01.09.2014 Views

The Evolution of Modular Open Systems in Naval Ship Design ...

The Evolution of Modular Open Systems in Naval Ship Design ...

The Evolution of Modular Open Systems in Naval Ship Design ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Evolution</strong> <strong>of</strong><br />

<strong>Modular</strong> <strong>Open</strong><br />

<strong>Systems</strong> <strong>in</strong> <strong>Naval</strong><br />

<strong>Ship</strong> <strong>Design</strong>:<br />

1975 - 2010<br />

Jack W. Abbott<br />

ASNE Breakfast Sem<strong>in</strong>ar on <strong>Ship</strong> <strong>Design</strong> and<br />

Acquisition – Lessons Learned, June 3, 2010


Jack W. Abbott<br />

<strong>Systems</strong> Eng<strong>in</strong>eer<br />

Year(s)<br />

Assignments/Projects<br />

1960-1963 <strong>Naval</strong> Officer (Eng<strong>in</strong>eer<strong>in</strong>g) on USS Bra<strong>in</strong>e (DD630)<br />

1966-1970 Lead Eng<strong>in</strong>eer, DDH 280 Class (Canadian) <strong>in</strong>stallation design <strong>of</strong> Gas<br />

Turb<strong>in</strong>e Generator Sets<br />

1970-1972 Lead Eng<strong>in</strong>eer, DD 963 Gas Turb<strong>in</strong>e eng<strong>in</strong>e qualification and<br />

<strong>in</strong>stallation (Allison K 17) and (GE LM 2500)<br />

1972-1974 R&D Plan for an Advanced Submar<strong>in</strong>e Control Program (ASCOP)<br />

1974-1976 <strong>Design</strong> Manager, DD 993 Class HM&E systems<br />

1975-1980 Technical Director, SEAMOD R&D Program<br />

1977-1985 Director, NAVSEA <strong>Systems</strong> Eng<strong>in</strong>eer<strong>in</strong>g Division (Mann<strong>in</strong>g, RMA, ILS,<br />

<strong>Systems</strong> Analysis) - Supported CG 47 and DDG 51 designs<br />

1980 Fiber Optics Potential for Navy ships<br />

1980-19851985 Program Manager, SSES R&D Program<br />

1990-1992 Project Manager, Submar<strong>in</strong>e Integrated Automated Damage Control<br />

System (IADCS) for DARPA<br />

1992-2003 ATC Program support - <strong>in</strong>clud<strong>in</strong>g Team Lead on TOSA IPT<br />

2000-2003 DDX <strong>Modular</strong>ity <strong>Design</strong> Support (Blue and Gold Teams)<br />

Manager, LCS Mission <strong>Systems</strong> and <strong>Ship</strong> Integration Team (MSSIT)<br />

2003-Pres.<br />

2009-2010 CG(X) <strong>Modular</strong>ity <strong>Design</strong> Support


Agenda<br />

1. <strong>Modular</strong>ity Background<br />

• Def<strong>in</strong>itions, iti Types, Levels<br />

• Historical Review<br />

• Observations<br />

• Recent Efforts<br />

2. <strong>Design</strong> Steps <strong>in</strong> develop<strong>in</strong>g <strong>Modular</strong> <strong>Open</strong><br />

<strong>Systems</strong> <strong>in</strong> <strong>Ship</strong> <strong>Design</strong><br />

• <strong>Modular</strong> Technical Architecture<br />

• Functional Partition<strong>in</strong>g<br />

• <strong>Design</strong> Factors<br />

3. Producibility and Cost Models<br />

• Need for a Process Based Cost Model


Agenda<br />

4. VA Class, LCS 1&2, CVN 78 Applications<br />

5. Lessons Learned<br />

• Acquisition i i Structure vs. Technical Architecture<br />

• Impacts on Traditional <strong>Design</strong> Development<br />

• Abbott’s Corollaries<br />

6. Conclusions and Recommendations<br />

7. Bibliography


Def<strong>in</strong>itions<br />

●<br />

Module: A structurally <strong>in</strong>dependent build<strong>in</strong>g block <strong>of</strong> a<br />

larger system with well-def<strong>in</strong>ed <strong>in</strong>terfaces.<br />

●<br />

<strong>Modular</strong>ity: A design approach <strong>in</strong> which a system<br />

component acts as an <strong>in</strong>dependently operable unit,<br />

subject to periodic change.<br />

●<br />

<strong>Open</strong> System: A system that employs modular design<br />

and uses consensus-based standards for key <strong>in</strong>terfaces.<br />

5


Characteristics <strong>of</strong> <strong>Modular</strong>ity<br />

●<br />

Partitioned <strong>in</strong>to discrete scalable and reusable modules<br />

consist<strong>in</strong>g <strong>of</strong> isolated, self-conta<strong>in</strong>ed functional elements<br />

●<br />

Ad detailed dsystems eng<strong>in</strong>eer<strong>in</strong>g i process that temphasizes<br />

a functional analysis and the identification <strong>of</strong> key<br />

<strong>in</strong>terfaces<br />

●<br />

Makes use <strong>of</strong> commonly used <strong>in</strong>dustry standards for key<br />

<strong>in</strong>terfaces to the largest extent t possible<br />

6


Types <strong>of</strong> <strong>Modular</strong>ity<br />

●<br />

●<br />

●<br />

●<br />

●<br />

Mission <strong>Modular</strong>ity<br />

• <strong>Systems</strong> are made up <strong>of</strong> multiple Mission Modules<br />

• Installation <strong>of</strong> alternate Mission <strong>Systems</strong><br />

• Mission System Technology Insertion<br />

Production <strong>Modular</strong>ity<br />

• Equipment procurement us<strong>in</strong>g standard <strong>in</strong>terfaces<br />

• Maximiz<strong>in</strong>g early stag<strong>in</strong>g for equipment assembly (modules)<br />

• Off-ship test<strong>in</strong>g <strong>of</strong> modules<br />

• Module <strong>in</strong>stallation <strong>in</strong> completed zones/compartments<br />

Component Shar<strong>in</strong>g<br />

• Common parts or systems<br />

• Common standards d and <strong>in</strong>terfaces<br />

S<strong>of</strong>tware <strong>Modular</strong>ity<br />

• <strong>Open</strong> Architecture Comput<strong>in</strong>g Environment (OACE)<br />

Ma<strong>in</strong>tenance <strong>Modular</strong>ity<br />

• Standard <strong>in</strong>terfaces for subassemblies vice vendor unique<br />

7


Levels <strong>of</strong> <strong>Modular</strong>ity<br />

●<br />

Component Level (Physical, Digital Interfaces)<br />

• Focused more on component <strong>in</strong>terchangeability vice system<br />

<strong>in</strong>terchangeability<br />

●<br />

System Level (Equipment and Module Stations)<br />

• Multiple ship systems are modularized or have open system standards<br />

def<strong>in</strong>ed for their key <strong>in</strong>terfaces<br />

●<br />

Total <strong>Ship</strong> Architecture Level (F/E Zones)<br />

• <strong>The</strong> concepts <strong>of</strong> modularity and open systems architectures are applied<br />

to the entire ship<br />

• Can <strong>in</strong>clude the development <strong>of</strong> special <strong>in</strong>novative hulls that facilitate<br />

the <strong>in</strong>stallation <strong>of</strong> modules/open systems<br />

8


Levels <strong>of</strong> <strong>Modular</strong>ity vs.<br />

Standardization<br />

Level Parameters Applicable to<br />

SHIP ARCHTECTURE<br />

(ZONES) LEVEL<br />

SPACE AND WEIGHT<br />

SHIP CLASS (DESTROYER)<br />

EQUIPMENT AND<br />

MODULE STATION LEVEL<br />

SIZE, STRUCTURE, SERVICES<br />

SHIP TYPE (COMBATANTS)<br />

COMPONENT LEVEL ---<br />

Physical Connections<br />

(Electrical, Fluids)<br />

CONNECTOR PINS, FLANGES<br />

FLEET<br />

Digital Connections API'S, MESSAGES FLEET<br />

Communications LINKS FLEET


Historical Background<br />

Docume<br />

ents<br />

Pro<br />

ogram<br />

Influenc<br />

ced<br />

<strong>Ship</strong>s<br />

LTA8fH<br />

SEAMOD<br />

1975-79<br />

Blohm & Voss<br />

MEKO<br />

LLTL<br />

SSES<br />

1980-85<br />

DOD 5000 Series<br />

Royal Navy<br />

Cellularity<br />

CG-52<br />

DDG-51<br />

Royal Danish Navy<br />

AN3<br />

ATC<br />

1992-1998<br />

8fLADC4bOaBbtaW<br />

LPD 17<br />

US DOD OSJTF<br />

TOSA<br />

U( 1998-2003 ( ZPSHHI<br />

CVN<br />

fA3T<br />

OACE<br />

2003-Current<br />

A)8L<br />

AIMS<br />

2003-Current<br />

MSSIT<br />

2003-Current<br />

SHHI P ARRCTE<br />

LCS<br />

MEKO STANFLEX SSN 774<br />

DDG 1000<br />

SC 21<br />

DD 21<br />

CG(X)<br />

DD(X)<br />

SC 21 DD 21 DD(X)<br />

1970 1975 1980 1985 1990 1995 2000 2005


Historical Background<br />

● SEAMOD & SSES (1975 – 1985)<br />

• Weapons systems payloads and platform <strong>in</strong>dependence<br />

• Variable Payload <strong>Ship</strong>s<br />

●<br />

MEKO (1975 – Current)<br />

• Multi-purpose comb<strong>in</strong>ation ships with modular weapons and<br />

electronics systems built for Germany and 10 other countries<br />

●<br />

STANFLEX (1985 – Current)<br />

• Royal Danish Navy’s modular ships which can change ship<br />

configuration for various mission capabilities<br />

●<br />

DDG 51 (1985 – Current)<br />

• <strong>Modular</strong> Weapon Stations for VLS (SSES A and B Module Size)<br />

11


SEAMOD Distributed Combat<br />

System<br />

13D<br />

GUN CONTROL PROCESSOR<br />

MK 45 MODULE, ZONE 6<br />

20<br />

HARPOON CONTROL PROC<br />

HARPOON EQUIP RM<br />

ZONE 6<br />

9<br />

LAMPS DATA LINK CONTROL PROC<br />

10<br />

LIINK 11 CONTROL PROC<br />

11<br />

LINK 14 CONTROL PROC<br />

COMM CTR. ZONE 8<br />

19A, 19B, 19C<br />

CIWS SEARCH RADAR<br />

CONTROL TRACK RADAR<br />

CONTROL AND GUN CONTROL<br />

CIWS RM/TOPSIDE<br />

ZONE8<br />

12A, 12B, 12C<br />

ESM, ECM AND CHAFF<br />

CONTROL PROCESSORS<br />

EW ROOM ZONE 8<br />

14<br />

TRACK ILLUMINATOR CONTROL<br />

AFT UPPER AEGIS EQUIP RM<br />

ZONE 8<br />

6<br />

SPS-55 RADAR CONTROL<br />

13B<br />

SPO-9 TRK RADAR CONTROL<br />

RADAR RM 1, ZONE 8<br />

11 RADAR RM 1, ZONE 8<br />

5<br />

SPS-49 RADAR CONTROL<br />

7 AIMS IFF CONTROL PROC<br />

RADAR RM 2, ZONE 8<br />

4A<br />

PILOTING (SHIP CONTL) PROC<br />

PILOT HOUSE ZONE 7<br />

15, 16<br />

SLAVED ILLUMINATOR CONTROL<br />

FWD UPPER AEGIS EQUIP RM<br />

ZONE 8<br />

3A,3B,3C<br />

MONITORING TRAINING AND<br />

RECORDING CONTROL PROCESSORS<br />

CIC/CIC EQUIP RMS ZONE 7<br />

1A,1B<br />

TACTICAL DISPLAY CONTROL AND<br />

AIR ASSET CONTROL PROCESSORS<br />

CIC/CIC EQUIP RM ZONE 7<br />

8B, 18C, 18D<br />

ASROC ARMAMENT CONTROL<br />

SM 1, 2 ARMAMENT CONTROL<br />

MK 26 LAUNCHER CONTROL<br />

GMLS CONTROL RM 2<br />

ZONE 5<br />

8C<br />

MK 46, 48 ARMAMENT CONTROL<br />

AND MK 32 LAUNCHER<br />

CONTROL PROCESSORS<br />

FORT & STBD TORPEDO RMS<br />

ZONE 4<br />

48<br />

NAVIGATION PROCESSOR<br />

IC ROOM 2, ZONE 4<br />

17<br />

SPY-1 RADAR CONTROL<br />

CENTRAL SIG PRCS RM<br />

ZONE 8<br />

2A, 2B<br />

TRACK MANAGEMENT AND<br />

ENGAGEMENT DIRECTION PROC<br />

(NEW AREA, MOVED FROM DATA<br />

PROCESSING CENTER) ZONE 4<br />

48<br />

NAVIGATION PROCESSOR<br />

IC ROOM 1, ZONE 3<br />

8B, 18A, 18B<br />

ASROC ARMAMENT CONTROL<br />

SM-1, 2 ARMAMENT CONTROL<br />

MK 26 LAUNCHER CONTROL<br />

GMLS CONTROL RM 1<br />

ZONE 3<br />

8A<br />

SONAR CONTROL PROCESSOR<br />

SONAR EQUIP RM 1<br />

ZONE 1<br />

13C<br />

GUN CONTROL PROCESSOR<br />

MK 45 MODULE, ZONE 2


SEAMOD Operational and<br />

Support Concept


SSES Zone <strong>Design</strong>ations and<br />

Names<br />

I(1)<br />

VII(1)<br />

I(4<br />

)<br />

VIII VIII(3)<br />

(4)<br />

I(3) () III(4) () VIII<br />

(1) IV(2)<br />

VII(2)<br />

III(2)<br />

III(2)<br />

VII(2)<br />

IV(1)<br />

VI<br />

IV(1) VII(1)<br />

III(1)<br />

II IX<br />

V<br />

V<br />

VIII<br />

(2)<br />

VIII<br />

(1)<br />

III(3)<br />

III(3)<br />

III(3) ()<br />

I(2)<br />

Zone I(1) – RF Sens<strong>in</strong>g Zone IV(1) – Forward IC and Gyro Zone VIII(1) – AA-size Weapons<br />

Zone I(2) – Forward Acoustic Sens<strong>in</strong>g Zone IV(2) – After IC And Gyro Zone VIII(2) – A-size Weapons<br />

Zone I(3) – After Acoustic Sens<strong>in</strong>g<br />

Zone VIII(3) – B-size Weapons<br />

Zone I(4) – Aviation Support Zone V – Command and Control Zone VIII(4) – A(2)-size Weapons<br />

Zone II – Exterior Communications Zone VI – <strong>Ship</strong> Control Zone IX – Special Purpose Electronics<br />

Zone III(1) – Forward RF Process<strong>in</strong>g<br />

Zone III(2) – After RF Process<strong>in</strong>g<br />

Zone III(3) – Forward Acoustic Process<strong>in</strong>g<br />

Zone III(4) – After Acoustic Process<strong>in</strong>g<br />

Zone VII(1) – Forward Weapons Control<br />

Zone VII(2) – After Weapons Control


<strong>Modular</strong> Payload<br />

DDG 51


Obstacles to Implementation<br />

<strong>in</strong> the e80s 80’s<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

Vested <strong>in</strong>terest <strong>in</strong> the Status Quo<br />

No compell<strong>in</strong>g reason to change the Status Quo<br />

Viewed as a threat to key acquisition programs<br />

Unwill<strong>in</strong>gness to believe positive impacts on time and costs<br />

Concern over the impact on the procurement process<br />

Unwill<strong>in</strong>gness to assume responsibility for promulgation <strong>of</strong><br />

<strong>in</strong>terface standards<br />

ds<br />

Failure to grasp the importance <strong>of</strong> Adaptability and Flexibility<br />

Not organized for successful implementation


<strong>Ship</strong> <strong>Design</strong> Myths<br />

<strong>of</strong> the 80’s<br />

●<br />

Computer architecture will never be distributed<br />

● Combat <strong>Systems</strong> will not need modernization <strong>in</strong> less than 7<br />

●<br />

●<br />

●<br />

●<br />

●<br />

years<br />

Increase <strong>in</strong> space and weight will always cause <strong>in</strong>crease <strong>in</strong><br />

construction costs (a compact ship is cheapest)<br />

Development <strong>of</strong> open <strong>in</strong>terface standards are impossible<br />

because you cannot predict the future<br />

<strong>The</strong> DDG 51 will never need a hanger<br />

<strong>The</strong> application <strong>of</strong> <strong>Modular</strong> <strong>Open</strong> <strong>Systems</strong> <strong>in</strong> ship design does<br />

not require good <strong>Systems</strong> Eng<strong>in</strong>eer<strong>in</strong>g<br />

<strong>The</strong> enemy will always be the USSR


Observations on the 80’s<br />

●<br />

US Navy viewed modularity benefits as only applicable to<br />

modernization/conversion whereas foreign activities were<br />

driven by the potential for lower construction costs<br />

●<br />

US Navy modularity efforts were led by the government<br />

whereas foreign modularity efforts were led by private <strong>in</strong>dustry<br />

●<br />

Foreign shipyards achieved both cost and schedule objectives<br />

for ship construction<br />

●<br />

US Requirements to use a <strong>Modular</strong> <strong>Open</strong> <strong>Systems</strong> Approach<br />

(MOSA) <strong>in</strong> acquisition began with promulgation by the OSD’s<br />

<strong>Open</strong> <strong>Systems</strong> Jo<strong>in</strong>t Task Force (OSJTF) [1994]


Recent MOSA Efforts<br />

● ATC (1992 – 1998)<br />

• Reduced costs by modularity, equipment standardization, and<br />

process simplification<br />

● TOSA (1998 – 2003)<br />

• ATC formed TOSA to develop the necessary <strong>in</strong>terface standards that<br />

form the eng<strong>in</strong>eer<strong>in</strong>g build<strong>in</strong>g blocks <strong>of</strong> a Total ship <strong>Open</strong> <strong>Systems</strong><br />

Architecture.<br />

• Virg<strong>in</strong>ia Class Submar<strong>in</strong>es (1998 - Current)<br />

●<br />

AIMS (2003 – Current)<br />

• Mission is to develop and transition open systems and <strong>in</strong>terfaces for<br />

cross-platform use to enable modularity.<br />

●<br />

LCS (2003 - Current)<br />

● OACE Navy <strong>Open</strong> Architecture [NOA] (2003 – Current)<br />

●<br />

DDG 1000, CVN 78, CG(X), OASIS<br />

19


Why Now?<br />

●<br />

Economics <strong>of</strong> a smaller fleet – need for more flexible ships that<br />

can be configured to the mission vice multi-mission ships<br />

● Faster rate <strong>of</strong> technology change – s<strong>of</strong>tware can change every<br />

18 months<br />

●<br />

Computer <strong>in</strong>dustry proved <strong>in</strong>terfaces for plug and play can<br />

work – even among competitors<br />

●<br />

Increased number <strong>of</strong> open standards d now available – ISO,<br />

IEEE, NIST, MIMOSA, etc.


Exist<strong>in</strong>g Programs Develop<strong>in</strong>g<br />

<strong>Modular</strong> <strong>Open</strong> <strong>Systems</strong><br />

●<br />

●<br />

●<br />

●<br />

Consolidated Afloat Networks and Enterprise Services (CANES)<br />

<strong>Open</strong> Architecture Comput<strong>in</strong>g Environment (OACE)<br />

<strong>Open</strong> Architecture Enterprise Team (OAET)<br />

Architectures, Interfaces and <strong>Modular</strong> <strong>Systems</strong> (AIMS)<br />

● Electronic <strong>Modular</strong> Enclosures (EME) on DDG 1000<br />

●<br />

●<br />

●<br />

●<br />

●<br />

Common Display <strong>Systems</strong> (CDS)<br />

Common Process<strong>in</strong>g <strong>Systems</strong> (CPS)<br />

Submar<strong>in</strong>e Warfare Federated Tactical <strong>Systems</strong> (SWFTS)<br />

Turnkey (C4I)<br />

<strong>Open</strong> Architecture <strong>Ship</strong> Interface Standards (OASIS)


<strong>Design</strong> Steps for a <strong>Modular</strong><br />

Technical Architecture (MTA)<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

Requirements analysis/acquisition plans<br />

Technology market surveillance<br />

Functional partition<strong>in</strong>g/ship arrangements<br />

Zone allocation<br />

<strong>Ship</strong> adjacency issues (blast, radiation areas, functional<br />

connectivity, material handl<strong>in</strong>g, etc.)<br />

<strong>Systems</strong> Eng<strong>in</strong>eer<strong>in</strong>g trade<strong>of</strong>fs<br />

(adaptability vs. cost vs. performance vs. risk)<br />

●<br />

●<br />

●<br />

Zone development (arrangements, ship services, access)<br />

Module/Module e station development<br />

e e <strong>Ship</strong> weight management (ballast, structural design)<br />

22


Requirements with<strong>in</strong> DoD<br />

●<br />

●<br />

US Navy <strong>Open</strong> <strong>Systems</strong> Jo<strong>in</strong>t Task Force (OSJTF)<br />

established the <strong>Modular</strong> <strong>Open</strong> <strong>Systems</strong> Approach (MOSA)<br />

• MOSA is a Bus<strong>in</strong>ess and Technical Strategy<br />

DOD 5000.1/5000.2 directs US Navy to use MOSA<br />

23


Functional Partition<strong>in</strong>g<br />

<strong>of</strong> <strong>Ship</strong> <strong>Systems</strong>


<strong>Design</strong> Factors


<strong>The</strong> <strong>Modular</strong> Adaptable <strong>Ship</strong><br />

<strong>Open</strong> <strong>Systems</strong> Architecture – Standard Interfaces<br />

Mission<br />

Config 1<br />

Mission<br />

Config 2<br />

PH<br />

CIC<br />

Mission<br />

Space<br />

OPEN FUNCTIONAL ZONES<br />

• <strong>Modular</strong> C4I Zones<br />

• <strong>Modular</strong> Offboard Vehicle Zones<br />

• <strong>Modular</strong> Weapons Zones<br />

• <strong>Modular</strong> Sensors / Topside Zones<br />

• <strong>Modular</strong> Mach<strong>in</strong>ery Zones<br />

• <strong>Modular</strong> Human Support Zones<br />

• Other (SOF modules, ISR,<br />

modules)<br />

KEY PHYSICAL INTERFACES<br />

• Data & <strong>in</strong>formation (OACE)<br />

• Physical (Geometric &<br />

Tolerances)<br />

• Weight and CG / VCG<br />

• Services: Electrical, Air,Cool<strong>in</strong>g<br />

• Pip<strong>in</strong>g connections<br />

• Monitor<strong>in</strong>g & Control Sensors<br />

• Human Factors<br />

• Survivability/Vulnerability:<br />

shock, vibration, EMI, EMC, etc.


Production Issues<br />

(Build Strategy)<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

Determ<strong>in</strong>e assembly/construction sequence [ship<br />

breakpo<strong>in</strong>ts/blocks]<br />

k Identify modular systems/elements<br />

Move “module assembly” upstream [see stage factors table]<br />

Review arrangements for module access routes<br />

Determ<strong>in</strong>e approach to distributive systems [zonal vs.<br />

centralized]<br />

Develop “<strong>in</strong>terface standards” for Zones/Module Stations<br />

Develop access routes for module <strong>in</strong>stallation<br />

Assess impacts on construction time and labor hours us<strong>in</strong>g<br />

process-based cost analysis<br />

27


Production Stage Factors<br />

(Expanded NSRP Model)<br />

STAGE<br />

STAGE STAGE STAGE SUPPORT<br />

DESCRIPTION NO. FACTOR FACTOR<br />

S1 CUT MATERIAL - MACHINE 1 1.0 1.01<br />

S2 CUT MATERIAL - MANUAL 2 1.2 1.02<br />

S3FABRICATION - FABSHOPW/JIGORFIXTURE OR FIXTURE 3 15 1.5 103 1.03<br />

S4 FABRICATION - UNIQUE PIECE ASSEMBLY 4 2.0 1.06<br />

S5 BLOCK ASSEMBLY 5 3.0 1.1<br />

S6 BLOCK ASSEMBLY - PREOUTFIT INVERTED 6 4.0 1.15<br />

S7 BLOCK ASSEMBLY - PREOUTFIT UPRIGHT 1 LEVEL HIGH 7 52 5.2 12 1.2<br />

S8 PAINT 8 4.5 1.1<br />

S9 PREOUTFITTING COLD 1 LEVEL HIGH 9 5.9 1.25<br />

S10 PREOUTFITTING COLD 2 OR MORE LEVELS HIGH 10 7.3 1.3<br />

S11ERECTION 11 87 8.7 135 1.35<br />

S12 OUTFITTING ON WAYS 12 10.1 1.4<br />

S13 WATERBORNE OUTFITTING 13 11.5 1.5<br />

S14 TEST AND TRIALS DURING WATERBORNE OUTFITTING 14 12.0 1.35<br />

S15 TEST AND TRIALS POST OUTFITTING 15 11.0 11 1.1<br />

28


DDG 51 Process-Based<br />

Acquisition Cost Analysis*<br />

(*NAVSEA Draft Report 05D/369 – 5 Dec 2008)<br />

29


“<strong>Ship</strong> Cost Estimat<strong>in</strong>g,<br />

an Evolv<strong>in</strong>g Art”<br />

“<strong>The</strong>se projected figures are a figment <strong>of</strong><br />

our imag<strong>in</strong>ation. We hope you like them.”<br />

<strong>The</strong>re is a cont<strong>in</strong>u<strong>in</strong>g need for improvement and<br />

excellence <strong>in</strong> the art <strong>of</strong> ship cost estimat<strong>in</strong>g


VA Class <strong>Modular</strong>ity<br />

Mission i System<br />

Envelope<br />

Physical<br />

Characteristics<br />

Physical Characteristics<br />

Cab<strong>in</strong>et<br />

1<br />

Cab<strong>in</strong>et<br />

2<br />

Cab<strong>in</strong>et<br />

3<br />

<strong>Ship</strong> Services<br />

(HM&E systems)<br />

Compartment<br />

A<br />

<strong>Ship</strong>’s<br />

Services<br />

<strong>Ship</strong><br />

Other Factors<br />

Other Factors<br />

Boundary<br />

System<br />

<strong>Design</strong> Budget


VA Class Approach<br />

●<br />

Everyth<strong>in</strong>g with<strong>in</strong> the Mission System Envelope (MSE) is the<br />

responsibility <strong>of</strong> the subsystem electronics supplier<br />

●<br />

<strong>Ship</strong>yard supplies less cabl<strong>in</strong>g and is only <strong>in</strong>volved with the<br />

cabl<strong>in</strong>g between MSEs and from MSE to the platform<br />

●<br />

<strong>The</strong> MSE concept is scalable<br />

●<br />

<strong>The</strong> ship design team allocates volume, power and cool<strong>in</strong>g<br />

for each MSE<br />

●<br />

<strong>The</strong> impact <strong>of</strong> a more parallel construction process and<br />

agreed upon HM&E boundaries between the shipyard and<br />

suppliers s has reduced construction o costs <strong>of</strong> each submar<strong>in</strong>e<br />

by millions <strong>of</strong> dollars


Lockheed Mart<strong>in</strong><br />

LCS Seaframe


General Dynamics<br />

LCS Seaframe


LCS ICD – MP Modules and<br />

Seaframe Stations<br />

Appendix B:<br />

Seaframe Builders<br />

Support<br />

Conta<strong>in</strong>er<br />

Module<br />

Stations<br />

Sea Stations<br />

&O<br />

Operat<strong>in</strong>g<br />

Zone<br />

Appendix C<br />

Aviation<br />

Module<br />

Stations<br />

Comms<br />

Radios<br />

Weapons<br />

Module<br />

Stations<br />

NOTIONAL SEAFRAME<br />

MPCE<br />

Appendix D<br />

2 - AVIATION<br />

MODULES<br />

3 WEAPON<br />

MODULES<br />

Appendix A:<br />

Module Developers<br />

SENSOR MODULE<br />

4- SEA TYPE<br />

MODULES<br />

10 – SUPPORT<br />

CONTAINER MODULES


AIMS <strong>Modular</strong>/<strong>Open</strong> <strong>Systems</strong><br />

Applied to CVN 78 Electronic Spaces<br />

<strong>Open</strong> Structure <strong>Open</strong> HVAC <strong>Open</strong> Power<br />

ISO 7166<br />

<strong>Open</strong> Light<strong>in</strong>g<br />

<strong>Open</strong> Data Distribution


Lessons Learned<br />

●<br />

<strong>The</strong> Technical Architecture should be based upon logical<br />

functional boundaries – procurements should align with this<br />

●<br />

Technical Architecture development should beg<strong>in</strong> with ship<br />

functional partition<strong>in</strong>g and allocation <strong>of</strong> Functional Element<br />

zones – development <strong>of</strong> module/module d l station ti <strong>in</strong>terfaces are<br />

then detailed to check zone siz<strong>in</strong>g and shape<br />

●<br />

Interfaces for ship services should be done AFTER alternate<br />

user requirements have been determ<strong>in</strong>ed and the system design<br />

is completed<br />

●<br />

Owners <strong>of</strong> modular systems must learn to accept the <strong>in</strong>terface<br />

standards as “design to” requirements<br />

●<br />

Ability to use <strong>in</strong>terface standards cross fleet depends on the<br />

level <strong>of</strong> modularity/standardization attempted


Acquisition Structure vs.<br />

Technical Architecture<br />

Platform Payload<br />

Platform<br />

Payload<br />

A<br />

A C B B<br />

A<br />

C<br />

Closed Embedded System<br />

(Platform + Payload)<br />

<strong>Open</strong> System – Aligned<br />

with<br />

Organizational<br />

Implementation<br />

<strong>Open</strong> System - not Aligned<br />

with<br />

Organizational<br />

Implementation


Impacts on “traditional”<br />

<strong>Design</strong> Development<br />

• Planned goals for modularity must be identified early – e.g. production,<br />

procurement, ma<strong>in</strong>tenance, technology <strong>in</strong>sertion, etc. Us<strong>in</strong>g established<br />

goal metrics, focus should be on areas where significant cost/schedule<br />

reduction is expected.<br />

• <strong>Modular</strong>ity concepts can have significant impacts on the overall ship<br />

design (arrangements/zone locations, access, distributive systems, etc.)<br />

– they must be addressed at the start <strong>of</strong> ship design development.<br />

• A MOSA IPT must be formed to coord<strong>in</strong>ate development <strong>of</strong> the proposed<br />

<strong>Modular</strong> Technical Architecture – representatives from Combat <strong>Systems</strong>,<br />

Mach<strong>in</strong>ery <strong>Systems</strong> and Habitability <strong>Systems</strong> as a m<strong>in</strong>imum.<br />

• <strong>The</strong> MOSA IPT must work with system developers and shipyards<br />

(production) to develop candidate modular designs for evaluation.<br />

• Us<strong>in</strong>g “design excursions” <strong>of</strong>f the basel<strong>in</strong>e design, cost/benefit trade<strong>of</strong>fs<br />

must be performed us<strong>in</strong>g process based cost analysis. Plann<strong>in</strong>g for<br />

“future upgrades” should be <strong>in</strong>cluded <strong>in</strong> some <strong>of</strong> the “design excursions.”<br />

• As decisions are made on the “level” and “degree” <strong>of</strong> modularity they<br />

• As decisions are made on the level and degree <strong>of</strong> modularity, they<br />

should be <strong>in</strong>corporated <strong>in</strong>to the ship design basel<strong>in</strong>e. <strong>Design</strong> <strong>in</strong>tegration<br />

(e.g. zone/module station location) is as important as <strong>in</strong>terfaces.


Abbott’s Corollaries<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

You must put a total system together (<strong>in</strong>tegration) before<br />

you can partition it <strong>in</strong>to modules (take it apart) – Note: This<br />

is a systems eng<strong>in</strong>eer<strong>in</strong>g approach.<br />

Future technologies tend to comb<strong>in</strong>e functions that were<br />

previously separate (partition<strong>in</strong>g can change with time)<br />

One man’s system is another man’ s component (and vice<br />

versa)<br />

For a given level <strong>of</strong> performance, th<strong>in</strong>gs tend to get smaller<br />

and lighter over time<br />

However, future expectations are for performance to go up<br />

Time is money: If you save time, you will save money


Conclusions<br />

●<br />

<strong>Modular</strong>ity has proven advantages<br />

●<br />

<strong>Modular</strong>ity, through MOSA, is mandated by DoD<br />

●<br />

Each ship acquisition program needs to decide both the<br />

level and degree <strong>of</strong> modularity<br />

●<br />

Early application <strong>of</strong> modularity <strong>in</strong> the ship design process<br />

is the key to realiz<strong>in</strong>g cost sav<strong>in</strong>gs <strong>in</strong> the long term<br />

●<br />

<strong>Modular</strong>ity requires rigorous <strong>Systems</strong> Eng<strong>in</strong>eer<strong>in</strong>g for<br />

proper implementation<br />

<strong>Modular</strong> <strong>Open</strong> <strong>Systems</strong> Can Provide Cost-Wise Solutions<br />

41


Recommendations<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

Stay the course and apply good <strong>Systems</strong> Eng<strong>in</strong>eer<strong>in</strong>g – MOSA is the<br />

only known concept that can reduce costs without reduc<strong>in</strong>g<br />

performance<br />

Develop a process based cost model that uses <strong>in</strong>puts from production<br />

experts to more accurately determ<strong>in</strong>e impacts on construction time<br />

and costs<br />

Establish a NAVSEA warrant holder – ma<strong>in</strong>ta<strong>in</strong> the technical basel<strong>in</strong>es<br />

used dfor ship design<br />

Carry out adequate configuration management <strong>of</strong> all MOSA <strong>in</strong>terface<br />

standards – withoutittherewillbechaos<br />

there will Insist that system level developers accomplish the paradigm shift <strong>of</strong><br />

“design<strong>in</strong>g to <strong>in</strong>terfaces” up front to fully realize the potential <strong>of</strong> MOSA<br />

Realize that not all systems should be open – it depends on the<br />

bus<strong>in</strong>ess case


Bibliography (Papers)<br />

[1] J. W. Abbott, “<strong>Modular</strong> Payload <strong>Ship</strong>s <strong>in</strong> the U.S. Navy,”<br />

Transactions, <strong>The</strong> Society <strong>of</strong> <strong>Naval</strong> Architects t and Mar<strong>in</strong>e<br />

Eng<strong>in</strong>eers , November 1977<br />

[2] G. W. Broome Jr., D. W. Nelson, and W. D. Tootle, “<strong>The</strong><br />

<strong>Design</strong> <strong>of</strong> Variable Payload <strong>Ship</strong>s,” <strong>Naval</strong> Eng<strong>in</strong>eers Journal,<br />

<strong>The</strong> American Society <strong>of</strong> <strong>Naval</strong> Eng<strong>in</strong>eers , April 1982<br />

[3] D. H. Thompson Jr., and L. M. Thorell, “<strong>The</strong> Construction <strong>of</strong><br />

Variable Payload <strong>Ship</strong>s,” <strong>Naval</strong> Eng<strong>in</strong>eers Journal, <strong>The</strong><br />

American Society <strong>of</strong> <strong>Naval</strong> Eng<strong>in</strong>eers , April 1982<br />

[4] C. W. Cable and T. M. Rivers, “Affordability Through<br />

Commonality,” ASNE DDG 51 Technical Symposium, <strong>The</strong><br />

American Society <strong>of</strong> <strong>Naval</strong> Eng<strong>in</strong>eers , September 1992<br />

[5] M. L. Bosworth and J. J. Hough, “Improvements <strong>in</strong> <strong>Ship</strong><br />

Affordability,” Transactions, <strong>The</strong> Society <strong>of</strong> <strong>Naval</strong> Architects<br />

t<br />

and Mar<strong>in</strong>e Eng<strong>in</strong>eers, September 1993<br />

43


Bibliography (cont’d)<br />

[6] R. DeVries, K. T. Tompk<strong>in</strong>s, and J. Vasilakos, “Total <strong>Ship</strong><br />

<strong>Open</strong> <strong>Systems</strong> Architecture, ” <strong>Naval</strong> Eng<strong>in</strong>eers Journal, <strong>The</strong><br />

American Society <strong>of</strong> <strong>Naval</strong> Eng<strong>in</strong>eers , July 2000<br />

[7] J. W. Abbott, R. DeVries, W. Schoenster and J. Vasilakos,<br />

“<strong>The</strong> Impact <strong>of</strong> <strong>Evolution</strong>ary Acquisition on <strong>Naval</strong> <strong>Ship</strong><br />

<strong>Design</strong>,” Transactions, <strong>The</strong> Society <strong>of</strong> <strong>Naval</strong> Architects and<br />

Mar<strong>in</strong>e Eng<strong>in</strong>eers , October 2003<br />

[8] I. Chewn<strong>in</strong>g, R. Hull, P. Hard<strong>in</strong> and R. Jones, “<strong>Ship</strong> Cost<br />

Estimat<strong>in</strong>g, i an Evolv<strong>in</strong>g Art,” ASNE ‘Eng<strong>in</strong>eer<strong>in</strong>g i the Total<br />

<strong>Ship</strong>’ Technical Symposium, <strong>The</strong> American Society <strong>of</strong> <strong>Naval</strong><br />

Eng<strong>in</strong>eers , May 2006<br />

[9] J. W. Abbott, “<strong>Modular</strong> Payload <strong>Ship</strong>s: 1975 – 2005, ” ASNE<br />

‘Eng<strong>in</strong>eer<strong>in</strong>g the Total <strong>Ship</strong>’ Technical Symposium, <strong>The</strong><br />

American Society <strong>of</strong> <strong>Naval</strong> Eng<strong>in</strong>eers , May 2006<br />

[10] J. W. Abbott, A. Lev<strong>in</strong>e e and J. Vasilakos, a “<strong>Modular</strong> <strong>Open</strong><br />

<strong>Systems</strong> to Support <strong>Ship</strong> Acquisition Strategies,” ASNE Day,<br />

<strong>The</strong> American Society <strong>of</strong> <strong>Naval</strong> Eng<strong>in</strong>eers , June 2008<br />

44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!