02.10.2014 Views

Tang et al. Nature Immunology. 2006 - Departments of Pathology ...

Tang et al. Nature Immunology. 2006 - Departments of Pathology ...

Tang et al. Nature Immunology. 2006 - Departments of Pathology ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ARTICLES<br />

© <strong>2006</strong> <strong>Nature</strong> Publishing Group http://www.nature.com/natureimmunology<br />

TPLSM data an<strong>al</strong>ysis. Imaris (Bitplane) or M<strong>et</strong>amorph (Univers<strong>al</strong> Imaging)<br />

was used for image an<strong>al</strong>ysis and three-dimension<strong>al</strong> tracking. The cell migration<br />

tracks generated by Imaris s<strong>of</strong>tware were individu<strong>al</strong>ly inspected to ensure<br />

accuracy in cell tracking. The verified tracks that were as least 5 min in duration<br />

were used to c<strong>al</strong>culate the velocity <strong>of</strong> the cells in various categories. Statistic<strong>al</strong><br />

an<strong>al</strong>ysis <strong>of</strong> the data was done with Prizm Graphpad 3.0 s<strong>of</strong>tware. Nonparam<strong>et</strong>ric<br />

one-way an<strong>al</strong>ysis <strong>of</strong> variance with Bonferroni’s post-test was done to<br />

assess the significance <strong>of</strong> the differences among various groups <strong>of</strong> cells.<br />

Immunohistochemistry. BDC2.5 CD4 + CD25 – T H cells and T reg cells were<br />

labeled with CFSE and were transferred into NOD.Cd28 / mice separately.<br />

Pancreatic and inguin<strong>al</strong> lymph nodes were collected and were frozen in<br />

optimum cutting temperature compound (Tissue-Tek); cryosections 6 mm in<br />

thickness were prepared, were fixed in ac<strong>et</strong>one and were incubated with biotinconjugated<br />

anti-B220 (BD PharMingen) and horseradish peroxidase–<br />

conjugated anti-fluorescein (Roche), followed by streptavidin-conjugated <strong>al</strong>k<strong>al</strong>ine<br />

phosphatase (DakoCytomation). Anti-B220 staining was developed with<br />

the <strong>al</strong>k<strong>al</strong>ine phosphatase substrate FastRed (DakoCytomation) and antifluorescein<br />

staining was developed with the horseradish peroxidase substrate<br />

diaminobenzidine (DakoCytomation). Sections were dehydrated and mounted<br />

with Ultramount (DakoCytomation).<br />

Note: Supplementary information is available on the <strong>Nature</strong> <strong>Immunology</strong> website.<br />

ACKNOWLEDGMENTS<br />

We thank S. Jiang, C. McArthur, C. Benn<strong>et</strong>t, R.A. Hwang, F. Siedenberg,<br />

L. Braun, J. Belgum, S. Hayden, M. Sanderson and M. Bengttson for technic<strong>al</strong><br />

assistance, and members <strong>of</strong> the Bluestone laboratory for support. Supported<br />

by the Juvenile Diab<strong>et</strong>es Research Foundation (4-1999-841 and 32004232),<br />

Nation<strong>al</strong> Insitutes <strong>of</strong> He<strong>al</strong>th (R37 AI46643, P30 DK063720, R21 AI066097<br />

and AI30663), Sandler–Howard Hughes Medic<strong>al</strong> Institute Biomedic<strong>al</strong><br />

Research Support Program (5300246), Sandler New Technologies and the<br />

Canadian Institutes <strong>of</strong> He<strong>al</strong>th Research and Alberta Heritage Foundation<br />

for Medic<strong>al</strong> Research.<br />

COMPETING INTERESTS STATEMENT<br />

The authors declare that they have no comp<strong>et</strong>ing financi<strong>al</strong> interests.<br />

Published online at http://www.nature.com/natureimmunology/<br />

Reprints and permissions information is available online at http://npg.nature.com/<br />

reprintsandpermissions/<br />

1. Sakaguchi, S. Natur<strong>al</strong>ly arising Foxp3-expressing CD25 + CD4 + regulatory T cells<br />

in immunologic<strong>al</strong> tolerance to self and non-self. Nat. Immunol. 6, 345–352<br />

(2005).<br />

2. Chatenoud, L., S<strong>al</strong>omon, B. & Bluestone, J.A. Suppressor T cells–they’re back and<br />

critic<strong>al</strong> for regulation <strong>of</strong> autoimmunity! Immunol. Rev. 182, 149–163 (2001).<br />

3. Wood, K.J. & Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nat. Rev.<br />

Immunol. 3, 199–210 (2003).<br />

4. Singh, B. <strong>et</strong> <strong>al</strong>. Control <strong>of</strong> intestin<strong>al</strong> inflammation by regulatory T cells. Immunol. Rev.<br />

182, 190–200 (2001).<br />

5. Curotto de Lafaille, M.A. & Lafaille, J.J. CD4 + regulatory T cells in autoimmunity and<br />

<strong>al</strong>lergy. Curr. Opin. Immunol. 14, 771–778 (2002).<br />

6. S<strong>al</strong>omon, B. <strong>et</strong> <strong>al</strong>. B7/CD28 costimulation is essenti<strong>al</strong> for the homeostasis <strong>of</strong> the<br />

CD4 + CD25 + immunoregulatory T cells that control autoimmune diab<strong>et</strong>es. Immunity<br />

12, 431–440 (2000).<br />

7. <strong>Tang</strong>, Q. <strong>et</strong> <strong>al</strong>. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune<br />

diab<strong>et</strong>es. J. Exp. Med. 199, 1455–1465 (2004).<br />

8. Tarbell, K.V., Yamazaki, S., Olson, K., Toy, P. & Steinman, R.M. CD25 + CD4 + Tcells,<br />

expanded with dendritic cells presenting a single autoantigenic peptide, suppress<br />

autoimmune diab<strong>et</strong>es. J. Exp. Med. 199, 1467–1477 (2004).<br />

9. Thornton, A.M. & Shevach, E.M. CD4 + CD25 + immunoregulatory T cells suppress<br />

polyclon<strong>al</strong> T cell activation in vitro by inhibiting interleukin 2 production. J. Exp.<br />

Med. 188, 287–296 (1998).<br />

10. Piccirillo, C.A. <strong>et</strong> <strong>al</strong>. CD4 + CD25 + regulatory T cells can mediate suppressor function in<br />

the absence <strong>of</strong> transforming growth factor b1 production and responsiveness. J. Exp.<br />

Med. 196, 237–246 (2002).<br />

11. Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. & Schuler, G. Ex vivo isolation<br />

and characterization <strong>of</strong> CD4 + CD25 + T cells with regulatory properties from human<br />

blood. J. Exp. Med. 193, 1303–1310 (2001).<br />

12. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin <strong>of</strong> regulatory T cells with<br />

known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).<br />

13. Levings, M.K., Sangregorio, R. & Roncarolo, M.G. Human CD25 + CD4 + T regulatory<br />

cells suppress naive and memory T cell proliferation and can be expanded in vitro<br />

without loss <strong>of</strong> function. J. Exp. Med. 193, 1295–1302 (2001).<br />

14. Jonuleit, H. <strong>et</strong> <strong>al</strong>. Identification and function<strong>al</strong> characterization <strong>of</strong> human CD4 + CD25 +<br />

T cells with regulatory properties isolated from peripher<strong>al</strong> blood. J. Exp. Med. 193,<br />

1285–1294 (2001).<br />

15. Levings, M.K. <strong>et</strong> <strong>al</strong>. Human CD25 + CD4 + T suppressor cell clones produce transforming<br />

growth factor b, but not interleukin 10, and are distinct from type 1 T regulatory cells.<br />

J. Exp. Med. 196, 1335–1346 (2002).<br />

16. Thornton, A.M. & Shevach, E.M. Suppressor effector function <strong>of</strong> CD4 + CD25 + immunoregulatory<br />

T cells is antigen nonspecific. J. Immunol. 164, 183–190 (2000).<br />

17. Asseman, C., Mauze, S., Leach, M.W., C<strong>of</strong>fman, R.L. & Powrie, F. An essenti<strong>al</strong> role for<br />

interleukin 10 in the function <strong>of</strong> regulatory T cells that inhibit intestin<strong>al</strong> inflammation.<br />

J. Exp. Med. 190, 995–1004 (1999).<br />

18. Read, S., M<strong>al</strong>mstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4<br />

plays an essenti<strong>al</strong> role in the function <strong>of</strong> CD25 + CD4 + regulatory cells that control<br />

intestin<strong>al</strong> inflammation. J. Exp. Med. 192, 295–302 (2000).<br />

19. Kingsley, C.I., Karim, M., Bushell, A.R. & Wood, K.J. CD25 + CD4 + regulatory T cells<br />

prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation <strong>of</strong> <strong>al</strong>loresponses.<br />

J. Immunol. 168, 1080–1086 (2002).<br />

20. Belkaid, Y., Piccirillo, C.A., Mendez, S., Shevach, E.M. & Sacks, D.L. CD4 + CD25 +<br />

regulatory T cells control Leishmania major persistence and immunity. <strong>Nature</strong> 420,<br />

502–507 (2002).<br />

21. Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. Dynamic imaging <strong>of</strong> T cell-dendritic<br />

cell interactions in lymph nodes. Science 296, 1873–1876 (2002).<br />

22. Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells in<br />

lymph nodes occurs in three distinct phases. <strong>Nature</strong> 427, 154–159 (2004).<br />

23. Miller, M.J., Wei, S.H., Parker, I. & Cah<strong>al</strong>an, M.D. Two-photon imaging <strong>of</strong> lymphocyte<br />

motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).<br />

24. Miller, M.J., Safrina, O., Parker, I. & Cah<strong>al</strong>an, M.D. Imaging the single cell dynamics <strong>of</strong><br />

CD4 + T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856<br />

(2004).<br />

25. Bousso, P. & Robey, E. Dynamics <strong>of</strong> CD8 + T cell priming by dendritic cells in intact<br />

lymph nodes. Nat. Immunol. 4, 579–585 (2003).<br />

26. Itano, A.A. <strong>et</strong> <strong>al</strong>. Distinct dendritic cell populations sequenti<strong>al</strong>ly present antigen to<br />

CD4 T cells and stimulate different aspects <strong>of</strong> cell-mediated immunity. Immunity 19,<br />

47–57 (2003).<br />

27. Itano, A.A. & Jenkins, M.K. Antigen presentation to naive CD4 T cells in the lymph<br />

node. Nat. Immunol. 4, 733–739 (2003).<br />

28. Schmidt, D., Verdaguer, J., Averill, N. & Santamaria, P. A mechanism for the major<br />

histocompatibility complex-linked resistance to autoimmunity. J. Exp. Med. 186,<br />

1059–1075 (1997).<br />

29. St<strong>et</strong>son, D.B. <strong>et</strong> <strong>al</strong>. Constitutive cytokine mRNAs mark natur<strong>al</strong> killer (NK) and NK<br />

T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).<br />

30. Hara, M. <strong>et</strong> <strong>al</strong>. Transgenic mice with green fluorescent protein-labeled pancreatic<br />

b-cells. Am. J. Physiol. Endocrinol. M<strong>et</strong>ab. 284, E177–E183 (2003).<br />

31. Iezzi, G., Scot<strong>et</strong>, E., Scheidegger, D. & Lanzavecchia, A. The interplay b<strong>et</strong>ween the<br />

duration <strong>of</strong> TCR and cytokine sign<strong>al</strong>ing d<strong>et</strong>ermines T cell polarization. Eur. J. Immunol.<br />

29, 4092–4101 (1999).<br />

32. G<strong>et</strong>t, A.V., S<strong>al</strong>lusto, F., Lanzavecchia, A. & Geginat, J. T cell fitness d<strong>et</strong>ermined by<br />

sign<strong>al</strong> strength. Nat. Immunol. 4, 355–360 (2003).<br />

33. Huppa, J.B., Gleimer, M., Sumen, C. & Davis, M.M. Continuous T cell receptor<br />

sign<strong>al</strong>ing required for synapse maintenance and full effector potenti<strong>al</strong>. Nat. Immunol.<br />

4, 749–755 (2003).<br />

34. Gunzer, M. <strong>et</strong> <strong>al</strong>. Antigen presentation in extracellular matrix: interactions <strong>of</strong> T cells<br />

with dendritic cells are dynamic, short lived, and sequenti<strong>al</strong>. Immunity 13, 323–332<br />

(2000).<br />

35. Gunzer, M. <strong>et</strong> <strong>al</strong>. A spectrum <strong>of</strong> biophysic<strong>al</strong> interaction modes b<strong>et</strong>ween T cells and<br />

different antigen-presenting cells during priming in 3-D collagen and in vivo. Blood<br />

104, 2801–2809 (2004).<br />

36. Hsieh, C.S. <strong>et</strong> <strong>al</strong>. Recognition <strong>of</strong> the peripher<strong>al</strong> self by natur<strong>al</strong>ly arising CD25 + CD4 +<br />

T cell receptors. Immunity 21, 267–277 (2004).<br />

37. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu.<br />

Rev. Immunol. 21, 685–711 (2003).<br />

38. Scheinecker, C., McHugh, R., Shevach, E.M. & Germain, R.N. Constitutive presentation<br />

<strong>of</strong> a natur<strong>al</strong> tissue autoantigen exclusively by dendritic cells in the draining lymph<br />

node. J. Exp. Med. 196, 1079–1090 (2002).<br />

39. Serra, P. <strong>et</strong> <strong>al</strong>. CD40 ligation releases immature dendritic cells from the control <strong>of</strong><br />

regulatory CD4 + CD25 + Tcells.Immunity 19, 877–889 (2003).<br />

40. Sanderson, M.J. & Parker, I. Video-rate confoc<strong>al</strong> microscopy. M<strong>et</strong>hods Enzymol. 360,<br />

447–481 (2003).<br />

92 VOLUME 7 NUMBER 1 JANUARY <strong>2006</strong> NATURE IMMUNOLOGY

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!