08.09.2014 Views

CRES Control Using CDA as a Shielding Gas

CRES Control Using CDA as a Shielding Gas

CRES Control Using CDA as a Shielding Gas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ti<br />

1010100111011<br />

101001110111011<br />

<strong>CRES</strong> <strong>Control</strong> <strong>Using</strong> <strong>CDA</strong> <strong>as</strong> a <strong>Shielding</strong> G<strong>as</strong><br />

Steve Austin, Gary Grayson and Al Wegleitner<br />

Tex<strong>as</strong> Instruments, Dall<strong>as</strong>, TX<br />

June 11 th 2006<br />

1


Outline<br />

•Background – the journey<br />

•Problem Statement<br />

•Me<strong>as</strong>urement/Methodology<br />

•Key Findings<br />

•Solution's<br />

•Acknowledgments<br />

SWTW June 11 th 2006<br />

Page 2<br />

Wegleitner et al.


Background<br />

•Factory Expansion Ph<strong>as</strong>e 4 – just<br />

completed<br />

•Ph<strong>as</strong>e 4 automotive factory w<strong>as</strong><br />

experiencing significant CRes yield loss<br />

issues between testers and devices<br />

•Ph<strong>as</strong>e 5 to ramping ~ 150 systems<br />

migrating to automotive 3 insertion test<br />

methodology<br />

SWTW June 11 th 2006<br />

Page 3<br />

Wegleitner et al.


Problem Statement<br />

•Factory w<strong>as</strong> experiencing significant CRes<br />

yield loss issues between testers and<br />

devices during 3 insertion probing<br />

sequence at different temps<br />

•CRes fails were causing significant yield<br />

loss and requiring significant reprobe time<br />

losses<br />

•Traditional CRes solutions were reaching<br />

the limits of effectiveness<br />

SWTW June 11 th 2006<br />

Page 4<br />

Wegleitner et al.


Objective<br />

•Show the effects of <strong>CDA</strong> on CRes<br />

•Review the potential impact of <strong>CDA</strong> that<br />

effect die temperature<br />

•Review design/hardware procedures<br />

needed to manage <strong>CDA</strong><br />

•Share key learning's – the journey<br />

SWTW June 11 th 2006<br />

Page 5<br />

Wegleitner et al.


CRes Sources<br />

Probe<br />

Bond Pad Surface<br />

Test Program<br />

Diode Structure<br />

PC Planarity<br />

Cleaning Frequency<br />

Debris Field<br />

Test Head Level<br />

Z-Axis Travel<br />

Chuck Speed<br />

Muffin Fans<br />

Air Handlers<br />

Raised Floor<br />

Equipment Density<br />

H 2 0 ?<br />

Conditions<br />

that effect<br />

CRes<br />

500<br />

450<br />

400<br />

M<br />

a<br />

x<br />

C<br />

R<br />

E<br />

S<br />

i<br />

n<br />

O<br />

h<br />

m<br />

s<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Typical <strong>CRES</strong> performance<br />

curve in SCT and EBT.<br />

VLB105<br />

~ 7 ohms<br />

~ 7 minutes<br />

SWTW June 11 th 2006<br />

Page 6<br />

Wegleitner et al.


Cres Causes by Category<br />

Nearly all are out of the control of<br />

operations<br />

SWTW June 11 th 2006<br />

Page 7<br />

Wegleitner et al.


Cleaning Frequency change most common<br />

approach to control <strong>CRES</strong> at probe.<br />

SWTW June 11 th 2006<br />

Page 8<br />

Wegleitner et al.


Cleaning Effectiveness<br />

•A Paradigm Shift<br />

◦Improving Contact Resistance without<br />

Incre<strong>as</strong>ing on-line Cleaning?<br />

•Injecting Compressed Dry Air (<strong>CDA</strong>) on the Die<br />

Under Test h<strong>as</strong> improved the stability of <strong>CRES</strong> and<br />

reduces the need for additional on-line cleaning<br />

SWTW June 11 th 2006<br />

Page 9<br />

Wegleitner et al.


Discovery Experiments<br />

•Blanket Aluminum Wafer<br />

•Cantilever Dual-Site Probe Card<br />

•VLCLT Tester<br />

•<strong>CDA</strong><br />

•Nitrogen<br />

•Maximum Contact Resistance<br />

(MAX<strong>CRES</strong>) used to plot effects<br />

SWTW June 11 th 2006<br />

Page 10<br />

Wegleitner et al.


Single Power Pin Maximum Contact<br />

Resistance (MAX<strong>CRES</strong>)<br />

10 Ω 20 Ω<br />

Probe<br />

Card<br />

Needles<br />

13 Ω<br />

Die Under Test<br />

12 Ω<br />

11 Ω<br />

12 Ω<br />

SWTW June 11 th 2006<br />

Page 11<br />

Wegleitner et al.


100<br />

Max Contact Resistance wo/w <strong>CDA</strong><br />

No <strong>CDA</strong> <strong>CDA</strong><br />

90<br />

80<br />

70<br />

Ohms Contact Resistance<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

SWTW June 11 th 2006<br />

Page 12<br />

600 Die 600 Die<br />

Wegleitner et al.


Effectiveness of <strong>CDA</strong> vs. Nitrogen Purge<br />

10.00<br />

9.00<br />

Induced<br />

vibration<br />

8.00<br />

7.00<br />

6.00<br />

Normal<br />

<strong>CDA</strong><br />

Nitrogen<br />

5.00<br />

4.00<br />

3.00<br />

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151<br />

SWTW June 11 th 2006<br />

Page 13<br />

Wegleitner et al.


Oxidation Theory<br />

• Consider the Mechanical Contact to Al Pads<br />

◦ A native oxide layer of Al2O3 exists on the Al pads to be tested at probe<br />

◦ Some of this native oxide is removed by the mechanical probing & good<br />

contact is made by mechanical abr<strong>as</strong>ion<br />

◦ However, once micro-contacts are made, local heating can lead to oxide<br />

growth in the presence of air, leading to the formation of Al2O3 ( GT° ~ -<br />

400kcal, therefore spontaneous)<br />

◦ In the presence of moisture, hydrated aluminum oxides (Al2O3+H2O)<br />

are formed which can be thicker & more porous than the native Al2O3<br />

◦ The hydrated oxides are colorless to white and can lead to resistive or<br />

semiconducting contacts 1<br />

• <strong>CDA</strong> Purge Effects on Contact Process<br />

◦ Elimination of moisture and therefore, hydration of the oxide<br />

1<br />

Broz & Rincon, “Probe Contact Resistance During Elevated<br />

Temperature Wafer Test,” ITC Proceedings, p. 396, 1999.<br />

SWTW June 11 th 2006<br />

Page 14<br />

Wegleitner et al.


<strong>CDA</strong> Contamination Within Factory Specs.<br />

• Moisture readings pre and post filter (Spec ~ 100 ppm)<br />

◦ Pre filter w<strong>as</strong> at 9.02 ppm after 14 hours of analysis<br />

◦ Post filter w<strong>as</strong> at 10.8 ppm and dropping after only 2 hours of<br />

analysis<br />

• Hydrocarbon (THC) readings from pre and post filter<br />

(Spec ~ 5 ppm)<br />

◦ Both Samples were analyzed using a GC/FID for total<br />

hydrocarbons (THC) <strong>as</strong> CH4 per the site specification for <strong>CDA</strong><br />

◦ The pre filter sample averaged 3.26 ppm THC <strong>as</strong> CH4<br />

◦ The post filter sample averaged 3.46 ppm THC <strong>as</strong> CH4<br />

SWTW June 11 th 2006<br />

Page 15<br />

Wegleitner et al.


SWTW June 11 th 2006<br />

Page 16<br />

Wegleitner et al.


<strong>CDA</strong> vs. Non - <strong>CDA</strong> Results<br />

MP3 Yield Percentage With and Without <strong>CDA</strong><br />

BIN<br />

228<br />

227<br />

224<br />

100.0%<br />

95.0%<br />

Count of DIE_NUM<br />

222<br />

221<br />

220<br />

215<br />

90.0%<br />

85.0%<br />

202<br />

201<br />

178<br />

80.0%<br />

75.0%<br />

76<br />

74<br />

66<br />

70.0%<br />

65.0%<br />

65<br />

56<br />

55<br />

60.0%<br />

55.0%<br />

54<br />

53<br />

49<br />

50.0%<br />

45.0%<br />

47<br />

46<br />

43<br />

40.0%<br />

35.0%<br />

41<br />

39<br />

38<br />

30.0%<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

37<br />

35<br />

129C<br />

<strong>CDA</strong><br />

V3D620B09<strong>CDA</strong><br />

125C<br />

<strong>CDA</strong> Off<br />

V3D620B09<br />

31<br />

21<br />

20<br />

12<br />

0<br />

PROBE_CNT PROG <strong>CDA</strong>_ON TEMP WAFER<br />

11<br />

1<br />

SWTW June 11 th 2006<br />

Page 17<br />

Wegleitner et al.


<strong>CDA</strong> vs. Non - <strong>CDA</strong> Results<br />

Contact Sensitive Fallout (Bins 41, 55, 74, and 201) With and Without <strong>CDA</strong><br />

180<br />

Count of DIE_NUM<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

BIN<br />

201<br />

74<br />

55<br />

41<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

D-<br />

129C<br />

<strong>CDA</strong><br />

V3D620B09<strong>CDA</strong><br />

125C<br />

<strong>CDA</strong> Off<br />

V3D620B09<br />

0<br />

PROBE_CNT PROG <strong>CDA</strong>_ON TEMP WAFER<br />

SWTW June 11 th 2006<br />

Page 18<br />

Wegleitner et al.


BIN<br />

201<br />

74<br />

55<br />

D-<br />

4334196-<br />

22<br />

D-<br />

4334196-<br />

17<br />

80<br />

70<br />

60<br />

SWTW June 11 th 2006<br />

Page 19<br />

Wegleitner et al.<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

<strong>CDA</strong> vs. Non - <strong>CDA</strong> Results<br />

Contact Sensiive Fallout (Bins 41, 55, 74, and 201) With and Without <strong>CDA</strong><br />

Count of DIE_NUM<br />

D-<br />

4334196-<br />

03<br />

D-<br />

4334196-<br />

09<br />

D-<br />

4334196-<br />

23<br />

D-<br />

4334196-<br />

07<br />

D-<br />

4334196-<br />

10<br />

D-<br />

4334196-<br />

24<br />

D-<br />

4334196-<br />

02<br />

D-<br />

4334196-<br />

06<br />

D-<br />

4334196-<br />

14<br />

D-<br />

4334196-<br />

15<br />

D-<br />

4334196-<br />

20<br />

D-<br />

4334196-<br />

21<br />

D-<br />

4334196-<br />

01<br />

D-<br />

4334196-<br />

04<br />

D-<br />

4334196-<br />

05<br />

D-<br />

4334196-<br />

11<br />

D-<br />

4334196-<br />

13<br />

VLB160 VLC45 VLC93<br />

129C 125C<br />

<strong>CDA</strong> No <strong>CDA</strong><br />

V3D944X03<strong>CDA</strong> V3D944X03<br />

0<br />

41<br />

PROBE_CNT PROG <strong>CDA</strong> ON TEMP TESTER WAFER


<strong>CDA</strong> influence on die temperature<br />

• Response of ICCQ to chuck temperature w<strong>as</strong><br />

characterized with no <strong>CDA</strong>.<br />

• <strong>CDA</strong> w<strong>as</strong> injected at room temp (30°C) and hot<br />

chuck(125°C). Changes in ICCQ were recorded<br />

• The equation (<strong>CDA</strong> Temp – Chuck Temp) / 45°C<br />

closely defines the effect of <strong>CDA</strong> on die temperature.<br />

◦<strong>CDA</strong> temperature is 20°C typical<br />

◦Die temp is effected by


Effect of chuck temperature on ICCQ current<br />

uA<br />

ICCQ<br />

Current<br />

Dev A<br />

Dev B<br />

Chuck Temperature<br />

SWTW June 11 th 2006<br />

Page 21<br />

Wegleitner et al.


<strong>CDA</strong> Hardware Example<br />

SWTW June 11 th 2006<br />

Page 22<br />

Wegleitner et al.


No Me<strong>as</strong>urable ESD Buildup<br />

• Me<strong>as</strong>ured ESD on probe needles<br />

◦ACL Model 300B Electrostatic Locator<br />

•Two testers<br />

•<strong>CDA</strong> on needles<br />

•Me<strong>as</strong>ure every 15 minutes<br />

◦No Me<strong>as</strong>urable static build up


0.90%<br />

0.80%<br />

0.70%<br />

0.60%<br />

0.50%<br />

% Opens<br />

0.40%<br />

SWTW June 11 th 2006<br />

Page 24<br />

0.30%<br />

Wegleitner et al.<br />

Contact Stability - By Week<br />

Opens Before/After Immediate Reprobe - First Probe in EBT/SCT<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0.20%<br />

0%<br />

0.10%<br />

0.00%<br />

20-Feb<br />

18-Feb<br />

May-Wk1<br />

May-Wk3<br />

Jun-Wk1<br />

Jun-Wk3<br />

Jun-Wk5<br />

Ju1-Wk2<br />

Ju1-Wk4<br />

Aug-Wk2<br />

Aug-Wk4<br />

Sep-Wk2<br />

Sep-Wk4<br />

Oct-Wk1<br />

Oct-Wk3<br />

Nov-Wk1<br />

Nov-Wk3<br />

Dec-Wk1<br />

Dec-Wk3<br />

Dec-Wk5<br />

Jan-Wk2<br />

Jan-Wk4<br />

Feb-Wk2<br />

Impact on First P<strong>as</strong>s Opens<br />

<strong>CDA</strong><br />

Turned<br />

On<br />

% Opens Before Reprobe<br />

(right axis)<br />

% Opens After Reprobe<br />

(right axis)<br />

Goal for % Changed<br />

% Opens Changed


Conclusion<br />

• An in-situ method of stabilizing contact resistance<br />

using <strong>CDA</strong> (compressed dry air)<br />

• Reducing oxidation and contaminate build up<br />

• Maximizing yield and reducing reprobe on contact<br />

sensitive BINs<br />

• Reduces the need to incre<strong>as</strong>e cleaning intervals. This<br />

results in longer probe card life and improved<br />

throughput.<br />

SWTW June 11 th 2006<br />

Page 25<br />

Wegleitner et al.


Acknowledgements<br />

•Steve Austin<br />

•Kelly Daughtry<br />

•Gary Grayson<br />

•Frank Mesa<br />

•Mark Gillette<br />

•Robert Davis<br />

•PE Techs<br />

SWTW June 11 th 2006<br />

Page 26<br />

Wegleitner et al.


Thanks For Listening –<br />

Enjoy the Conference<br />

SWTW June 11 th 2006<br />

Page 27<br />

Wegleitner et al.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!