27.09.2014 Views

CKM Matrix Elements and CKM Angles - Theoretische Physik 1 ...

CKM Matrix Elements and CKM Angles - Theoretische Physik 1 ...

CKM Matrix Elements and CKM Angles - Theoretische Physik 1 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong><br />

<strong>and</strong><br />

<strong>CKM</strong> <strong>Angles</strong><br />

Thomas Mannel<br />

<strong>Theoretische</strong> <strong>Physik</strong> I<br />

Universität Siegen<br />

Symposium to celebrate the<br />

60th aniversary of<br />

our friend <strong>and</strong> colleague Hans Kühn<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Introduction: What is this talk about?<br />

Many experts on <strong>CKM</strong> matrix <strong>and</strong> CP violation are in<br />

the audience<br />

I will be rather general <strong>and</strong> point out a few<br />

peculiarities<br />

Connection to Hans:<br />

I try to show how our knowledge about <strong>CKM</strong> <strong>and</strong> CP<br />

evolved over the time, since when Hans is active in<br />

Karlsruhe<br />

Quite a few of his achivements are<br />

relevant for <strong>CKM</strong> / CP<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Introduction: What is this talk about?<br />

Many experts on <strong>CKM</strong> matrix <strong>and</strong> CP violation are in<br />

the audience<br />

I will be rather general <strong>and</strong> point out a few<br />

peculiarities<br />

Connection to Hans:<br />

I try to show how our knowledge about <strong>CKM</strong> <strong>and</strong> CP<br />

evolved over the time, since when Hans is active in<br />

Karlsruhe<br />

Quite a few of his achivements are<br />

relevant for <strong>CKM</strong> / CP<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Introduction: What is this talk about?<br />

Many experts on <strong>CKM</strong> matrix <strong>and</strong> CP violation are in<br />

the audience<br />

I will be rather general <strong>and</strong> point out a few<br />

peculiarities<br />

Connection to Hans:<br />

I try to show how our knowledge about <strong>CKM</strong> <strong>and</strong> CP<br />

evolved over the time, since when Hans is active in<br />

Karlsruhe<br />

Quite a few of his achivements are<br />

relevant for <strong>CKM</strong> / CP<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Introduction: What is this talk about?<br />

Many experts on <strong>CKM</strong> matrix <strong>and</strong> CP violation are in<br />

the audience<br />

I will be rather general <strong>and</strong> point out a few<br />

peculiarities<br />

Connection to Hans:<br />

I try to show how our knowledge about <strong>CKM</strong> <strong>and</strong> CP<br />

evolved over the time, since when Hans is active in<br />

Karlsruhe<br />

Quite a few of his achivements are<br />

relevant for <strong>CKM</strong> / CP<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Introduction: What is this talk about?<br />

Many experts on <strong>CKM</strong> matrix <strong>and</strong> CP violation are in<br />

the audience<br />

I will be rather general <strong>and</strong> point out a few<br />

peculiarities<br />

Connection to Hans:<br />

I try to show how our knowledge about <strong>CKM</strong> <strong>and</strong> CP<br />

evolved over the time, since when Hans is active in<br />

Karlsruhe<br />

Quite a few of his achivements are<br />

relevant for <strong>CKM</strong> / CP<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Contents<br />

1 Introduction<br />

2 Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

3 The history of the UT since ∼ 1993<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour in the St<strong>and</strong>ard Model<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Unique origin of flavour in the st<strong>and</strong>ard model:<br />

Yukawa Couplings of the Quarks: Y (u)<br />

ij<br />

<strong>and</strong> Y (d)<br />

ij<br />

=⇒ Two Mass Matrices<br />

for the (up- <strong>and</strong> down-type) Quarks:<br />

M (q)<br />

ij<br />

= vY (q)<br />

ij<br />

(q = u, d)<br />

Mass Eigenstates: Relative Rotation<br />

between M (u) <strong>and</strong> M (d) : <strong>CKM</strong> <strong>Matrix</strong><br />

Appears in the mass-eigenbasis only in the charged<br />

current interactions<br />

Neutral currents remain diagonal: Neutral Higgs<br />

particles couple with the diagonal mass matrices<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

CP violation in the St<strong>and</strong>ard Model<br />

In Lagrangian Field Theory:<br />

CP Violation ⇔ complex coupling constants a i :<br />

L = ∑ i<br />

a i O i + h.c.<br />

(CP) O i (CP) † = O † i<br />

In the (three family) st<strong>and</strong>ard model:<br />

(with a single Higgs doublet <strong>and</strong> massless neutrinos)<br />

All couplings can be made real (in the mass eigenbasis)<br />

except the charged current couplings, encoded in<br />

V <strong>CKM</strong> ≠ V ∗ <strong>CKM</strong><br />

CP violation through a single complex phase<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

CP violation in the St<strong>and</strong>ard Model<br />

In Lagrangian Field Theory:<br />

CP Violation ⇔ complex coupling constants a i :<br />

L = ∑ i<br />

a i O i + h.c.<br />

(CP) O i (CP) † = O † i<br />

In the (three family) st<strong>and</strong>ard model:<br />

(with a single Higgs doublet <strong>and</strong> massless neutrinos)<br />

All couplings can be made real (in the mass eigenbasis)<br />

except the charged current couplings, encoded in<br />

V <strong>CKM</strong> ≠ V ∗ <strong>CKM</strong><br />

CP violation through a single complex phase<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

CP violation in the St<strong>and</strong>ard Model<br />

In Lagrangian Field Theory:<br />

CP Violation ⇔ complex coupling constants a i :<br />

L = ∑ i<br />

a i O i + h.c.<br />

(CP) O i (CP) † = O † i<br />

In the (three family) st<strong>and</strong>ard model:<br />

(with a single Higgs doublet <strong>and</strong> massless neutrinos)<br />

All couplings can be made real (in the mass eigenbasis)<br />

except the charged current couplings, encoded in<br />

V <strong>CKM</strong> ≠ V ∗ <strong>CKM</strong><br />

CP violation through a single complex phase<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

CP violation in the St<strong>and</strong>ard Model<br />

In Lagrangian Field Theory:<br />

CP Violation ⇔ complex coupling constants a i :<br />

L = ∑ i<br />

a i O i + h.c.<br />

(CP) O i (CP) † = O † i<br />

In the (three family) st<strong>and</strong>ard model:<br />

(with a single Higgs doublet <strong>and</strong> massless neutrinos)<br />

All couplings can be made real (in the mass eigenbasis)<br />

except the charged current couplings, encoded in<br />

V <strong>CKM</strong> ≠ V ∗ <strong>CKM</strong><br />

CP violation through a single complex phase<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

<strong>CKM</strong> <strong>Matrix</strong>: Basics<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

U 12 =<br />

Three Euler angles θ ij<br />

2<br />

4 c 12 s 12 0<br />

−s 12 c 12 0<br />

0 0 1<br />

3<br />

5 , U 13 =<br />

Single phase δ: U δ =<br />

2<br />

4 c 3<br />

13 0 s 13<br />

0 1 0<br />

−s 13 0 c 13<br />

PDG <strong>CKM</strong> Parametrization:<br />

2<br />

4<br />

5 , U 23 =<br />

1 0 0<br />

0 1 0<br />

0 0 e −iδ 13<br />

3<br />

5 .<br />

2<br />

1<br />

0 0 c 23 0<br />

s 23<br />

3<br />

5<br />

4<br />

V <strong>CKM</strong> = U 23 U † δ U 13U δ U 12<br />

Large Phases in V ub = |V ub |e −iγ = s 13 e −iδ 13 <strong>and</strong><br />

V td = |V td |e iβ<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

<strong>CKM</strong> <strong>Matrix</strong>: Basics<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

U 12 =<br />

Three Euler angles θ ij<br />

2<br />

4 c 12 s 12 0<br />

−s 12 c 12 0<br />

0 0 1<br />

3<br />

5 , U 13 =<br />

Single phase δ: U δ =<br />

2<br />

4 c 3<br />

13 0 s 13<br />

0 1 0<br />

−s 13 0 c 13<br />

PDG <strong>CKM</strong> Parametrization:<br />

2<br />

4<br />

5 , U 23 =<br />

1 0 0<br />

0 1 0<br />

0 0 e −iδ 13<br />

3<br />

5 .<br />

2<br />

1<br />

0 0 c 23 0<br />

s 23<br />

3<br />

5<br />

4<br />

V <strong>CKM</strong> = U 23 U † δ U 13U δ U 12<br />

Large Phases in V ub = |V ub |e −iγ = s 13 e −iδ 13 <strong>and</strong><br />

V td = |V td |e iβ<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

<strong>CKM</strong> <strong>Matrix</strong>: Basics<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

U 12 =<br />

Three Euler angles θ ij<br />

2<br />

4 c 12 s 12 0<br />

−s 12 c 12 0<br />

0 0 1<br />

3<br />

5 , U 13 =<br />

Single phase δ: U δ =<br />

2<br />

4 c 3<br />

13 0 s 13<br />

0 1 0<br />

−s 13 0 c 13<br />

PDG <strong>CKM</strong> Parametrization:<br />

2<br />

4<br />

5 , U 23 =<br />

1 0 0<br />

0 1 0<br />

0 0 e −iδ 13<br />

3<br />

5 .<br />

2<br />

1<br />

0 0 c 23 0<br />

s 23<br />

3<br />

5<br />

4<br />

V <strong>CKM</strong> = U 23 U † δ U 13U δ U 12<br />

Large Phases in V ub = |V ub |e −iγ = s 13 e −iδ 13 <strong>and</strong><br />

V td = |V td |e iβ<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

<strong>CKM</strong> <strong>Matrix</strong>: Basics<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

U 12 =<br />

Three Euler angles θ ij<br />

2<br />

4 c 12 s 12 0<br />

−s 12 c 12 0<br />

0 0 1<br />

3<br />

5 , U 13 =<br />

Single phase δ: U δ =<br />

2<br />

4 c 3<br />

13 0 s 13<br />

0 1 0<br />

−s 13 0 c 13<br />

PDG <strong>CKM</strong> Parametrization:<br />

2<br />

4<br />

5 , U 23 =<br />

1 0 0<br />

0 1 0<br />

0 0 e −iδ 13<br />

3<br />

5 .<br />

2<br />

1<br />

0 0 c 23 0<br />

s 23<br />

3<br />

5<br />

4<br />

V <strong>CKM</strong> = U 23 U † δ U 13U δ U 12<br />

Large Phases in V ub = |V ub |e −iγ = s 13 e −iδ 13 <strong>and</strong><br />

V td = |V td |e iβ<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

CP Violation in the St<strong>and</strong>ard model is too small<br />

The Flavour Physics <strong>and</strong> the CP Violation of the<br />

St<strong>and</strong>ard model are peculiar<br />

However, Flavour <strong>and</strong> CP violation observed in<br />

particle physics is (still?) fully compatible with the<br />

St<strong>and</strong>ard model predictions<br />

CP Violation (in exclusive non-leptonic decays) is<br />

hard to compute (precisely)<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

CP Violation in the St<strong>and</strong>ard model is too small<br />

The Flavour Physics <strong>and</strong> the CP Violation of the<br />

St<strong>and</strong>ard model are peculiar<br />

However, Flavour <strong>and</strong> CP violation observed in<br />

particle physics is (still?) fully compatible with the<br />

St<strong>and</strong>ard model predictions<br />

CP Violation (in exclusive non-leptonic decays) is<br />

hard to compute (precisely)<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

CP Violation in the St<strong>and</strong>ard model is too small<br />

The Flavour Physics <strong>and</strong> the CP Violation of the<br />

St<strong>and</strong>ard model are peculiar<br />

However, Flavour <strong>and</strong> CP violation observed in<br />

particle physics is (still?) fully compatible with the<br />

St<strong>and</strong>ard model predictions<br />

CP Violation (in exclusive non-leptonic decays) is<br />

hard to compute (precisely)<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

CP Violation in the St<strong>and</strong>ard model is too small<br />

The Flavour Physics <strong>and</strong> the CP Violation of the<br />

St<strong>and</strong>ard model are peculiar<br />

However, Flavour <strong>and</strong> CP violation observed in<br />

particle physics is (still?) fully compatible with the<br />

St<strong>and</strong>ard model predictions<br />

CP Violation (in exclusive non-leptonic decays) is<br />

hard to compute (precisely)<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Unitarity Triangle(s)<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Out of six Unitarity Triangles only two have sides of<br />

comparable lengths:<br />

Invariant measure of CP violation<br />

= Area of the triangles<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Unitarity Triangle(s)<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Out of six Unitarity Triangles only two have sides of<br />

comparable lengths:<br />

Invariant measure of CP violation<br />

= Area of the triangles<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Invariant measure of CP violation:<br />

Im∆ = ImV ud V ∗<br />

tdV tb V ∗ ub = c 12 s 12 c 2 13s 13 s 23 c 23 sin δ 13<br />

Maximal possible value δ max = 1<br />

6 √ 3 ∼ 0.1<br />

CP Violation is a small effect:<br />

Measured value δ exp ∼ 0.0001<br />

CP Violation vanishes in case of degeneracies: (Jarlskog)<br />

J = Det([M u , M d ])<br />

= 2iIm∆(m u − m c )(m u − m t )(m c − m t )<br />

×(m d − m s )(m d − m b )(m s − m b )<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Invariant measure of CP violation:<br />

Im∆ = ImV ud V ∗<br />

tdV tb V ∗ ub = c 12 s 12 c 2 13s 13 s 23 c 23 sin δ 13<br />

Maximal possible value δ max = 1<br />

6 √ 3 ∼ 0.1<br />

CP Violation is a small effect:<br />

Measured value δ exp ∼ 0.0001<br />

CP Violation vanishes in case of degeneracies: (Jarlskog)<br />

J = Det([M u , M d ])<br />

= 2iIm∆(m u − m c )(m u − m t )(m c − m t )<br />

×(m d − m s )(m d − m b )(m s − m b )<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Invariant measure of CP violation:<br />

Im∆ = ImV ud V ∗<br />

tdV tb V ∗ ub = c 12 s 12 c 2 13s 13 s 23 c 23 sin δ 13<br />

Maximal possible value δ max = 1<br />

6 √ 3 ∼ 0.1<br />

CP Violation is a small effect:<br />

Measured value δ exp ∼ 0.0001<br />

CP Violation vanishes in case of degeneracies: (Jarlskog)<br />

J = Det([M u , M d ])<br />

= 2iIm∆(m u − m c )(m u − m t )(m c − m t )<br />

×(m d − m s )(m d − m b )(m s − m b )<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Invariant measure of CP violation:<br />

Im∆ = ImV ud V ∗<br />

tdV tb V ∗ ub = c 12 s 12 c 2 13s 13 s 23 c 23 sin δ 13<br />

Maximal possible value δ max = 1<br />

6 √ 3 ∼ 0.1<br />

CP Violation is a small effect:<br />

Measured value δ exp ∼ 0.0001<br />

CP Violation vanishes in case of degeneracies: (Jarlskog)<br />

J = Det([M u , M d ])<br />

= 2iIm∆(m u − m c )(m u − m t )(m c − m t )<br />

×(m d − m s )(m d − m b )(m s − m b )<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Peculiarities of SM Flavour Mixing<br />

Hierarchical structure of the <strong>CKM</strong> matrix<br />

Quark Mass spectrum ist widely spread<br />

m u ∼ 10 MeV to m t ∼ 170 GeV<br />

PMNS <strong>Matrix</strong> for lepton flavour mixing is not<br />

hierarchical<br />

Only the charged lepton masses are hierarchical<br />

m e ∼ 0.5 MeV to m τ ∼ 1772 MeV<br />

Up-type leptons ∼ Neutrinos have very small masses<br />

(?)<br />

(Enormous) Suppression of Flavour Changing<br />

Neutral Currents:<br />

b → s, c → u, τ → µ, µ → e, ν 2 → ν 1<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Peculiarities of SM CP Violation<br />

Strong CP remains mysterious<br />

Flavour diagonal CP Violation is well hidden:<br />

e.g electric dipole moment of the neutron:<br />

At least three loops (Shabalin)<br />

d e ∼ e α s GF<br />

2 mt<br />

2 Im∆ µ 3<br />

π (16π 2 ) 2 MW<br />

2<br />

∼ 10 −32 e cm with µ ∼ 0.3 GeV<br />

d exp ≤ 3.0 × 10 −26 e cm<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Semileptonic Decays<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Fairly good control over s.l. decays from the Heavy<br />

Quark Expansion<br />

Originally (∼ 1991 ± 2): Best determination of V cb<br />

(<strong>and</strong> also V ub ) from exclusive decays:<br />

Heavy Quark Symmetries<br />

Later (from about 1995):<br />

V cb <strong>and</strong> V ub from inclusive decays<br />

Requires precise heavy quark masses!<br />

Recently (∼ 2005): Precise, unquenched lattice data:<br />

Renaissance of V cb <strong>and</strong> V ub from exclusive decays ?<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Typical problem:<br />

Evaluation of a matrix element of the type<br />

M = 〈f |O|i〉,<br />

O = Four Quark Operator<br />

No First Principles Method for exclusive decays<br />

No precision calculations possible<br />

Approximate methods<br />

Flavour Symmetry: Isospin, SU(3)<br />

QCD Factorization / perturbative QCD<br />

QCD (Light Cone) Sum rules<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Typical problem:<br />

Evaluation of a matrix element of the type<br />

M = 〈f |O|i〉,<br />

O = Four Quark Operator<br />

No First Principles Method for exclusive decays<br />

No precision calculations possible<br />

Approximate methods<br />

Flavour Symmetry: Isospin, SU(3)<br />

QCD Factorization / perturbative QCD<br />

QCD (Light Cone) Sum rules<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Typical problem:<br />

Evaluation of a matrix element of the type<br />

M = 〈f |O|i〉,<br />

O = Four Quark Operator<br />

No First Principles Method for exclusive decays<br />

No precision calculations possible<br />

Approximate methods<br />

Flavour Symmetry: Isospin, SU(3)<br />

QCD Factorization / perturbative QCD<br />

QCD (Light Cone) Sum rules<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Typical problem:<br />

Evaluation of a matrix element of the type<br />

M = 〈f |O|i〉,<br />

O = Four Quark Operator<br />

No First Principles Method for exclusive decays<br />

No precision calculations possible<br />

Approximate methods<br />

Flavour Symmetry: Isospin, SU(3)<br />

QCD Factorization / perturbative QCD<br />

QCD (Light Cone) Sum rules<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Typical problem:<br />

Evaluation of a matrix element of the type<br />

M = 〈f |O|i〉,<br />

O = Four Quark Operator<br />

No First Principles Method for exclusive decays<br />

No precision calculations possible<br />

Approximate methods<br />

Flavour Symmetry: Isospin, SU(3)<br />

QCD Factorization / perturbative QCD<br />

QCD (Light Cone) Sum rules<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Typical problem:<br />

Evaluation of a matrix element of the type<br />

M = 〈f |O|i〉,<br />

O = Four Quark Operator<br />

No First Principles Method for exclusive decays<br />

No precision calculations possible<br />

Approximate methods<br />

Flavour Symmetry: Isospin, SU(3)<br />

QCD Factorization / perturbative QCD<br />

QCD (Light Cone) Sum rules<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Methods for Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Typical problem:<br />

Evaluation of a matrix element of the type<br />

M = 〈f |O|i〉,<br />

O = Four Quark Operator<br />

No First Principles Method for exclusive decays<br />

No precision calculations possible<br />

Approximate methods<br />

Flavour Symmetry: Isospin, SU(3)<br />

QCD Factorization / perturbative QCD<br />

QCD (Light Cone) Sum rules<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour Symmetries<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

I-Spin (u ↔ d), U-Spin (u ↔ d), V-Spin (s ↔ d),<br />

Full SU(3)<br />

Group theory supplemented by the study of diagram<br />

topolgies:<br />

Color Suppression: ∼ 1/N c<br />

Annihilation: ∼ f B /M B<br />

Penguin contractions (of tree operators):<br />

1<br />

16π 2 ... 1<br />

→ needed to identify the contributions carrying weak<br />

phases<br />

Uncertainties O(20%), hard to estimate, hard to<br />

improve<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour Symmetries<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

I-Spin (u ↔ d), U-Spin (u ↔ d), V-Spin (s ↔ d),<br />

Full SU(3)<br />

Group theory supplemented by the study of diagram<br />

topolgies:<br />

Color Suppression: ∼ 1/N c<br />

Annihilation: ∼ f B /M B<br />

Penguin contractions (of tree operators):<br />

1<br />

16π 2 ... 1<br />

→ needed to identify the contributions carrying weak<br />

phases<br />

Uncertainties O(20%), hard to estimate, hard to<br />

improve<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour Symmetries<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

I-Spin (u ↔ d), U-Spin (u ↔ d), V-Spin (s ↔ d),<br />

Full SU(3)<br />

Group theory supplemented by the study of diagram<br />

topolgies:<br />

Color Suppression: ∼ 1/N c<br />

Annihilation: ∼ f B /M B<br />

Penguin contractions (of tree operators):<br />

1<br />

16π 2 ... 1<br />

→ needed to identify the contributions carrying weak<br />

phases<br />

Uncertainties O(20%), hard to estimate, hard to<br />

improve<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour Symmetries<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

I-Spin (u ↔ d), U-Spin (u ↔ d), V-Spin (s ↔ d),<br />

Full SU(3)<br />

Group theory supplemented by the study of diagram<br />

topolgies:<br />

Color Suppression: ∼ 1/N c<br />

Annihilation: ∼ f B /M B<br />

Penguin contractions (of tree operators):<br />

1<br />

16π 2 ... 1<br />

→ needed to identify the contributions carrying weak<br />

phases<br />

Uncertainties O(20%), hard to estimate, hard to<br />

improve<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

QCD Factorization, PQCD <strong>and</strong> SCET<br />

(Beneke, Buchalla, Neubert, Sachrajda, Bauer, Stewart Pirjol, Feldmann, Li, Keum, ...)<br />

Starts from the limit m b → ∞<br />

Perturbative calculation, systematic expansion (?)<br />

Strong phases are small (O(α s (m b )) or O(Λ/m b ))<br />

Sizable uncertainties, subleading terms ?<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

QCD Factorization, PQCD <strong>and</strong> SCET<br />

(Beneke, Buchalla, Neubert, Sachrajda, Bauer, Stewart Pirjol, Feldmann, Li, Keum, ...)<br />

Starts from the limit m b → ∞<br />

Perturbative calculation, systematic expansion (?)<br />

Strong phases are small (O(α s (m b )) or O(Λ/m b ))<br />

Sizable uncertainties, subleading terms ?<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

QCD Factorization, PQCD <strong>and</strong> SCET<br />

(Beneke, Buchalla, Neubert, Sachrajda, Bauer, Stewart Pirjol, Feldmann, Li, Keum, ...)<br />

Starts from the limit m b → ∞<br />

Perturbative calculation, systematic expansion (?)<br />

Strong phases are small (O(α s (m b )) or O(Λ/m b ))<br />

Sizable uncertainties, subleading terms ?<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

QCD Factorization, PQCD <strong>and</strong> SCET<br />

(Beneke, Buchalla, Neubert, Sachrajda, Bauer, Stewart Pirjol, Feldmann, Li, Keum, ...)<br />

Starts from the limit m b → ∞<br />

Perturbative calculation, systematic expansion (?)<br />

Strong phases are small (O(α s (m b )) or O(Λ/m b ))<br />

Sizable uncertainties, subleading terms ?<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

QCD (Light Cone) Sum Rules<br />

(Khodjamirian, Ball, Zwicky, Melcher, ...)<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Relies on Duality <strong>and</strong> Analyticity<br />

Estimate of the matrix element based on perturbative<br />

calculations, → QCD Factorization<br />

Intrinsic uncertainties in the range (10 - 20)% , hard<br />

to improve<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

QCD (Light Cone) Sum Rules<br />

(Khodjamirian, Ball, Zwicky, Melcher, ...)<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Relies on Duality <strong>and</strong> Analyticity<br />

Estimate of the matrix element based on perturbative<br />

calculations, → QCD Factorization<br />

Intrinsic uncertainties in the range (10 - 20)% , hard<br />

to improve<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

QCD (Light Cone) Sum Rules<br />

(Khodjamirian, Ball, Zwicky, Melcher, ...)<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

Relies on Duality <strong>and</strong> Analyticity<br />

Estimate of the matrix element based on perturbative<br />

calculations, → QCD Factorization<br />

Intrinsic uncertainties in the range (10 - 20)% , hard<br />

to improve<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Flavour <strong>and</strong> CP Basics<br />

Peculiarities of SM CP / Flavour<br />

Three Words on Hadronic <strong>Matrix</strong> <strong>Elements</strong><br />

η<br />

2<br />

1<br />

0<br />

-1<br />

sin γ<br />

sin 2β<br />

sin γ<br />

sin 2β<br />

K + →π + νν<br />

∆m d<br />

|ε , /ε K<br />

| , K 0 →π 0 νν<br />

|ε K<br />

|<br />

K 0 →π 0 νν<br />

|V ub<br />

/V cb<br />

|<br />

sin 2α<br />

sin 2α<br />

K + →π + νν<br />

|ε K<br />

|<br />

-2<br />

-2 -1 0 1 2<br />

ρ<br />

Many different<br />

measurements<br />

necessary<br />

A lot ot<br />

theoretical effort<br />

over ∼ 15 years<br />

HQE: Precise<br />

Quark Masses<br />

needed!<br />

Kaon Physics is<br />

an essential<br />

input<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Pre-historic Unitarity Triangle<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

The history of the UT since ∼ 1993<br />

Situation in 1993:<br />

HQET was still young (∼ 3 years)<br />

Hadronic <strong>Matrix</strong> elements for<br />

∆m d ∼ fB 2 were quite uncertain<br />

V ub /V cb was known at the level of ∼ 20%<br />

The top quark mass was still m t ∼ (140 ± 40) GeV<br />

No CP violation has been observed except ɛ K<br />

The UT still could have been “flat”<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Unitarity triangle 1993: f B = 135 ± 25 MeV<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Unitarity triangle 1993: f B = 200 ± 30 MeV<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

2001: First observation of “Non-Kaon CPV”<br />

1<br />

∆m d<br />

∆m s /∆m d<br />

|ε K |<br />

∆m d<br />

η<br />

0<br />

sin 2β WA<br />

1<br />

|V ub /V cb |<br />

0.8<br />

∆m d<br />

∆m s <strong>and</strong> ∆m d<br />

|ε K |<br />

0.6<br />

-1<br />

η<br />

0.4<br />

|ε K |<br />

0.2<br />

|V ub /V cb |<br />

sin 2β WA<br />

-1 0 1 2<br />

ρ<br />

0<br />

-1 -0.5 0 0.5 1<br />

ρ<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Unitarity Triangle 2001<br />

1<br />

∆m d<br />

∆m s /∆m d<br />

|ε K |<br />

∆m d<br />

η<br />

0<br />

sin 2β BABAR<br />

|V ub /V cb |<br />

|ε K |<br />

-1<br />

-1 0 1 2<br />

ρ<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Unitarity Triangle 2002<br />

1.5<br />

1<br />

∆m d<br />

η<br />

0.5<br />

0<br />

ε K<br />

|V ub /V cb |<br />

γ<br />

α<br />

β<br />

∆m s & ∆m d<br />

sin 2β WA<br />

Some improvement of<br />

V ub /V cb through the Heavy<br />

Quark Expansion<br />

-0.5<br />

ε K<br />

More data on<br />

A CP (B → J/ΨK s )<br />

-1<br />

<strong>CKM</strong><br />

f i t t e r<br />

FPCP 2003<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Unitarity Triangle 2003<br />

1.5<br />

excluded area has < 0.05 CL<br />

1<br />

∆m d<br />

η<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

ε K<br />

|V ub /V cb |<br />

<strong>CKM</strong><br />

f i t t e r<br />

LP 2003<br />

γ<br />

α<br />

∆m s & ∆m d<br />

sin 2β(WA)<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

ε K<br />

Slight improvement of f 2 B B B<br />

from lattice calculations<br />

Still more data on<br />

A CP (B → J/ΨK s )<br />

Central value of V ub /V cb<br />

slightly moved<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Unitarity Triangle 2004<br />

1.5<br />

excluded area has CL < 0.05<br />

1<br />

sin 2β<br />

∆m d<br />

η<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

ε K<br />

|V ub /V cb |<br />

α<br />

<strong>CKM</strong><br />

f i t t e r<br />

ICHEP 2004<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

α<br />

∆m s & ∆m d<br />

ε K<br />

More improvement of f 2 B B B<br />

from lattice calculations<br />

Still more data on<br />

A CP (B → J/ΨK s )<br />

First constraints on the<br />

angle α from B → ρρ<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Unitarity Triangle 2005<br />

1.5<br />

excluded area has CL > 0.95<br />

excluded at CL > 0.95<br />

1<br />

sin 2β<br />

∆m d<br />

η<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

ε K<br />

|V ub /V cb |<br />

<strong>CKM</strong><br />

f i t t e r<br />

EPS 2005<br />

γ<br />

α<br />

sol. w/ cos 2β < 0<br />

(excl. at CL > 0.95)<br />

∆m s & ∆m d<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

ε K<br />

Still more data on<br />

A CP (B → J/ΨK s )<br />

Exclusion of the “wrong<br />

branch” of β<br />

Dramatic Improvement of<br />

V ub from the HQE<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Unitarity Triangle 2006<br />

1.5<br />

1<br />

excluded area has CL > 0.95<br />

γ<br />

sin2β<br />

excluded at CL > 0.95<br />

∆m d<br />

& ∆m d<br />

∆m s<br />

η<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

ε K<br />

V ub /V cb<br />

α<br />

<strong>CKM</strong><br />

f i t t e r<br />

γ<br />

α<br />

γ<br />

(excl. at CL > 0.95)<br />

BEAUTY 2006<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

α<br />

sol. w/ cos2β<br />

ε K<br />

< 0<br />

TEVATRON measurement<br />

of ∆m s<br />

Tighter constraints on α<br />

First constraints on γ from<br />

CPV in B → K π<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Unitarity Triangle 2010 (<strong>CKM</strong>-Fitter illustration)<br />

1<br />

0.8<br />

∆m s<br />

<strong>and</strong> ∆m d<br />

∆m d<br />

π + vv<br />

γ<br />

η-bar<br />

0.6<br />

|V ub<br />

/V cb<br />

|<br />

α<br />

0.4<br />

γ<br />

π 0 vv<br />

0.2 |ε K<br />

|<br />

sin 2β<br />

0<br />

-1 -0.5 0 0.5 1<br />

ρ-bar<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Final Remarks ...<br />

Dramatic improvement of our knowledge of the<br />

Flavour Sector over the last fifteen years<br />

The B Factories (<strong>and</strong> B Physics at colliders) have<br />

done a similar job in the Flavour Sector as LEP in the<br />

Gauge Sector<br />

The story continues: Belle, BaBar, LHC-b, later<br />

maybe SuperB or SuperKEKB<br />

However, We have (up to now) confirmed the <strong>CKM</strong><br />

picture<br />

We still dont know the “gr<strong>and</strong> view” ...<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Final Remarks ...<br />

Dramatic improvement of our knowledge of the<br />

Flavour Sector over the last fifteen years<br />

The B Factories (<strong>and</strong> B Physics at colliders) have<br />

done a similar job in the Flavour Sector as LEP in the<br />

Gauge Sector<br />

The story continues: Belle, BaBar, LHC-b, later<br />

maybe SuperB or SuperKEKB<br />

However, We have (up to now) confirmed the <strong>CKM</strong><br />

picture<br />

We still dont know the “gr<strong>and</strong> view” ...<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Final Remarks ...<br />

Dramatic improvement of our knowledge of the<br />

Flavour Sector over the last fifteen years<br />

The B Factories (<strong>and</strong> B Physics at colliders) have<br />

done a similar job in the Flavour Sector as LEP in the<br />

Gauge Sector<br />

The story continues: Belle, BaBar, LHC-b, later<br />

maybe SuperB or SuperKEKB<br />

However, We have (up to now) confirmed the <strong>CKM</strong><br />

picture<br />

We still dont know the “gr<strong>and</strong> view” ...<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Final Remarks ...<br />

Dramatic improvement of our knowledge of the<br />

Flavour Sector over the last fifteen years<br />

The B Factories (<strong>and</strong> B Physics at colliders) have<br />

done a similar job in the Flavour Sector as LEP in the<br />

Gauge Sector<br />

The story continues: Belle, BaBar, LHC-b, later<br />

maybe SuperB or SuperKEKB<br />

However, We have (up to now) confirmed the <strong>CKM</strong><br />

picture<br />

We still dont know the “gr<strong>and</strong> view” ...<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Final Remarks ...<br />

Dramatic improvement of our knowledge of the<br />

Flavour Sector over the last fifteen years<br />

The B Factories (<strong>and</strong> B Physics at colliders) have<br />

done a similar job in the Flavour Sector as LEP in the<br />

Gauge Sector<br />

The story continues: Belle, BaBar, LHC-b, later<br />

maybe SuperB or SuperKEKB<br />

However, We have (up to now) confirmed the <strong>CKM</strong><br />

picture<br />

We still dont know the “gr<strong>and</strong> view” ...<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>


Introduction<br />

Flavour <strong>and</strong> CPV in the St<strong>and</strong>ard Model<br />

The history of the UT since ∼ 1993<br />

Thomas Mannel, University of Siegen<br />

<strong>CKM</strong> <strong>Matrix</strong> <strong>Elements</strong> <strong>and</strong> <strong>CKM</strong> <strong>Angles</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!