02.09.2014 Views

calculating critical loads of acid deposition for forest soils in ... - CCME

calculating critical loads of acid deposition for forest soils in ... - CCME

calculating critical loads of acid deposition for forest soils in ... - CCME

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Appendix I. The Steady-State Mass Balance model<br />

Long-term <strong>critical</strong> load <strong>of</strong> sulphur (S) and nitrogen (N) to <strong>for</strong>est <strong>soils</strong> may be estimated us<strong>in</strong>g the<br />

Steady-State Mass Balance (SSMB) model. The SSMB model assumes a simplified, steady state <strong>in</strong>putoutput<br />

description <strong>of</strong> the most important biogeochemical processes that affect soil <strong>acid</strong>ification.<br />

Potential ecosystem <strong>in</strong>puts <strong>in</strong>clude atmospheric <strong>deposition</strong> <strong>of</strong> sulphate (SO 4 2– ), N (nitrate and<br />

ammonium), chloride (Cl–), sodium (Na + ), calcium (Ca 2+ ), magnesium (Mg 2+ ) and potassium (K + ), and soil<br />

base cation weather<strong>in</strong>g rate. Ecosystem outputs and consumption <strong>in</strong>clude net removal <strong>of</strong> nutrients by<br />

<strong>for</strong>est harvest<strong>in</strong>g, nutrient loss through soil leach<strong>in</strong>g, denitrification and N immobilisation. The SSMB<br />

model, described <strong>in</strong> detailed by the ICP M&M (UBA 2004), estimates <strong>critical</strong> load <strong>of</strong> sulphur, CL(S), and<br />

nitrogen, CL(N):<br />

(A.1)<br />

CL ( S)<br />

+ CL(<br />

N)<br />

= BCdep<br />

− Cldep<br />

+ BCw<br />

− Bcu<br />

+ Ni<br />

+ Nu<br />

+ Nde<br />

− Alkle,<br />

crit<br />

where BC dep = base cation (BC = Ca 2+ + Mg 2+ + K + + Na + ) <strong>deposition</strong>, Cl dep = Cl – <strong>deposition</strong>, BC w = base<br />

cation weather<strong>in</strong>g, Bc u = net base cation (Bc = Ca 2+ + Mg 2+ + K + ) uptake by trees (harvest<strong>in</strong>g removal), N i<br />

= net N immobilisation rate <strong>in</strong> soil, N u = net N uptake by trees, N de = net denitrification rate, and<br />

Alk le,crit = <strong>critical</strong> alkal<strong>in</strong>ity leach<strong>in</strong>g rate. Units <strong>of</strong> mol c ha –1 yr –1 . This <strong>for</strong>mulation has been rewritten by<br />

the NEG-ECP to estimate the long-term <strong>critical</strong> <strong>loads</strong> <strong>of</strong> sulphur plus nitrogen CL(S+N):<br />

(A.2)<br />

CL ( S + N)<br />

= BCdep<br />

− Cldep<br />

+ BCw<br />

− Bcu<br />

+ Ni<br />

+ Nu<br />

+ Nde<br />

− Alkle,<br />

crit<br />

Under the NEG-ECP protocol, harvest<strong>in</strong>g removals were not considered; there<strong>for</strong>e, long-term net<br />

uptake <strong>of</strong> N and Bc were set to zero. The long-term net denitrification was considered negligible <strong>in</strong><br />

well-dra<strong>in</strong>ed upland <strong>for</strong>est ecosystems. Similarly, the net N immobilisation <strong>in</strong> <strong>soils</strong> was also assumed to<br />

be negligible <strong>in</strong> the long-term s<strong>in</strong>ce this process can be negative or close to zero with stand dynamics<br />

and natural disturbances such as fire (NEG-ECP 2001). The f<strong>in</strong>al model under the NEG-ECP protocol can<br />

there<strong>for</strong>e be simplified to:<br />

(A.3)<br />

CL ( S + N)<br />

= BCdep<br />

− Cldep<br />

+ BCw<br />

− Alkle,<br />

crit<br />

The <strong>critical</strong> alkal<strong>in</strong>ity leach<strong>in</strong>g rate <strong>for</strong> <strong>for</strong>est <strong>soils</strong> is estimated from a <strong>critical</strong> molar base cation to<br />

(<strong>in</strong>organic) alum<strong>in</strong>ium (Bc:Al) ratio <strong>in</strong> soil leachate and the gibbsite dissolution constant (K gibb ) which<br />

controls alum<strong>in</strong>ium solubility <strong>in</strong> m<strong>in</strong>eral <strong>soils</strong> (UBA 2004):<br />

(A.4)<br />

Alk<br />

le,<br />

crit<br />

= −Q<br />

2/3<br />

⎛ Bc<br />

⋅ ⎜1.5<br />

⋅<br />

⎝<br />

K<br />

dep<br />

gibb<br />

+ Bc<br />

w<br />

− Bc<br />

⋅(<br />

Bc : Al)<br />

u<br />

crit<br />

⎞<br />

⎟<br />

⎠<br />

1/3<br />

Bc<br />

− 1.5 ⋅<br />

dep<br />

+ Bc<br />

w<br />

( Bc : Al)<br />

− Bc<br />

crit<br />

u<br />

where Q is soil run<strong>of</strong>f rate or precipitation surplus (m 3 ha –1 yr –1 ), The NEG-ECP protocol used a Bc:Al<br />

ratio <strong>of</strong> 10, a log K gibb <strong>of</strong> 9.0 and Bc u = 0 (as above); K gibb is expressed as m 6 mol c –2 . In practice, the NEG-<br />

ECP protocol uses a function based on the total <strong>acid</strong> <strong>in</strong>put to derive a <strong>critical</strong> chemical limit equivalent<br />

to a Bc:Al ratio <strong>of</strong> 10.<br />

Exceedance (EXC) <strong>of</strong> steady-state <strong>critical</strong> load <strong>of</strong> S and N to upland <strong>for</strong>est <strong>soils</strong>, is calculated as the<br />

current total <strong>deposition</strong> flux <strong>of</strong> S plus N (nitrate plus ammonium) m<strong>in</strong>us <strong>critical</strong> load:<br />

(A.5) EXC = S dep + N dep – CL(S + N)<br />

where S dep = total (wet plus dry) S <strong>deposition</strong> and N dep = total N <strong>deposition</strong>. Unit <strong>of</strong> mol c ha –1 yr –1 ;<br />

negative exceedance values represent regions that are ‘not exceeded’, i.e., <strong>soils</strong> will not <strong>acid</strong>ify to a<br />

level where <strong>for</strong>est soil damage is expected.<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!