CKM Matrix Elements and CKM Angles - Theoretische Physik 1 ...
CKM Matrix Elements and CKM Angles - Theoretische Physik 1 ...
CKM Matrix Elements and CKM Angles - Theoretische Physik 1 ...
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong><br />
<strong>and</strong><br />
<strong>CKM</strong> <strong>Angles</strong><br />
Thomas Mannel<br />
<strong>Theoretische</strong> <strong>Physik</strong> I<br />
Universität Siegen<br />
Symposium to celebrate the<br />
60th aniversary of<br />
our friend <strong>and</strong> colleague Hans Kühn<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Introduction: What is this talk about?<br />
Many experts on <strong>CKM</strong> matrix <strong>and</strong> CP violation are in<br />
the audience<br />
I will be rather general <strong>and</strong> point out a few<br />
peculiarities<br />
Connection to Hans:<br />
I try to show how our knowledge about <strong>CKM</strong> <strong>and</strong> CP<br />
evolved over the time, since when Hans is active in<br />
Karlsruhe<br />
Quite a few of his achivements are<br />
relevant for <strong>CKM</strong> / CP<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Introduction: What is this talk about?<br />
Many experts on <strong>CKM</strong> matrix <strong>and</strong> CP violation are in<br />
the audience<br />
I will be rather general <strong>and</strong> point out a few<br />
peculiarities<br />
Connection to Hans:<br />
I try to show how our knowledge about <strong>CKM</strong> <strong>and</strong> CP<br />
evolved over the time, since when Hans is active in<br />
Karlsruhe<br />
Quite a few of his achivements are<br />
relevant for <strong>CKM</strong> / CP<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Introduction: What is this talk about?<br />
Many experts on <strong>CKM</strong> matrix <strong>and</strong> CP violation are in<br />
the audience<br />
I will be rather general <strong>and</strong> point out a few<br />
peculiarities<br />
Connection to Hans:<br />
I try to show how our knowledge about <strong>CKM</strong> <strong>and</strong> CP<br />
evolved over the time, since when Hans is active in<br />
Karlsruhe<br />
Quite a few of his achivements are<br />
relevant for <strong>CKM</strong> / CP<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Introduction: What is this talk about?<br />
Many experts on <strong>CKM</strong> matrix <strong>and</strong> CP violation are in<br />
the audience<br />
I will be rather general <strong>and</strong> point out a few<br />
peculiarities<br />
Connection to Hans:<br />
I try to show how our knowledge about <strong>CKM</strong> <strong>and</strong> CP<br />
evolved over the time, since when Hans is active in<br />
Karlsruhe<br />
Quite a few of his achivements are<br />
relevant for <strong>CKM</strong> / CP<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Introduction: What is this talk about?<br />
Many experts on <strong>CKM</strong> matrix <strong>and</strong> CP violation are in<br />
the audience<br />
I will be rather general <strong>and</strong> point out a few<br />
peculiarities<br />
Connection to Hans:<br />
I try to show how our knowledge about <strong>CKM</strong> <strong>and</strong> CP<br />
evolved over the time, since when Hans is active in<br />
Karlsruhe<br />
Quite a few of his achivements are<br />
relevant for <strong>CKM</strong> / CP<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Contents<br />
1 Introduction<br />
2 Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
3 The history of the UT since ∼ 1993<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour in the St<strong>and</strong>ard Model<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Unique origin of flavour in the st<strong>and</strong>ard model:<br />
Yukawa Couplings of the Quarks: Y (u)<br />
ij<br />
<strong>and</strong> Y (d)<br />
ij<br />
=⇒ Two Mass Matrices<br />
for the (up- <strong>and</strong> down-type) Quarks:<br />
M (q)<br />
ij<br />
= vY (q)<br />
ij<br />
(q = u, d)<br />
Mass Eigenstates: Relative Rotation<br />
between M (u) <strong>and</strong> M (d) : <strong>CKM</strong> <strong>Matrix</strong><br />
Appears in the mass-eigenbasis only in the charged<br />
current interactions<br />
Neutral currents remain diagonal: Neutral Higgs<br />
particles couple with the diagonal mass matrices<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
CP violation in the St<strong>and</strong>ard Model<br />
In Lagrangian Field Theory:<br />
CP Violation ⇔ complex coupling constants a i :<br />
L = ∑ i<br />
a i O i + h.c.<br />
(CP) O i (CP) † = O † i<br />
In the (three family) st<strong>and</strong>ard model:<br />
(with a single Higgs doublet <strong>and</strong> massless neutrinos)<br />
All couplings can be made real (in the mass eigenbasis)<br />
except the charged current couplings, encoded in<br />
V <strong>CKM</strong> ≠ V ∗ <strong>CKM</strong><br />
CP violation through a single complex phase<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
CP violation in the St<strong>and</strong>ard Model<br />
In Lagrangian Field Theory:<br />
CP Violation ⇔ complex coupling constants a i :<br />
L = ∑ i<br />
a i O i + h.c.<br />
(CP) O i (CP) † = O † i<br />
In the (three family) st<strong>and</strong>ard model:<br />
(with a single Higgs doublet <strong>and</strong> massless neutrinos)<br />
All couplings can be made real (in the mass eigenbasis)<br />
except the charged current couplings, encoded in<br />
V <strong>CKM</strong> ≠ V ∗ <strong>CKM</strong><br />
CP violation through a single complex phase<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
CP violation in the St<strong>and</strong>ard Model<br />
In Lagrangian Field Theory:<br />
CP Violation ⇔ complex coupling constants a i :<br />
L = ∑ i<br />
a i O i + h.c.<br />
(CP) O i (CP) † = O † i<br />
In the (three family) st<strong>and</strong>ard model:<br />
(with a single Higgs doublet <strong>and</strong> massless neutrinos)<br />
All couplings can be made real (in the mass eigenbasis)<br />
except the charged current couplings, encoded in<br />
V <strong>CKM</strong> ≠ V ∗ <strong>CKM</strong><br />
CP violation through a single complex phase<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
CP violation in the St<strong>and</strong>ard Model<br />
In Lagrangian Field Theory:<br />
CP Violation ⇔ complex coupling constants a i :<br />
L = ∑ i<br />
a i O i + h.c.<br />
(CP) O i (CP) † = O † i<br />
In the (three family) st<strong>and</strong>ard model:<br />
(with a single Higgs doublet <strong>and</strong> massless neutrinos)<br />
All couplings can be made real (in the mass eigenbasis)<br />
except the charged current couplings, encoded in<br />
V <strong>CKM</strong> ≠ V ∗ <strong>CKM</strong><br />
CP violation through a single complex phase<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
<strong>CKM</strong> <strong>Matrix</strong>: Basics<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
U 12 =<br />
Three Euler angles θ ij<br />
2<br />
4 c 12 s 12 0<br />
−s 12 c 12 0<br />
0 0 1<br />
3<br />
5 , U 13 =<br />
Single phase δ: U δ =<br />
2<br />
4 c 3<br />
13 0 s 13<br />
0 1 0<br />
−s 13 0 c 13<br />
PDG <strong>CKM</strong> Parametrization:<br />
2<br />
4<br />
5 , U 23 =<br />
1 0 0<br />
0 1 0<br />
0 0 e −iδ 13<br />
3<br />
5 .<br />
2<br />
1<br />
0 0 c 23 0<br />
s 23<br />
3<br />
5<br />
4<br />
V <strong>CKM</strong> = U 23 U † δ U 13U δ U 12<br />
Large Phases in V ub = |V ub |e −iγ = s 13 e −iδ 13 <strong>and</strong><br />
V td = |V td |e iβ<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
<strong>CKM</strong> <strong>Matrix</strong>: Basics<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
U 12 =<br />
Three Euler angles θ ij<br />
2<br />
4 c 12 s 12 0<br />
−s 12 c 12 0<br />
0 0 1<br />
3<br />
5 , U 13 =<br />
Single phase δ: U δ =<br />
2<br />
4 c 3<br />
13 0 s 13<br />
0 1 0<br />
−s 13 0 c 13<br />
PDG <strong>CKM</strong> Parametrization:<br />
2<br />
4<br />
5 , U 23 =<br />
1 0 0<br />
0 1 0<br />
0 0 e −iδ 13<br />
3<br />
5 .<br />
2<br />
1<br />
0 0 c 23 0<br />
s 23<br />
3<br />
5<br />
4<br />
V <strong>CKM</strong> = U 23 U † δ U 13U δ U 12<br />
Large Phases in V ub = |V ub |e −iγ = s 13 e −iδ 13 <strong>and</strong><br />
V td = |V td |e iβ<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
<strong>CKM</strong> <strong>Matrix</strong>: Basics<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
U 12 =<br />
Three Euler angles θ ij<br />
2<br />
4 c 12 s 12 0<br />
−s 12 c 12 0<br />
0 0 1<br />
3<br />
5 , U 13 =<br />
Single phase δ: U δ =<br />
2<br />
4 c 3<br />
13 0 s 13<br />
0 1 0<br />
−s 13 0 c 13<br />
PDG <strong>CKM</strong> Parametrization:<br />
2<br />
4<br />
5 , U 23 =<br />
1 0 0<br />
0 1 0<br />
0 0 e −iδ 13<br />
3<br />
5 .<br />
2<br />
1<br />
0 0 c 23 0<br />
s 23<br />
3<br />
5<br />
4<br />
V <strong>CKM</strong> = U 23 U † δ U 13U δ U 12<br />
Large Phases in V ub = |V ub |e −iγ = s 13 e −iδ 13 <strong>and</strong><br />
V td = |V td |e iβ<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
<strong>CKM</strong> <strong>Matrix</strong>: Basics<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
U 12 =<br />
Three Euler angles θ ij<br />
2<br />
4 c 12 s 12 0<br />
−s 12 c 12 0<br />
0 0 1<br />
3<br />
5 , U 13 =<br />
Single phase δ: U δ =<br />
2<br />
4 c 3<br />
13 0 s 13<br />
0 1 0<br />
−s 13 0 c 13<br />
PDG <strong>CKM</strong> Parametrization:<br />
2<br />
4<br />
5 , U 23 =<br />
1 0 0<br />
0 1 0<br />
0 0 e −iδ 13<br />
3<br />
5 .<br />
2<br />
1<br />
0 0 c 23 0<br />
s 23<br />
3<br />
5<br />
4<br />
V <strong>CKM</strong> = U 23 U † δ U 13U δ U 12<br />
Large Phases in V ub = |V ub |e −iγ = s 13 e −iδ 13 <strong>and</strong><br />
V td = |V td |e iβ<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
CP Violation in the St<strong>and</strong>ard model is too small<br />
The Flavour Physics <strong>and</strong> the CP Violation of the<br />
St<strong>and</strong>ard model are peculiar<br />
However, Flavour <strong>and</strong> CP violation observed in<br />
particle physics is (still?) fully compatible with the<br />
St<strong>and</strong>ard model predictions<br />
CP Violation (in exclusive non-leptonic decays) is<br />
hard to compute (precisely)<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
CP Violation in the St<strong>and</strong>ard model is too small<br />
The Flavour Physics <strong>and</strong> the CP Violation of the<br />
St<strong>and</strong>ard model are peculiar<br />
However, Flavour <strong>and</strong> CP violation observed in<br />
particle physics is (still?) fully compatible with the<br />
St<strong>and</strong>ard model predictions<br />
CP Violation (in exclusive non-leptonic decays) is<br />
hard to compute (precisely)<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
CP Violation in the St<strong>and</strong>ard model is too small<br />
The Flavour Physics <strong>and</strong> the CP Violation of the<br />
St<strong>and</strong>ard model are peculiar<br />
However, Flavour <strong>and</strong> CP violation observed in<br />
particle physics is (still?) fully compatible with the<br />
St<strong>and</strong>ard model predictions<br />
CP Violation (in exclusive non-leptonic decays) is<br />
hard to compute (precisely)<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
CP Violation in the St<strong>and</strong>ard model is too small<br />
The Flavour Physics <strong>and</strong> the CP Violation of the<br />
St<strong>and</strong>ard model are peculiar<br />
However, Flavour <strong>and</strong> CP violation observed in<br />
particle physics is (still?) fully compatible with the<br />
St<strong>and</strong>ard model predictions<br />
CP Violation (in exclusive non-leptonic decays) is<br />
hard to compute (precisely)<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Unitarity Triangle(s)<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Out of six Unitarity Triangles only two have sides of<br />
comparable lengths:<br />
Invariant measure of CP violation<br />
= Area of the triangles<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Unitarity Triangle(s)<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Out of six Unitarity Triangles only two have sides of<br />
comparable lengths:<br />
Invariant measure of CP violation<br />
= Area of the triangles<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Invariant measure of CP violation:<br />
Im∆ = ImV ud V ∗<br />
tdV tb V ∗ ub = c 12 s 12 c 2 13s 13 s 23 c 23 sin δ 13<br />
Maximal possible value δ max = 1<br />
6 √ 3 ∼ 0.1<br />
CP Violation is a small effect:<br />
Measured value δ exp ∼ 0.0001<br />
CP Violation vanishes in case of degeneracies: (Jarlskog)<br />
J = Det([M u , M d ])<br />
= 2iIm∆(m u − m c )(m u − m t )(m c − m t )<br />
×(m d − m s )(m d − m b )(m s − m b )<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Invariant measure of CP violation:<br />
Im∆ = ImV ud V ∗<br />
tdV tb V ∗ ub = c 12 s 12 c 2 13s 13 s 23 c 23 sin δ 13<br />
Maximal possible value δ max = 1<br />
6 √ 3 ∼ 0.1<br />
CP Violation is a small effect:<br />
Measured value δ exp ∼ 0.0001<br />
CP Violation vanishes in case of degeneracies: (Jarlskog)<br />
J = Det([M u , M d ])<br />
= 2iIm∆(m u − m c )(m u − m t )(m c − m t )<br />
×(m d − m s )(m d − m b )(m s − m b )<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Invariant measure of CP violation:<br />
Im∆ = ImV ud V ∗<br />
tdV tb V ∗ ub = c 12 s 12 c 2 13s 13 s 23 c 23 sin δ 13<br />
Maximal possible value δ max = 1<br />
6 √ 3 ∼ 0.1<br />
CP Violation is a small effect:<br />
Measured value δ exp ∼ 0.0001<br />
CP Violation vanishes in case of degeneracies: (Jarlskog)<br />
J = Det([M u , M d ])<br />
= 2iIm∆(m u − m c )(m u − m t )(m c − m t )<br />
×(m d − m s )(m d − m b )(m s − m b )<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Invariant measure of CP violation:<br />
Im∆ = ImV ud V ∗<br />
tdV tb V ∗ ub = c 12 s 12 c 2 13s 13 s 23 c 23 sin δ 13<br />
Maximal possible value δ max = 1<br />
6 √ 3 ∼ 0.1<br />
CP Violation is a small effect:<br />
Measured value δ exp ∼ 0.0001<br />
CP Violation vanishes in case of degeneracies: (Jarlskog)<br />
J = Det([M u , M d ])<br />
= 2iIm∆(m u − m c )(m u − m t )(m c − m t )<br />
×(m d − m s )(m d − m b )(m s − m b )<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Peculiarities of SM Flavour Mixing<br />
Hierarchical structure of the <strong>CKM</strong> matrix<br />
Quark Mass spectrum ist widely spread<br />
m u ∼ 10 MeV to m t ∼ 170 GeV<br />
PMNS <strong>Matrix</strong> for lepton flavour mixing is not<br />
hierarchical<br />
Only the charged lepton masses are hierarchical<br />
m e ∼ 0.5 MeV to m τ ∼ 1772 MeV<br />
Up-type leptons ∼ Neutrinos have very small masses<br />
(?)<br />
(Enormous) Suppression of Flavour Changing<br />
Neutral Currents:<br />
b → s, c → u, τ → µ, µ → e, ν 2 → ν 1<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Peculiarities of SM CP Violation<br />
Strong CP remains mysterious<br />
Flavour diagonal CP Violation is well hidden:<br />
e.g electric dipole moment of the neutron:<br />
At least three loops (Shabalin)<br />
d e ∼ e α s GF<br />
2 mt<br />
2 Im∆ µ 3<br />
π (16π 2 ) 2 MW<br />
2<br />
∼ 10 −32 e cm with µ ∼ 0.3 GeV<br />
d exp ≤ 3.0 × 10 −26 e cm<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Semileptonic Decays<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Fairly good control over s.l. decays from the Heavy<br />
Quark Expansion<br />
Originally (∼ 1991 ± 2): Best determination of V cb<br />
(<strong>and</strong> also V ub ) from exclusive decays:<br />
Heavy Quark Symmetries<br />
Later (from about 1995):<br />
V cb <strong>and</strong> V ub from inclusive decays<br />
Requires precise heavy quark masses!<br />
Recently (∼ 2005): Precise, unquenched lattice data:<br />
Renaissance of V cb <strong>and</strong> V ub from exclusive decays ?<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Typical problem:<br />
Evaluation of a matrix element of the type<br />
M = 〈f |O|i〉,<br />
O = Four Quark Operator<br />
No First Principles Method for exclusive decays<br />
No precision calculations possible<br />
Approximate methods<br />
Flavour Symmetry: Isospin, SU(3)<br />
QCD Factorization / perturbative QCD<br />
QCD (Light Cone) Sum rules<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Typical problem:<br />
Evaluation of a matrix element of the type<br />
M = 〈f |O|i〉,<br />
O = Four Quark Operator<br />
No First Principles Method for exclusive decays<br />
No precision calculations possible<br />
Approximate methods<br />
Flavour Symmetry: Isospin, SU(3)<br />
QCD Factorization / perturbative QCD<br />
QCD (Light Cone) Sum rules<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Typical problem:<br />
Evaluation of a matrix element of the type<br />
M = 〈f |O|i〉,<br />
O = Four Quark Operator<br />
No First Principles Method for exclusive decays<br />
No precision calculations possible<br />
Approximate methods<br />
Flavour Symmetry: Isospin, SU(3)<br />
QCD Factorization / perturbative QCD<br />
QCD (Light Cone) Sum rules<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Typical problem:<br />
Evaluation of a matrix element of the type<br />
M = 〈f |O|i〉,<br />
O = Four Quark Operator<br />
No First Principles Method for exclusive decays<br />
No precision calculations possible<br />
Approximate methods<br />
Flavour Symmetry: Isospin, SU(3)<br />
QCD Factorization / perturbative QCD<br />
QCD (Light Cone) Sum rules<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Typical problem:<br />
Evaluation of a matrix element of the type<br />
M = 〈f |O|i〉,<br />
O = Four Quark Operator<br />
No First Principles Method for exclusive decays<br />
No precision calculations possible<br />
Approximate methods<br />
Flavour Symmetry: Isospin, SU(3)<br />
QCD Factorization / perturbative QCD<br />
QCD (Light Cone) Sum rules<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Typical problem:<br />
Evaluation of a matrix element of the type<br />
M = 〈f |O|i〉,<br />
O = Four Quark Operator<br />
No First Principles Method for exclusive decays<br />
No precision calculations possible<br />
Approximate methods<br />
Flavour Symmetry: Isospin, SU(3)<br />
QCD Factorization / perturbative QCD<br />
QCD (Light Cone) Sum rules<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Typical problem:<br />
Evaluation of a matrix element of the type<br />
M = 〈f |O|i〉,<br />
O = Four Quark Operator<br />
No First Principles Method for exclusive decays<br />
No precision calculations possible<br />
Approximate methods<br />
Flavour Symmetry: Isospin, SU(3)<br />
QCD Factorization / perturbative QCD<br />
QCD (Light Cone) Sum rules<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour Symmetries<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
I-Spin (u ↔ d), U-Spin (u ↔ d), V-Spin (s ↔ d),<br />
Full SU(3)<br />
Group theory supplemented by the study of diagram<br />
topolgies:<br />
Color Suppression: ∼ 1/N c<br />
Annihilation: ∼ f B /M B<br />
Penguin contractions (of tree operators):<br />
1<br />
16π 2 ... 1<br />
→ needed to identify the contributions carrying weak<br />
phases<br />
Uncertainties O(20%), hard to estimate, hard to<br />
improve<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour Symmetries<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
I-Spin (u ↔ d), U-Spin (u ↔ d), V-Spin (s ↔ d),<br />
Full SU(3)<br />
Group theory supplemented by the study of diagram<br />
topolgies:<br />
Color Suppression: ∼ 1/N c<br />
Annihilation: ∼ f B /M B<br />
Penguin contractions (of tree operators):<br />
1<br />
16π 2 ... 1<br />
→ needed to identify the contributions carrying weak<br />
phases<br />
Uncertainties O(20%), hard to estimate, hard to<br />
improve<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour Symmetries<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
I-Spin (u ↔ d), U-Spin (u ↔ d), V-Spin (s ↔ d),<br />
Full SU(3)<br />
Group theory supplemented by the study of diagram<br />
topolgies:<br />
Color Suppression: ∼ 1/N c<br />
Annihilation: ∼ f B /M B<br />
Penguin contractions (of tree operators):<br />
1<br />
16π 2 ... 1<br />
→ needed to identify the contributions carrying weak<br />
phases<br />
Uncertainties O(20%), hard to estimate, hard to<br />
improve<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour Symmetries<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
I-Spin (u ↔ d), U-Spin (u ↔ d), V-Spin (s ↔ d),<br />
Full SU(3)<br />
Group theory supplemented by the study of diagram<br />
topolgies:<br />
Color Suppression: ∼ 1/N c<br />
Annihilation: ∼ f B /M B<br />
Penguin contractions (of tree operators):<br />
1<br />
16π 2 ... 1<br />
→ needed to identify the contributions carrying weak<br />
phases<br />
Uncertainties O(20%), hard to estimate, hard to<br />
improve<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
QCD Factorization, PQCD <strong>and</strong> SCET<br />
(Beneke, Buchalla, Neubert, Sachrajda, Bauer, Stewart Pirjol, Feldmann, Li, Keum, ...)<br />
Starts from the limit m b → ∞<br />
Perturbative calculation, systematic expansion (?)<br />
Strong phases are small (O(α s (m b )) or O(Λ/m b ))<br />
Sizable uncertainties, subleading terms ?<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
QCD Factorization, PQCD <strong>and</strong> SCET<br />
(Beneke, Buchalla, Neubert, Sachrajda, Bauer, Stewart Pirjol, Feldmann, Li, Keum, ...)<br />
Starts from the limit m b → ∞<br />
Perturbative calculation, systematic expansion (?)<br />
Strong phases are small (O(α s (m b )) or O(Λ/m b ))<br />
Sizable uncertainties, subleading terms ?<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
QCD Factorization, PQCD <strong>and</strong> SCET<br />
(Beneke, Buchalla, Neubert, Sachrajda, Bauer, Stewart Pirjol, Feldmann, Li, Keum, ...)<br />
Starts from the limit m b → ∞<br />
Perturbative calculation, systematic expansion (?)<br />
Strong phases are small (O(α s (m b )) or O(Λ/m b ))<br />
Sizable uncertainties, subleading terms ?<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
QCD Factorization, PQCD <strong>and</strong> SCET<br />
(Beneke, Buchalla, Neubert, Sachrajda, Bauer, Stewart Pirjol, Feldmann, Li, Keum, ...)<br />
Starts from the limit m b → ∞<br />
Perturbative calculation, systematic expansion (?)<br />
Strong phases are small (O(α s (m b )) or O(Λ/m b ))<br />
Sizable uncertainties, subleading terms ?<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
QCD (Light Cone) Sum Rules<br />
(Khodjamirian, Ball, Zwicky, Melcher, ...)<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Relies on Duality <strong>and</strong> Analyticity<br />
Estimate of the matrix element based on perturbative<br />
calculations, → QCD Factorization<br />
Intrinsic uncertainties in the range (10 - 20)% , hard<br />
to improve<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
QCD (Light Cone) Sum Rules<br />
(Khodjamirian, Ball, Zwicky, Melcher, ...)<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Relies on Duality <strong>and</strong> Analyticity<br />
Estimate of the matrix element based on perturbative<br />
calculations, → QCD Factorization<br />
Intrinsic uncertainties in the range (10 - 20)% , hard<br />
to improve<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
QCD (Light Cone) Sum Rules<br />
(Khodjamirian, Ball, Zwicky, Melcher, ...)<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
Relies on Duality <strong>and</strong> Analyticity<br />
Estimate of the matrix element based on perturbative<br />
calculations, → QCD Factorization<br />
Intrinsic uncertainties in the range (10 - 20)% , hard<br />
to improve<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Flavour <strong>and</strong> CP Basics<br />
Peculiarities of SM CP / Flavour<br />
Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />
η<br />
2<br />
1<br />
0<br />
-1<br />
sin γ<br />
sin 2β<br />
sin γ<br />
sin 2β<br />
K + →π + νν<br />
∆m d<br />
|ε , /ε K<br />
| , K 0 →π 0 νν<br />
|ε K<br />
|<br />
K 0 →π 0 νν<br />
|V ub<br />
/V cb<br />
|<br />
sin 2α<br />
sin 2α<br />
K + →π + νν<br />
|ε K<br />
|<br />
-2<br />
-2 -1 0 1 2<br />
ρ<br />
Many different<br />
measurements<br />
necessary<br />
A lot ot<br />
theoretical effort<br />
over ∼ 15 years<br />
HQE: Precise<br />
Quark Masses<br />
needed!<br />
Kaon Physics is<br />
an essential<br />
input<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Pre-historic Unitarity Triangle<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
The history of the UT since ∼ 1993<br />
Situation in 1993:<br />
HQET was still young (∼ 3 years)<br />
Hadronic <strong>Matrix</strong> elements for<br />
∆m d ∼ fB 2 were quite uncertain<br />
V ub /V cb was known at the level of ∼ 20%<br />
The top quark mass was still m t ∼ (140 ± 40) GeV<br />
No CP violation has been observed except ɛ K<br />
The UT still could have been “flat”<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Unitarity triangle 1993: f B = 135 ± 25 MeV<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Unitarity triangle 1993: f B = 200 ± 30 MeV<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
2001: First observation of “Non-Kaon CPV”<br />
1<br />
∆m d<br />
∆m s /∆m d<br />
|ε K |<br />
∆m d<br />
η<br />
0<br />
sin 2β WA<br />
1<br />
|V ub /V cb |<br />
0.8<br />
∆m d<br />
∆m s <strong>and</strong> ∆m d<br />
|ε K |<br />
0.6<br />
-1<br />
η<br />
0.4<br />
|ε K |<br />
0.2<br />
|V ub /V cb |<br />
sin 2β WA<br />
-1 0 1 2<br />
ρ<br />
0<br />
-1 -0.5 0 0.5 1<br />
ρ<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Unitarity Triangle 2001<br />
1<br />
∆m d<br />
∆m s /∆m d<br />
|ε K |<br />
∆m d<br />
η<br />
0<br />
sin 2β BABAR<br />
|V ub /V cb |<br />
|ε K |<br />
-1<br />
-1 0 1 2<br />
ρ<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Unitarity Triangle 2002<br />
1.5<br />
1<br />
∆m d<br />
η<br />
0.5<br />
0<br />
ε K<br />
|V ub /V cb |<br />
γ<br />
α<br />
β<br />
∆m s & ∆m d<br />
sin 2β WA<br />
Some improvement of<br />
V ub /V cb through the Heavy<br />
Quark Expansion<br />
-0.5<br />
ε K<br />
More data on<br />
A CP (B → J/ΨK s )<br />
-1<br />
<strong>CKM</strong><br />
f i t t e r<br />
FPCP 2003<br />
-1.5<br />
-1 -0.5 0 0.5 1 1.5 2<br />
ρ<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Unitarity Triangle 2003<br />
1.5<br />
excluded area has < 0.05 CL<br />
1<br />
∆m d<br />
η<br />
0.5<br />
0<br />
-0.5<br />
-1<br />
ε K<br />
|V ub /V cb |<br />
<strong>CKM</strong><br />
f i t t e r<br />
LP 2003<br />
γ<br />
α<br />
∆m s & ∆m d<br />
sin 2β(WA)<br />
-1.5<br />
-1 -0.5 0 0.5 1 1.5 2<br />
ρ<br />
β<br />
ε K<br />
Slight improvement of f 2 B B B<br />
from lattice calculations<br />
Still more data on<br />
A CP (B → J/ΨK s )<br />
Central value of V ub /V cb<br />
slightly moved<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Unitarity Triangle 2004<br />
1.5<br />
excluded area has CL < 0.05<br />
1<br />
sin 2β<br />
∆m d<br />
η<br />
0.5<br />
0<br />
-0.5<br />
-1<br />
ε K<br />
|V ub /V cb |<br />
α<br />
<strong>CKM</strong><br />
f i t t e r<br />
ICHEP 2004<br />
γ<br />
α<br />
-1.5<br />
-1 -0.5 0 0.5 1 1.5 2<br />
ρ<br />
β<br />
α<br />
∆m s & ∆m d<br />
ε K<br />
More improvement of f 2 B B B<br />
from lattice calculations<br />
Still more data on<br />
A CP (B → J/ΨK s )<br />
First constraints on the<br />
angle α from B → ρρ<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Unitarity Triangle 2005<br />
1.5<br />
excluded area has CL > 0.95<br />
excluded at CL > 0.95<br />
1<br />
sin 2β<br />
∆m d<br />
η<br />
0.5<br />
0<br />
-0.5<br />
-1<br />
ε K<br />
|V ub /V cb |<br />
<strong>CKM</strong><br />
f i t t e r<br />
EPS 2005<br />
γ<br />
α<br />
sol. w/ cos 2β < 0<br />
(excl. at CL > 0.95)<br />
∆m s & ∆m d<br />
-1.5<br />
-1 -0.5 0 0.5 1 1.5 2<br />
ρ<br />
β<br />
ε K<br />
Still more data on<br />
A CP (B → J/ΨK s )<br />
Exclusion of the “wrong<br />
branch” of β<br />
Dramatic Improvement of<br />
V ub from the HQE<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Unitarity Triangle 2006<br />
1.5<br />
1<br />
excluded area has CL > 0.95<br />
γ<br />
sin2β<br />
excluded at CL > 0.95<br />
∆m d<br />
& ∆m d<br />
∆m s<br />
η<br />
0.5<br />
0<br />
-0.5<br />
-1<br />
ε K<br />
V ub /V cb<br />
α<br />
<strong>CKM</strong><br />
f i t t e r<br />
γ<br />
α<br />
γ<br />
(excl. at CL > 0.95)<br />
BEAUTY 2006<br />
-1.5<br />
-1 -0.5 0 0.5 1 1.5 2<br />
ρ<br />
β<br />
α<br />
sol. w/ cos2β<br />
ε K<br />
< 0<br />
TEVATRON measurement<br />
of ∆m s<br />
Tighter constraints on α<br />
First constraints on γ from<br />
CPV in B → K π<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Unitarity Triangle 2010 (<strong>CKM</strong>-Fitter illustration)<br />
1<br />
0.8<br />
∆m s<br />
<strong>and</strong> ∆m d<br />
∆m d<br />
π + vv<br />
γ<br />
η-bar<br />
0.6<br />
|V ub<br />
/V cb<br />
|<br />
α<br />
0.4<br />
γ<br />
π 0 vv<br />
0.2 |ε K<br />
|<br />
sin 2β<br />
0<br />
-1 -0.5 0 0.5 1<br />
ρ-bar<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Final Remarks ...<br />
Dramatic improvement of our knowledge of the<br />
Flavour Sector over the last fifteen years<br />
The B Factories (<strong>and</strong> B Physics at colliders) have<br />
done a similar job in the Flavour Sector as LEP in the<br />
Gauge Sector<br />
The story continues: Belle, BaBar, LHC-b, later<br />
maybe SuperB or SuperKEKB<br />
However, We have (up to now) confirmed the <strong>CKM</strong><br />
picture<br />
We still dont know the “gr<strong>and</strong> view” ...<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Final Remarks ...<br />
Dramatic improvement of our knowledge of the<br />
Flavour Sector over the last fifteen years<br />
The B Factories (<strong>and</strong> B Physics at colliders) have<br />
done a similar job in the Flavour Sector as LEP in the<br />
Gauge Sector<br />
The story continues: Belle, BaBar, LHC-b, later<br />
maybe SuperB or SuperKEKB<br />
However, We have (up to now) confirmed the <strong>CKM</strong><br />
picture<br />
We still dont know the “gr<strong>and</strong> view” ...<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Final Remarks ...<br />
Dramatic improvement of our knowledge of the<br />
Flavour Sector over the last fifteen years<br />
The B Factories (<strong>and</strong> B Physics at colliders) have<br />
done a similar job in the Flavour Sector as LEP in the<br />
Gauge Sector<br />
The story continues: Belle, BaBar, LHC-b, later<br />
maybe SuperB or SuperKEKB<br />
However, We have (up to now) confirmed the <strong>CKM</strong><br />
picture<br />
We still dont know the “gr<strong>and</strong> view” ...<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Final Remarks ...<br />
Dramatic improvement of our knowledge of the<br />
Flavour Sector over the last fifteen years<br />
The B Factories (<strong>and</strong> B Physics at colliders) have<br />
done a similar job in the Flavour Sector as LEP in the<br />
Gauge Sector<br />
The story continues: Belle, BaBar, LHC-b, later<br />
maybe SuperB or SuperKEKB<br />
However, We have (up to now) confirmed the <strong>CKM</strong><br />
picture<br />
We still dont know the “gr<strong>and</strong> view” ...<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Final Remarks ...<br />
Dramatic improvement of our knowledge of the<br />
Flavour Sector over the last fifteen years<br />
The B Factories (<strong>and</strong> B Physics at colliders) have<br />
done a similar job in the Flavour Sector as LEP in the<br />
Gauge Sector<br />
The story continues: Belle, BaBar, LHC-b, later<br />
maybe SuperB or SuperKEKB<br />
However, We have (up to now) confirmed the <strong>CKM</strong><br />
picture<br />
We still dont know the “gr<strong>and</strong> view” ...<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>
Introduction<br />
Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />
The history of the UT since ∼ 1993<br />
Thomas Mannel, University of Siegen<br />
<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>