04.09.2014 Views

Recent Progress in 2G HTS Wires at SuperPower

Recent Progress in 2G HTS Wires at SuperPower

Recent Progress in 2G HTS Wires at SuperPower

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Recent</strong> <strong>Progress</strong> <strong>in</strong> Second-gener<strong>at</strong>ion<br />

<strong>HTS</strong> <strong>Wires</strong> <strong>at</strong> <strong>SuperPower</strong><br />

V. Selvamanickam, Y. Chen, X. Xiong, Y. Xie, X. Zhang, A. Rar,<br />

K. Lenseth, R. Schmidt, M. Martchevskii, and J. Herr<strong>in</strong><br />

Partially funded through Title III Program & DOE (UT-B<strong>at</strong>telle), AFRL & AFOSR<br />

Supported by CRADAs with Los Alamos, Oak Ridge, and Argonne N<strong>at</strong>ional Labor<strong>at</strong>ories<br />

ISS, Tsukuba, Nov. 5 – 7, 2007<br />

Provid<strong>in</strong>g <strong>HTS</strong> Solutions for a New Dimension <strong>in</strong> Power – TODAY!


<strong>SuperPower</strong>’s <strong>2G</strong> wire is based on high<br />

throughput processes & superior substr<strong>at</strong>e<br />

High throughput is critical for low cost <strong>2G</strong> wire and to m<strong>in</strong>imize capital<br />

<strong>in</strong>vestment.<br />

<strong>SuperPower</strong>’s <strong>2G</strong> conductor is based on high throughput IBAD MgO and<br />

MOCVD processes.<br />

Use of IBAD as buffer templ<strong>at</strong>e provides us choice of any substr<strong>at</strong>e.<br />

Advantages of IBAD are high strength, low a.c. loss (non magnetic, high<br />

resistive substr<strong>at</strong>es) and high eng<strong>in</strong>eer<strong>in</strong>g current density (ultra th<strong>in</strong> substr<strong>at</strong>es)<br />

20μm Cu<br />

2 μm Ag<br />

1 μm <strong>HTS</strong><br />

~ 30 nm LMO<br />

~ 30 nm Homo-epi MgO<br />

~ 10 nm IBAD MgO<br />

< 0.1 mm<br />

50μm Hastelloy substr<strong>at</strong>e<br />

20μm Cu<br />

ISS 2007 –2–


<strong>SuperPower</strong>’s <strong>2G</strong> Pilot Manufactur<strong>in</strong>g facilities have been<br />

oper<strong>at</strong>ional s<strong>in</strong>ce 2006<br />

Majority of <strong>in</strong>vestment already made for 1000 km/year capability<br />

Pilot Substr<strong>at</strong>e<br />

Electropolish<strong>in</strong>g<br />

Pilot Buffer<br />

Pilot IBAD<br />

Pilot <strong>HTS</strong><br />

ISS 2007 –3–


30 m <strong>2G</strong>-Cable has been manufactured & tested by<br />

Sumitomo with ~ 10,000 m of our <strong>2G</strong> wire<br />

Nearly 10,000 m of <strong>2G</strong><br />

wire <strong>in</strong> 43 m piece<br />

lengths and m<strong>in</strong>imum<br />

Ic over 70 A was<br />

delivered by<br />

<strong>SuperPower</strong> <strong>in</strong> Dec.<br />

2006, mark<strong>in</strong>g the<br />

s<strong>in</strong>gle largest delivery<br />

of <strong>2G</strong> wire<br />

Cu Stranded<br />

Wire Former<br />

Electric Insul<strong>at</strong>ion<br />

(PPLP + Liquid Nitrogen)<br />

<strong>2G</strong> <strong>HTS</strong><br />

(3 conductor Layers)<br />

<strong>2G</strong> <strong>HTS</strong><br />

(2 shield Layers)<br />

Cu Shield<br />

Sta<strong>in</strong>less Steel Double<br />

Corrug<strong>at</strong>ed Cryost<strong>at</strong><br />

135 mm<br />

<strong>2G</strong> wire cable w<strong>in</strong>d<strong>in</strong>g<br />

3 core strand<strong>in</strong>g<br />

ISS 2007 –4–


Excellent overall performance obta<strong>in</strong>ed <strong>in</strong> <strong>2G</strong> cable<br />

2<br />

1<br />

Electrical Field(uV/cm)<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

Core-1<br />

Core-2<br />

Core-3<br />

Ic Criterion (1uV/cm)<br />

0 500 1000 1500 2000 2500 3000<br />

Current (A, DC)<br />

Ic of conductor layers ~ 2660 – 2820A<br />

(DC, 77K, 1μV/cm)<br />

Ic of shield layers ~ 2400 – 2500A<br />

(DC, 77K, 1μV/cm)<br />

AC loss (W/m/phase)<br />

0.1<br />

0.01<br />

0.001<br />

Measured value<br />

0.34 W/m/ph @ 800 Arms<br />

Almost same result as previous<br />

1 meter test <strong>2G</strong> cable<br />

100 1000 10000<br />

Load<strong>in</strong>g Current (Arms, 60Hz)<br />

No Ic degrad<strong>at</strong>ion and No defect was found<br />

<strong>at</strong> dismantl<strong>in</strong>g <strong>in</strong>spection when bend to a<br />

diameter of 2.4 m<br />

Cable withstood AC 69kV for 10 m<strong>in</strong>utes<br />

and Impulse ±200kV, 10 times<br />

ISS 2007 –5–


<strong>2G</strong> cable has been <strong>in</strong>stalled <strong>in</strong> grid of Albany Cable<br />

site<br />

Install<strong>at</strong>ion <strong>at</strong> Albany Cable site<br />

(Aug. 5, 2007)<br />

World’s first <strong>in</strong>-grid cable, first<br />

underground <strong>HTS</strong> cable, first cable-tocable<br />

jo<strong>in</strong>t, 350 m long<br />

On-Grid Oper<strong>at</strong>ions Began July 20, 2006<br />

30 m segment of 1G cable replaced by<br />

<strong>2G</strong> cable which is world’s first <strong>2G</strong> device<br />

ISS 2007 –6–<br />

<strong>2G</strong> cable cool-down<br />

beg<strong>in</strong>s l<strong>at</strong>e Nov. 2007<br />

and will be energized<br />

soon thereafter


New high field coil constructed with <strong>2G</strong> wire<br />

Total thickness of our <strong>2G</strong> wire <strong>in</strong>clud<strong>in</strong>g copper stabilizer is only 0.095 mm<br />

which is ½ the thickness of 1G and other <strong>2G</strong> wires. This is very useful for coil<br />

applic<strong>at</strong>ions where higher number of amp-turns can be obta<strong>in</strong>ed.<br />

In FY’06, we demonstr<strong>at</strong>ed a <strong>2G</strong> coil th<strong>at</strong><br />

gener<strong>at</strong>ed 1.1 T <strong>at</strong> 77 K and 2.4 T <strong>at</strong> 64 K<br />

2007 <strong>2G</strong> coil<br />

2006 <strong>2G</strong> coil<br />

In FY’07, we constructed a coil with 6<br />

double pancakes us<strong>in</strong>g 462 m of <strong>2G</strong> wire.<br />

The coil was tested <strong>in</strong> the N<strong>at</strong>ional High<br />

Magnetic Field Lab <strong>at</strong> FSU<br />

ISS 2007 –7–


World record performance achieved with <strong>2G</strong> coil<br />

Coil ID<br />

W<strong>in</strong>d<strong>in</strong>g ID<br />

W<strong>in</strong>d<strong>in</strong>g OD<br />

Coil Height<br />

9.5 mm (clear)<br />

19.1 mm<br />

~ 87 mm<br />

~ 51.6 mm<br />

# of Pancakes 12 (6 x double)<br />

<strong>2G</strong> tape used<br />

Average Ic of<br />

tapes <strong>in</strong> coil<br />

~ 462 m<br />

78 A <strong>in</strong> 4 mm width<br />

(77 K, self field)<br />

# of turns ~ 2772<br />

Coil Je<br />

~1.569 A/mm 2 per A<br />

Coil constant<br />

~ 44.46 mT/A<br />

Central Field (T)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

World record field<br />

for <strong>HTS</strong> coil: 9.8 T<br />

0 50 100 150 200 250<br />

Current (A)<br />

4.2 K,<br />

no background<br />

field<br />

4.2 K Coil Ic - self field 221 A<br />

4.2 K Amp Turns @ Ic -<br />

self field<br />

612,612<br />

4.2 K Central field – self<br />

field<br />

9.81 T<br />

ISS 2007 –8–<br />

Coil tested by H. Weijers, D. Markewicz, & D. Larbalestier, NHMFL, FSU


World record performance achieved with <strong>2G</strong> coil<br />

4.2 K Coil Ic – 19 T<br />

background (axial)<br />

4.2 K Amp Turns @<br />

Ic – 19 T background (axial)<br />

4.2K Central Field – 19 T<br />

background (axial)<br />

2007 SP 2003<br />

OST<br />

175 A<br />

485,100<br />

26.8 T<br />

1999<br />

Hitachi<br />

2- <strong>in</strong>sert<br />

Conductor<br />

length (km) 0.46 2.1 1.0<br />

W<strong>in</strong>d<strong>in</strong>g Je<br />

(A/mm 2 )<br />

275 86 125/112<br />

Additional<br />

field<br />

gener<strong>at</strong>ed (T)<br />

7.8 5.1 5.4<br />

Total field<br />

achieved (T)<br />

26.8 25.1 23.4<br />

ISS 2007 –9–<br />

Central Field (T)<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

World record field for<br />

LTS or <strong>HTS</strong> coil: 26.8 T<br />

0 50 100 150 200 250 300 350<br />

<strong>SuperPower</strong> <strong>2G</strong><br />

OST Bi-2212 tape<br />

Current (A)<br />

Two concentric Hitachi Bi-2212 <strong>in</strong>serts<br />

This demonstr<strong>at</strong>ion extends the potential of <strong>2G</strong> over a wider applic<strong>at</strong>ion range<br />

Coil tested by H. Weijers, D. Markewicz, & D. Larbalestier, NHMFL, FSU


Key Milestones to be met <strong>in</strong> order for <strong>2G</strong> to<br />

replace 1G <strong>in</strong> 2008<br />

There are key areas where <strong>2G</strong> needs to be competitive with 1G by 2008 <strong>in</strong> order to<br />

be used <strong>in</strong> the next round of various device prototype projects.<br />

Key metrics th<strong>at</strong> need to be demonstr<strong>at</strong>ed with <strong>2G</strong> are :<br />

Long piece lengths<br />

Critical Current over long lengths<br />

Availability<br />

High throughput (= production volume/year)<br />

Demonstr<strong>at</strong>e large deliveries from Pilot-scale production<br />

Comparable cost with 1G<br />

Metric 1G <strong>2G</strong> (2006)<br />

Title III <strong>2G</strong> goals<br />

(June ’08)<br />

Piece length (m) 1,500 400 1,000<br />

Ic (A) <strong>in</strong> 4 mm over long lengths 200 100 200<br />

Capacity (km/year) < 1,000 350 1,000*<br />

Our focus <strong>in</strong> 2007 has been to make significant progress <strong>in</strong> all key metrics<br />

ISS 2007 –10–<br />

*1000 km/year <strong>at</strong> the specified length & Ic


P<strong>at</strong>hway to commercializ<strong>at</strong>ion of <strong>2G</strong><br />

Metric 1 : Higher Currents<br />

Critical current (A/cm)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Critical current measured<br />

across entire tape width of<br />

12 mm (no p<strong>at</strong>tern<strong>in</strong>g)<br />

Aug. 2006 Ic<br />

Oct. 2006 Ic<br />

Oct. 2006 Jc<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

MOCVD film thickness (microns)<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Jc (MA/cm 2 )<br />

Oct. 2006 : In a 3.5 micron film made <strong>in</strong> 5 passes,<br />

achieved Ic of 721 A/cm (Jc = 2.06 MA/cm 2 ) over reelto-reel<br />

processed 12 mm wide, 7 cm long tape.<br />

Voltage (microvolt)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

Ic = 865 A = 721 A/cm<br />

0 200 400 600 800 1000<br />

Current (A)<br />

Ic measurement us<strong>in</strong>g cont<strong>in</strong>uous<br />

dc current (no pulsed current)<br />

across entire tape width of 12 mm<br />

No p<strong>at</strong>tern<strong>in</strong>g<br />

Thick film MOCVD technology cont<strong>in</strong>ues to be advanced by improv<strong>in</strong>g<br />

microstructure to achieve higher currents<br />

ISS 2007 –11–


Modified MOCVD film composition (Gd-YBCO)<br />

yielded higher currents <strong>in</strong> th<strong>in</strong>ner films<br />

Critical current measured<br />

across entire tape width of<br />

12 mm (no p<strong>at</strong>tern<strong>in</strong>g)<br />

Critical current (A/cm)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

2006 Ic (Y,Sm)BCO<br />

2007 Ic (Y,Gd)BCO<br />

2007 Jc (Y,Sm)BCO<br />

2007 Jc (Y,Gd)BCO<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

Jc (MA/cm 2 )<br />

Microstructural problems <strong>in</strong>crease<br />

with <strong>in</strong>creas<strong>in</strong>g film thickness.<br />

Can high currents be achieved <strong>in</strong><br />

th<strong>in</strong>ner films ?<br />

Voltage (microvolt)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Ic = 888 A = 740 A/cm<br />

200<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

MOCVD film thickness (microns)<br />

In a 2.8 micron film made <strong>in</strong> 4 passes, achieved Ic of<br />

740 A/cm (Jc = 2.64 MA/cm 2 ) over reel-to-reel<br />

processed 12 mm wide, 10 cm long tape.<br />

ISS 2007 –12–<br />

2<br />

-2<br />

0 200 400 600 800 1000<br />

Current (A)<br />

Ic measurement us<strong>in</strong>g cont<strong>in</strong>uous<br />

dc current (no pulsed current)<br />

across entire tape width of 12 mm<br />

No p<strong>at</strong>tern<strong>in</strong>g<br />

This demonstr<strong>at</strong>ion of 300 A conductor <strong>in</strong> 4 mm width is 50% better<br />

performance than the best 1G available today


Higher currents <strong>in</strong> > 100 m lengths <strong>at</strong> higher<br />

speeds<br />

Critical current (A/cm)<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1<br />

11<br />

21<br />

31<br />

In Oct. 2007, produced 155 m<br />

41<br />

long tape <strong>in</strong> Pilot MOCVD<br />

system<br />

Tape speed ~ 70 m/h*<br />

M<strong>in</strong>imum Ic over 155 m<br />

= 320 A/cm<br />

Uniformity over 155 m = 2.5%<br />

51<br />

61<br />

Position (m)<br />

Critical current (A/cm)<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Thicker film MOCVD technology successfully<br />

transitioned to Pilot system to produce long high<br />

current tapes <strong>at</strong> ~ 5x higher speeds<br />

ISS 2007 –13–<br />

71<br />

81<br />

91<br />

* 4 mm wide tape equivalent<br />

101<br />

50<br />

0<br />

5<br />

15<br />

25<br />

35<br />

In 2006, we demonstr<strong>at</strong>ed Ic ~ 300 A/cm<br />

over 100 m <strong>in</strong> MOCVD tape processed <strong>in</strong><br />

Research MOCVD system.<br />

Tape speed = 15 m/h*<br />

Uniformity over 103 m = 6.8%<br />

45<br />

55<br />

65<br />

75<br />

85<br />

95<br />

Position (m)<br />

105<br />

115<br />

125<br />

135<br />

145<br />

155


P<strong>at</strong>hway to commercializ<strong>at</strong>ion of <strong>2G</strong><br />

Metric 2 : Higher Throughput<br />

Us<strong>in</strong>g reactive sputter<strong>in</strong>g of metal Mg target <strong>in</strong>stead of an oxide target, deposition r<strong>at</strong>e <strong>in</strong><br />

IBAD MgO process was <strong>in</strong>creased by 55%. Assist-ion beam profile was re-optimized to<br />

m<strong>at</strong>ch the higher deposition r<strong>at</strong>e profile. Speed of IBAD MgO process was <strong>in</strong>creased<br />

from 195 m/h to 360 m/h for 4 mm wide tape.<br />

Higher power levels, more tape tracks <strong>in</strong> helix system were used <strong>in</strong> reactive sputter<strong>in</strong>g of<br />

homo-epi MgO to <strong>in</strong>crease speed from 120 m/h to 345 m/h of 4 mm wide tape.<br />

Cu<br />

Ag<br />

<strong>HTS</strong><br />

LMO<br />

Homo-epi MgO<br />

IBAD MgO<br />

2006<br />

6 tape tracks<br />

Hastelloy substr<strong>at</strong>e<br />

Cu<br />

# Tape tracks used <strong>in</strong> helix tape handl<strong>in</strong>g system<br />

was <strong>in</strong>creased and film thickness was decreased<br />

by 25% to <strong>in</strong>crease speed of LMO process from<br />

120 m/h to 360 m/h.<br />

IBAD MgO & Buffer process<strong>in</strong>g speeds have been <strong>in</strong>creased by 100% to 200%<br />

ISS 2007 –14–<br />

2007<br />

11 tape tracks


We have proven high throughput processes <strong>in</strong> all steps <strong>in</strong><br />

our Pilot <strong>2G</strong> manufactur<strong>in</strong>g to produce high quality wire <strong>in</strong><br />

long lengths<br />

Oct. 06: High currents demonstr<strong>at</strong>ed<br />

over 200+m with all processes <strong>at</strong> higher speeds<br />

June ’07 : High currents over 130+m with<br />

all processes <strong>at</strong> even higher speeds<br />

Critical current (A/cm)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0<br />

M<strong>in</strong>imum Ic = 227 A/cm over 201 m<br />

Uniformity = 2.7%<br />

50<br />

100<br />

150<br />

M<strong>in</strong> Ic<br />

200<br />

Critical current (A/cm)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

M<strong>in</strong>imum Ic = 201 A/cm over 130 m<br />

Uniformity = 3.5%<br />

0 25 50 75 100 125<br />

Position (m)<br />

Position (m)<br />

Process<br />

Speed of 4 mm wide tape (m/h)<br />

Production capacity (km/yr)<br />

Month<br />

Production capacity of 1,000 km/year already exceeded <strong>in</strong> IBAD MgO &<br />

Buffer processes is close to be<strong>in</strong>g achieved with MOCVD<br />

ISS 2007 –15–<br />

IBAD<br />

MgO<br />

Homoepi<br />

MgO<br />

LMO<br />

MOCVD<br />

YBCO<br />

Oct. ‘06 360 240 240 135<br />

June ‘07<br />

360 345 345 180<br />

(if 45% of time/year is available for deposition)<br />

1,440 1,380 1,380 720


P<strong>at</strong>hway to commercializ<strong>at</strong>ion of <strong>2G</strong><br />

Metric 3 : Long Lengths<br />

In January 2007, we crossed an important milestone of 100,000 A-m.<br />

250<br />

Critical current<br />

(A/cm)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0<br />

50<br />

100<br />

150<br />

77 K, Ic measured every 5 m us<strong>in</strong>g cont<strong>in</strong>uous dc<br />

currents over entire tape width of 12 mm (not slit)<br />

200<br />

M<strong>in</strong>imum Ic = 173 A/cm over 595 m<br />

Ic × Length = 102,935 A-m<br />

250<br />

Uniformity over 595 m = 6.4%<br />

ISS 2007 –16–<br />

300<br />

350<br />

Position (m)<br />

400<br />

450<br />

Process<br />

(s<strong>in</strong>gle pass)<br />

500<br />

550<br />

Speed of 4 mm tape<br />

(m/h)<br />

IBAD MgO 360<br />

Homo-epi MgO 213<br />

LMO 360<br />

MOCVD 135<br />

600


Kilometer lengths of fully buffered tape with<br />

excellent & uniform <strong>in</strong>-plane texture produced<br />

10<br />

9<br />

Next target : Kilometer lengths !<br />

In-plane texture (degrees)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0<br />

100<br />

200<br />

300<br />

400<br />

500<br />

Several tapes with complete 5-layer<br />

buffer stack produced <strong>in</strong> lengths of<br />

approxim<strong>at</strong>ely 1,300 m with <strong>in</strong>-plane<br />

texture of 6 – 7 degrees and excellent<br />

uniformity of ~ 2%.<br />

600<br />

ISS 2007 –17–<br />

700<br />

800<br />

Position (m)<br />

900<br />

1,000<br />

1,100<br />

Tape 1<br />

Tape 2<br />

Tape 3<br />

Tape 4<br />

Tape 5<br />

Tape 6<br />

Tape 7<br />

Tape 8<br />

Tape 9<br />

Tape 10<br />

1,200<br />

1,300<br />

1,400<br />

20μm Cu<br />

20μm Cu<br />

Ag<br />

50μm Hastelloy substr<strong>at</strong>e<br />

<strong>HTS</strong><br />

LMO<br />

Homo-epi MgO<br />

IBAD MgO<br />

Tape Length In-plane texture (°) Uniformity<br />

(m) Average M<strong>in</strong> Max<br />

1 1,001 6.79 6.20 7.84 6.2%<br />

2 1,343 6.33 5.80 7.16 3.3%<br />

3 1,346 6.85 6.00 7.35 2.1%<br />

4 1,372 6.20 5.83 6.68 2.2%<br />

5 1,375 6.58 6.23 7.14 2.5%<br />

6 1,277 6.59 5.80 7.09 2.1%<br />

7 1,346 7.09 6.66 7.79 2.9%<br />

8 1,265 6.81 6.30 7.12 1.7%<br />

9 1,246 6.33 5.47 7.13 2.4%<br />

10 1,369 6.18 5.95 6.26 1.2%


Sep. 2007 : New long length record !<br />

Critical current (A/cm)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

77 K, Ic measured every 5 m us<strong>in</strong>g cont<strong>in</strong>uous dc<br />

currents over entire tape width of 12 mm (not slit)<br />

0 100 200 300 400 500 600 700 800<br />

ISS 2007 –18–<br />

Position (m)<br />

M<strong>in</strong>imum Ic = 190 A/cm over 790 m<br />

Ic × Length = 150,100 A-m<br />

Uniformity over 790 m = 9.7%<br />

We are gett<strong>in</strong>g very close to kilometer long <strong>2G</strong> wires !<br />

Process<br />

(s<strong>in</strong>gle pass)<br />

Speed of 4 mm<br />

tape (m/h)<br />

IBAD MgO 360<br />

Homo-epi MgO 345<br />

LMO 345<br />

MOCVD ~ 100


Remarkable progress <strong>in</strong> <strong>2G</strong> wire scale-up over the<br />

last 5 years<br />

160,000<br />

140,000<br />

120,000<br />

100,000<br />

80,000<br />

60,000<br />

40,000<br />

20,000<br />

0<br />

18 m 62 m<br />

Nov-01<br />

Mar-03<br />

Aug-04<br />

Dec-05<br />

Apr-07<br />

Critical Current * Length (A-m)<br />

1 m<br />

1 m to 790 m <strong>in</strong><br />

5 years<br />

Also, Ic doubled<br />

& speed<br />

<strong>in</strong>creased<br />

12-fold to<br />

180 m/h*<br />

322 m<br />

206 m<br />

158 m<br />

97 m<br />

790 m<br />

595 m<br />

427 m<br />

1,000,000<br />

100,000<br />

10,000<br />

1,000<br />

100<br />

10<br />

World Record<br />

May-02<br />

Oct-02<br />

Mar-03<br />

Aug-03<br />

Jan-04<br />

Jun-04<br />

Nov-04<br />

Apr-05<br />

Sep-05<br />

Feb-06<br />

Jul-06<br />

Nov-06<br />

Apr-07<br />

Sep-07<br />

Feb-08<br />

Critical Current * Length (A-m)<br />

*4 mm speed equivalent<br />

ISS 2007 –19–


<strong>Progress</strong> be<strong>in</strong>g made both <strong>in</strong> Pilot Manufactur<strong>in</strong>g of long<br />

lengths & technology development with shorter lengths<br />

800<br />

Critical current (A/cm)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

2.8 micron thick <strong>HTS</strong><br />

1.4 micron thick <strong>HTS</strong><br />

1 micron thick <strong>HTS</strong><br />

Standard <strong>in</strong> Pilot MOCVD<br />

Production system<br />

Title III goal<br />

June 2008<br />

~ 2.3 micron <strong>HTS</strong> <strong>in</strong> Pilot<br />

MOCVD Production system<br />

0<br />

0.01<br />

Next Steps:<br />

0.1<br />

1<br />

Length (m)<br />

Manufactur<strong>in</strong>g scale-up to reach 1000 m with Ic > 200 A/cm (almost there !)<br />

Manufactur<strong>in</strong>g improvements to raise Ic level of 500+m Production lengths to th<strong>at</strong> of<br />

short lengths of same film thickness i.e. 500 m and then 1000 m with Ic > 300 A/cm<br />

Technology transition of higher-current conductors to Pilot manufactur<strong>in</strong>g i.e. 100 m,<br />

then 500 m and then 1000 m with Ic of 500 A/cm<br />

ISS 2007 –20–<br />

10<br />

100<br />

1000


Substantial improvements made s<strong>in</strong>ce the last ISS <strong>in</strong> all key<br />

metrics - Ic & speed, & piece lengths of <strong>2G</strong> wire<br />

Metric 2006 ISS 2007 ISS<br />

Ic (A/cm) – short, reel-to-reel<br />

processed<br />

721 <strong>in</strong> 3.5<br />

micron film<br />

740 <strong>in</strong> 2.8<br />

micron film<br />

Improvement<br />

<strong>in</strong> 2007<br />

30% higher Jc<br />

Buffer speed* (m/h) 240 345 to 360 40 to 50%<br />

MOCVD speed* (m/h) 135 180 33%<br />

Ic over 100 m <strong>at</strong> st<strong>at</strong>ed<br />

speeds of Buffer & MOCVD<br />

227 201<br />

Same Ic level with much higher<br />

speeds <strong>in</strong> all processes<br />

Buffered tape piece length (m) 550 1,375 150%<br />

Completed <strong>2G</strong> wire Piece<br />

Length (m)<br />

427 790 85%<br />

Ic × L (A-m) 81,550 150,100 84%<br />

Rapid progress with higher currents, higher speeds, and longer<br />

lengths are all lead<strong>in</strong>g the way to a lower-cost <strong>2G</strong> wire<br />

ISS 2007 –21–<br />

*4 mm wide tape equivalent, s<strong>in</strong>gle pass

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!