong>g<br />

-decrease stability<br />

-high-sp<strong>in</strong> configuration


<strong>13</strong>-3 The 18-Electron Rule<br />

; square-planar complexes<br />

16 electron complexes<br />

might be stable<br />

Square-planar<br />

complexes have<br />

important catalytic<br />

behavior<br />

Why?


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; carbonyl (CO) complexes


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; carbonyl (CO) complexes


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; carbonyl (CO) complexes<br />

Experimental evidence<br />

Free CO vs M-CO<br />

Infrared spectroscopy and X-ray crystallography<br />

Free CO has a C-O stretch at 2143 cm -1<br />

Cr(CO) 6 has a C-O stretch at 2000 cm -1<br />

C-O distance 112.8 pm<br />

Metal complexes 115 pm


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; carbonyl (CO) complexes<br />

In general, the more negative the charge on the<br />

organometallic species, the greater the tendency<br />

of the metal to donate electrons to the π* orbitals<br />

of CO and the lower the energy of the C-O<br />

stretch<strong>in</strong>g vibrations.


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; bridg<strong>in</strong>g modes of CO


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; bridg<strong>in</strong>g modes of CO<br />

Term<strong>in</strong>al and bridg<strong>in</strong>g carbonyl ligands can be<br />

considered 2-electron donors.


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; bridg<strong>in</strong>g modes of CO


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; b<strong>in</strong>ary carbonyl complexes<br />

17-e - too small to permit a<br />

seventh coord<strong>in</strong>ation site<br />

B<strong>in</strong>ary carbonyl complexes<br />

More detail<br />

analysis is<br />

necessary


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; b<strong>in</strong>ary carbonyl complexes<br />

Synthesis of b<strong>in</strong>ary carbonyl complexes<br />

1. Direct reaction of a transition metal and CO; high T & P<br />

2. Reductive carbonylations<br />

3. Thermal or photochemical reaction<br />

Exchange reaction


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; oxygen-bonded cabonyls


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands similar to CO<br />

CS, CSe<br />

Similar to CO <strong>in</strong> their bond<strong>in</strong>g modes<br />

In term<strong>in</strong>al or bridg<strong>in</strong>g<br />

CS usually functions as a stronger σ donor and π acceptor<br />

than CO<br />

isoelectronic; CN - and N 2<br />

CN - is a stronger σ donor and a somewhat π weaker<br />

acceptor than CO<br />

CN - bonds readily to metals hav<strong>in</strong>g higher oxidation states<br />

N 2 is a weaker donor and acceptor than CO<br />

Nitrogen fixation


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands similar to CO; NO complexes


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; hydride and dihydrogen complexes<br />

Organic synthesis,<br />

catalytic reaction<br />

Hydride complexes


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; hydride and dihydrogen complexes<br />

Organic synthesis,<br />

catalytic reaction<br />

Dihydrogen complexes<br />

Distance of H-H<br />

the metal is electron rich and donate<br />

strongly to the π* of H 2 → ???<br />

with CO and NO → ???


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands hav<strong>in</strong>g extended π systems<br />

π bond<strong>in</strong>g with<strong>in</strong> the ligands themselvesl<strong>in</strong>ear<br />

systems


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands hav<strong>in</strong>g extended π systems<br />

π bond<strong>in</strong>g with<strong>in</strong> the ligands themselvesl<strong>in</strong>ear<br />

systems


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands hav<strong>in</strong>g extended π systems<br />

π bond<strong>in</strong>g with<strong>in</strong> the ligands themselvescyclic<br />

systems


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands hav<strong>in</strong>g extended π systems<br />

π bond<strong>in</strong>g with<strong>in</strong> the ligands themselvescyclic<br />

systems


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; l<strong>in</strong>ear π systems<br />

π –ethylene complexes<br />

Typically bent back<br />

away from the metal<br />

π-bond<strong>in</strong>g electron pair<br />

the empty π*-orbital<br />

Free ethylene <strong>13</strong>3.7 pm, 1623 cm -1<br />

Coord<strong>in</strong>ated ethylene <strong>13</strong>7.5 pm, 1516 cm -1


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; l<strong>in</strong>ear π systems<br />

π –allyl complexes<br />

acceptor<br />

Donor or acceptor<br />

donor


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; l<strong>in</strong>ear π systems<br />

π –allyl complexes<br />

Conversion between η 1 and η 3<br />

Catalytic reaction<br />

Other l<strong>in</strong>ear π systems


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems<br />

Cyclopentadienyl (Cp) complexes<br />

η 1 , η 3 and η 5<br />

C 5 (CH 3 ) 5 Cp*<br />

Gas phase and low-T<br />

Most stable conformation


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems


olecular orbital<br />

nergy levels of<br />

errocene<br />

<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems<br />

Other metallocenes<br />

# of electron → stability → reactivity


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems<br />

Complexes<br />

conta<strong>in</strong><strong>in</strong>g<br />

cyclopentadienyl and<br />

CO ligand<br />

Half-sandwich


<strong>13</strong>-5 Fullerene Complexes<br />

Types of fullerene complexes<br />

1. Adducts to the oxygens<br />

2. As a lignd<br />

3. Encapsulated metals<br />

4. Intercalation compounds of alkali metals<br />

Adducts to the oxygens


<strong>13</strong>-5 Fullerene Complexes<br />

As ligands<br />

Dihapto, pentahepto, hexahapto<br />

Displacement reaction<br />

More than one metal


<strong>13</strong>-5 Fullerene Complexes<br />

C 70<br />

η 2 -η 2 -η 2 and η 5


<strong>13</strong>-5 Fullerene Complexes<br />

Encapsulated metals<br />

By laser-<strong>in</strong>duced vapor phase reactions between carbon and the metal<br />

La@C 82 ; La 3+ , C 82<br />

3-


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; alkyl and related complexes<br />

Synthetic route<br />

Relatively rare: k<strong>in</strong>etically unstable and difficult to isolate<br />

Enhanc<strong>in</strong>g the stability; By block<strong>in</strong>g pathways to decomposition<br />

mtallacycle<br />

Proposed as <strong>in</strong>termediates <strong>in</strong> a variety catalytic processes


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; alkyl and related complexes


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; carbene complexes<br />

d orbital<br />

p orbital


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; carbene complexes<br />

2-electron donor<br />

Highly electronegative atom can participate <strong>in</strong> the π bond<strong>in</strong>g → stabilize


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; carbene complexes<br />

Olef<strong>in</strong> metathesis<br />

Highly nucleophilic reagent<br />

X-ray; Cr-C, C-O<br />

NMR; RT (one signal), low T (two peak)<br />

Why?<br />

C-O 143 pm<br />

C=O 116pm<br />

Highly electronegative atom can participate <strong>in</strong> the π bond<strong>in</strong>g → stabilize


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; carbyne (alkylidyne) complexes<br />

3-electron donor<br />

Lewis acid<br />

σ donor<br />

π acceptor


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; IR spectra<br />

X-ray, Mass spectrometry, elemental<br />

analysis, conductivity measurement etc<br />

# of bands<br />

Provide clues to the geometry or symmetry


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; IR spectra


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; IR spectra<br />

positions of bands<br />

Provide clues to the electronic environment on the metal<br />

The greater the electronic density on the metal → ???<br />

In general, the more negative the charge on the<br />

organometallic species, the greater the tendency<br />

of the metal to donate electrons to the π* orbitals<br />

of CO and the lower the energy of the C-O<br />

stretch<strong>in</strong>g vibrations.


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; IR spectra<br />

What do you get from this data?<br />

Other ligands also have similar correlation. (NO…)


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; NMR spectra<br />

1<br />

H, <strong>13</strong> C, 19 F, 31 P, metal nuclei etc.<br />

Chemical shifts, splitt<strong>in</strong>g patterns, coupl<strong>in</strong>g constants<br />

<strong>13</strong><br />

C NMR<br />

Chemical shift


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; NMR spectra<br />

1<br />

H NMR<br />

<strong>in</strong>tegration


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; NMR spectra<br />

Molecular rearrangement processes<br />

At RT; 2 s<strong>in</strong>glets<br />

At low T<br />

R<strong>in</strong>g whizzer

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!