31.07.2014 Views

13-4 Ligands in Organometallic Chemistry

13-4 Ligands in Organometallic Chemistry

13-4 Ligands in Organometallic Chemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter <strong>13</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

<strong>13</strong>-1 Historical Background<br />

<strong>13</strong>-2 Organic <strong>Ligands</strong> and Nomenclature<br />

<strong>13</strong>-3 The 18-Electron Rule<br />

<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

<strong>13</strong>-5 Bond<strong>in</strong>g Between Metal Atoms and Organic π Systems<br />

<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C, and M≡C Bonds<br />

<strong>13</strong>-7 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes<br />

“Inorganic <strong>Chemistry</strong>” Third Ed. Gary L. Miessler, Donald A. Tarr, 2004, Pearson Prentice Ha<br />

http://en.wikipedia.org/wiki/Expedia


<strong>13</strong>-1 Historical Background<br />

Sandwich compounds<br />

Cluster compounds


<strong>13</strong>-1 Historical Background<br />

Other examples of organometallic compounds


<strong>13</strong>-1 Historical Background<br />

<strong>Organometallic</strong> Compound<br />

<strong>Organometallic</strong> chemistry is the study of chemical compounds<br />

conta<strong>in</strong><strong>in</strong>g bonds between carbon and a metal.<br />

<strong>Organometallic</strong> chemistry comb<strong>in</strong>es aspects of <strong>in</strong>organic<br />

chemistry and organic chemistry.<br />

<strong>Organometallic</strong> compounds f<strong>in</strong>d practical use <strong>in</strong> stoichiometric<br />

and catalytically active compounds.<br />

Electron count<strong>in</strong>g is key <strong>in</strong> understand<strong>in</strong>g organometallic<br />

chemistry. The 18-electron rule is helpful <strong>in</strong> predict<strong>in</strong>g the<br />

stabilities of organometallic compounds. <strong>Organometallic</strong><br />

compounds which have 18 electrons (filled s, p, and d orbitals)<br />

are relatively stable. This suggests the compound is isolable, but<br />

it can result <strong>in</strong> the compound be<strong>in</strong>g <strong>in</strong>ert.


<strong>13</strong>-1 Historical Background<br />

In attempt to synthesize fulvalene<br />

Produced an orange solid (ferrocene)<br />

Discovery of ferrocene began the era of modern organometallic<br />

chemistry.<br />

Staggered r<strong>in</strong>gs Eclipsed r<strong>in</strong>gs Skew r<strong>in</strong>gs


<strong>13</strong>-2 Organic <strong>Ligands</strong> and Nomenclature<br />

Write hydrocarbon ligands before the metal.<br />

η<br />

superscript<br />

Bridg<strong>in</strong>g ligand - μ<br />

Subscript <strong>in</strong>dicat<strong>in</strong>g the number of metal atoms bridged.


<strong>13</strong>-2 Organic <strong>Ligands</strong> and Nomenclature


<strong>13</strong>-3 The 18-Electron Rule<br />

; count<strong>in</strong>g electrons<br />

In ma<strong>in</strong> group chemistry, the octet rule<br />

Donor Pair method<br />

Neutral Ligand method


<strong>13</strong>-3 The 18-Electron Rule<br />

; count<strong>in</strong>g electrons<br />

M-M s<strong>in</strong>gle bond counts as one electron per metal


<strong>13</strong>-3 The 18-Electron Rule<br />

; why 18 electrons?<br />

s 2 p 6 vs s 2 p 6 d 10<br />

Have to consider<br />

types of ligand<br />

Strong σ–donor<br />

ability of CO<br />

Strong π–acceptor<br />

ability of CO<br />

Good for 18-<br />

electron rule


<strong>13</strong>-3 The 18-Electron Rule<br />

; why 18 electrons?<br />

[Zn(en) 3 ] 2+ ; ?? Electron species<br />

good σ-donor not as strong as CO<br />

e g orbitals are not sufficiently<br />

antibond<strong>in</strong>g<br />

TiF 6<br />

2-<br />

; ?? Electron species<br />

σ-donor<br />

π-donor<br />

What happen?


Ligand field theory;<br />

Pi-Bond<strong>in</strong>g<br />

metal-to-ligand π bond<strong>in</strong>g<br />

or π back-bond<strong>in</strong>g<br />

-Increase stability<br />

-Low-sp<strong>in</strong> configuration<br />

-Result of transfer of<br />

negative charge away from<br />

the metal ion<br />

Ligand-to metal π bond<strong>in</strong>g<br />

-decrease stability<br />

-high-sp<strong>in</strong> configuration


<strong>13</strong>-3 The 18-Electron Rule<br />

; square-planar complexes<br />

16 electron complexes<br />

might be stable<br />

Square-planar<br />

complexes have<br />

important catalytic<br />

behavior<br />

Why?


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; carbonyl (CO) complexes


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; carbonyl (CO) complexes


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; carbonyl (CO) complexes<br />

Experimental evidence<br />

Free CO vs M-CO<br />

Infrared spectroscopy and X-ray crystallography<br />

Free CO has a C-O stretch at 2143 cm -1<br />

Cr(CO) 6 has a C-O stretch at 2000 cm -1<br />

C-O distance 112.8 pm<br />

Metal complexes 115 pm


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; carbonyl (CO) complexes<br />

In general, the more negative the charge on the<br />

organometallic species, the greater the tendency<br />

of the metal to donate electrons to the π* orbitals<br />

of CO and the lower the energy of the C-O<br />

stretch<strong>in</strong>g vibrations.


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; bridg<strong>in</strong>g modes of CO


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; bridg<strong>in</strong>g modes of CO<br />

Term<strong>in</strong>al and bridg<strong>in</strong>g carbonyl ligands can be<br />

considered 2-electron donors.


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; bridg<strong>in</strong>g modes of CO


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; b<strong>in</strong>ary carbonyl complexes<br />

17-e - too small to permit a<br />

seventh coord<strong>in</strong>ation site<br />

B<strong>in</strong>ary carbonyl complexes<br />

More detail<br />

analysis is<br />

necessary


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; b<strong>in</strong>ary carbonyl complexes<br />

Synthesis of b<strong>in</strong>ary carbonyl complexes<br />

1. Direct reaction of a transition metal and CO; high T & P<br />

2. Reductive carbonylations<br />

3. Thermal or photochemical reaction<br />

Exchange reaction


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; oxygen-bonded cabonyls


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands similar to CO<br />

CS, CSe<br />

Similar to CO <strong>in</strong> their bond<strong>in</strong>g modes<br />

In term<strong>in</strong>al or bridg<strong>in</strong>g<br />

CS usually functions as a stronger σ donor and π acceptor<br />

than CO<br />

isoelectronic; CN - and N 2<br />

CN - is a stronger σ donor and a somewhat π weaker<br />

acceptor than CO<br />

CN - bonds readily to metals hav<strong>in</strong>g higher oxidation states<br />

N 2 is a weaker donor and acceptor than CO<br />

Nitrogen fixation


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands similar to CO; NO complexes


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; hydride and dihydrogen complexes<br />

Organic synthesis,<br />

catalytic reaction<br />

Hydride complexes


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; hydride and dihydrogen complexes<br />

Organic synthesis,<br />

catalytic reaction<br />

Dihydrogen complexes<br />

Distance of H-H<br />

the metal is electron rich and donate<br />

strongly to the π* of H 2 → ???<br />

with CO and NO → ???


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands hav<strong>in</strong>g extended π systems<br />

π bond<strong>in</strong>g with<strong>in</strong> the ligands themselvesl<strong>in</strong>ear<br />

systems


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands hav<strong>in</strong>g extended π systems<br />

π bond<strong>in</strong>g with<strong>in</strong> the ligands themselvesl<strong>in</strong>ear<br />

systems


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands hav<strong>in</strong>g extended π systems<br />

π bond<strong>in</strong>g with<strong>in</strong> the ligands themselvescyclic<br />

systems


<strong>13</strong>-4 <strong>Ligands</strong> <strong>in</strong> <strong>Organometallic</strong> <strong>Chemistry</strong><br />

; ligands hav<strong>in</strong>g extended π systems<br />

π bond<strong>in</strong>g with<strong>in</strong> the ligands themselvescyclic<br />

systems


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; l<strong>in</strong>ear π systems<br />

π –ethylene complexes<br />

Typically bent back<br />

away from the metal<br />

π-bond<strong>in</strong>g electron pair<br />

the empty π*-orbital<br />

Free ethylene <strong>13</strong>3.7 pm, 1623 cm -1<br />

Coord<strong>in</strong>ated ethylene <strong>13</strong>7.5 pm, 1516 cm -1


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; l<strong>in</strong>ear π systems<br />

π –allyl complexes<br />

acceptor<br />

Donor or acceptor<br />

donor


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; l<strong>in</strong>ear π systems<br />

π –allyl complexes<br />

Conversion between η 1 and η 3<br />

Catalytic reaction<br />

Other l<strong>in</strong>ear π systems


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems<br />

Cyclopentadienyl (Cp) complexes<br />

η 1 , η 3 and η 5<br />

C 5 (CH 3 ) 5 Cp*<br />

Gas phase and low-T<br />

Most stable conformation


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems


olecular orbital<br />

nergy levels of<br />

errocene<br />

<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems<br />

Other metallocenes<br />

# of electron → stability → reactivity


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems


<strong>13</strong>-4 Bond<strong>in</strong>g between Metal Atoms and Organic π<br />

Systems; cyclic π systems<br />

Complexes<br />

conta<strong>in</strong><strong>in</strong>g<br />

cyclopentadienyl and<br />

CO ligand<br />

Half-sandwich


<strong>13</strong>-5 Fullerene Complexes<br />

Types of fullerene complexes<br />

1. Adducts to the oxygens<br />

2. As a lignd<br />

3. Encapsulated metals<br />

4. Intercalation compounds of alkali metals<br />

Adducts to the oxygens


<strong>13</strong>-5 Fullerene Complexes<br />

As ligands<br />

Dihapto, pentahepto, hexahapto<br />

Displacement reaction<br />

More than one metal


<strong>13</strong>-5 Fullerene Complexes<br />

C 70<br />

η 2 -η 2 -η 2 and η 5


<strong>13</strong>-5 Fullerene Complexes<br />

Encapsulated metals<br />

By laser-<strong>in</strong>duced vapor phase reactions between carbon and the metal<br />

La@C 82 ; La 3+ , C 82<br />

3-


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; alkyl and related complexes<br />

Synthetic route<br />

Relatively rare: k<strong>in</strong>etically unstable and difficult to isolate<br />

Enhanc<strong>in</strong>g the stability; By block<strong>in</strong>g pathways to decomposition<br />

mtallacycle<br />

Proposed as <strong>in</strong>termediates <strong>in</strong> a variety catalytic processes


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; alkyl and related complexes


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; carbene complexes<br />

d orbital<br />

p orbital


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; carbene complexes<br />

2-electron donor<br />

Highly electronegative atom can participate <strong>in</strong> the π bond<strong>in</strong>g → stabilize


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; carbene complexes<br />

Olef<strong>in</strong> metathesis<br />

Highly nucleophilic reagent<br />

X-ray; Cr-C, C-O<br />

NMR; RT (one signal), low T (two peak)<br />

Why?<br />

C-O 143 pm<br />

C=O 116pm<br />

Highly electronegative atom can participate <strong>in</strong> the π bond<strong>in</strong>g → stabilize


<strong>13</strong>-6 Complexes Conta<strong>in</strong><strong>in</strong>g M-C, M=C and M≡C Bond<br />

; carbyne (alkylidyne) complexes<br />

3-electron donor<br />

Lewis acid<br />

σ donor<br />

π acceptor


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; IR spectra<br />

X-ray, Mass spectrometry, elemental<br />

analysis, conductivity measurement etc<br />

# of bands<br />

Provide clues to the geometry or symmetry


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; IR spectra


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; IR spectra<br />

positions of bands<br />

Provide clues to the electronic environment on the metal<br />

The greater the electronic density on the metal → ???<br />

In general, the more negative the charge on the<br />

organometallic species, the greater the tendency<br />

of the metal to donate electrons to the π* orbitals<br />

of CO and the lower the energy of the C-O<br />

stretch<strong>in</strong>g vibrations.


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; IR spectra<br />

What do you get from this data?<br />

Other ligands also have similar correlation. (NO…)


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; NMR spectra<br />

1<br />

H, <strong>13</strong> C, 19 F, 31 P, metal nuclei etc.<br />

Chemical shifts, splitt<strong>in</strong>g patterns, coupl<strong>in</strong>g constants<br />

<strong>13</strong><br />

C NMR<br />

Chemical shift


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; NMR spectra<br />

1<br />

H NMR<br />

<strong>in</strong>tegration


<strong>13</strong>-6 Spectral Analysis and Characterization of<br />

<strong>Organometallic</strong> Complexes; NMR spectra<br />

Molecular rearrangement processes<br />

At RT; 2 s<strong>in</strong>glets<br />

At low T<br />

R<strong>in</strong>g whizzer

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!