10.10.2014 Views

Computer Coupling of Phase Diagrams and Thermochemistry

Computer Coupling of Phase Diagrams and Thermochemistry

Computer Coupling of Phase Diagrams and Thermochemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

S.H. Zhou et al. / CALPHAD: <strong>Computer</strong> <strong>Coupling</strong> <strong>of</strong> <strong>Phase</strong> <strong>Diagrams</strong> <strong>and</strong> <strong>Thermochemistry</strong> 33 (2009) 631–641 635<br />

Table 3<br />

Summary <strong>of</strong> the thermodynamic models used for the Ni–Mo–Ta ternary system with the total Gibbs free energy G Φ m = ref G Φ m + id G Φ m + xs G Φ m .<br />

<strong>Phase</strong> Sublattice formulation Model<br />

Liquid<br />

fcc (A1)<br />

bcc (A2)<br />

(Mo, Ni, Ta) 1<br />

ref G Φ = m x Ni 0 G Φ + Ni x0 Mo GΦ + Mo x0 Ta GΦ<br />

id Ta<br />

G Φ = m RT(x Ni ln x Ni + x Mo ln x Mo + x Ta ln x Ta )<br />

xs G Φ = ∑<br />

m x n<br />

∑<br />

Mox j Ni L Φ j=0 Mo,Ni (x Mo − x Ni ) j n<br />

+ x Mo x j Ta L Φ j=0 Mo,Ta (x Mo − x Ta ) j<br />

∑ n<br />

+ x Ni x j Ta L Φ j=0 Ni,Ta (x Ni − x Ta ) j + x Mo x Ni x Ta L Φ Mo,Ni,Ta<br />

µ<br />

(Ni, Ta) 1 (Ta) 4 (Mo, Ni, Ta) 2 (Ni, Ta) 6<br />

Reference States:<br />

Group 1:<br />

Ni:Ta:Ni:Ni<br />

Ni:Ta:Ta:Ni<br />

Ta:Ta:Ni:Ni<br />

Ta:Ta:Ta:Ni<br />

Ta:Ta:Ta:Ta<br />

Ta:Ta:Mo:Ni<br />

Group 2:<br />

Ni:Ta:Ta:Ta<br />

Ta:Ta:Ni:Ta<br />

Ni:Ta:Ni:Ta<br />

Ta:Ta:Mo:Ta<br />

Ni:Ta:Mo:Ni<br />

Ni:Ta:Mo:Ta<br />

∑<br />

ref G µ = ∑ m i=Ni,Ta yI i<br />

0 G µ = 0 i:Ta:j:k G fcc<br />

i<br />

+ 4 0 G bcc<br />

Ta<br />

= 0(Group 2)<br />

0 G µ i:Ta:j:k<br />

j=Mo,Ni,Ta yIII j<br />

+ 20 G bcc<br />

j<br />

∑<br />

k=Ni,Ta yIV k<br />

0 G µ i:Ta:j:k<br />

+ 6 0 G fcc<br />

k<br />

+ G µ i:Ta:j:k<br />

(Group 1)<br />

)<br />

id G µ = m<br />

(∑i=Ni,Ta RT (yI i ln yI + i 2yIII i ln y III<br />

i<br />

+ 6y IV<br />

i ln y IV<br />

i<br />

)<br />

xs G µ = ∑ ∑ ∑<br />

m yI Ni yI k Ta<br />

L µ i=Mo,Ni,Ta j=Ni,Ta k=0 Ni,Ta:Ta:i:j (yI − Ni yI Ta )k<br />

+ ∑ ∑ ∑ ∑ ∑<br />

l=Mo,Ni p=Ni,Ta yIII l y III<br />

p<br />

∑ ∑ ∑i=Ni,Ta<br />

j=Ni,Ta k=0<br />

+ y IV Ni yIV<br />

k Ta<br />

L µ i:Ta:j:Ni,Ta (yIV − Ni yIV Ta )k<br />

i=Ni,Ta<br />

j=Mo,Ni,Ta<br />

k=0<br />

k L µ i:Ta:l,p:j (yIII l<br />

− y III<br />

p )k<br />

(Mo, Ni, Ta) 4 (Ni) 2 (Mo, Ni, Ta) 2<br />

Reference states:<br />

Group 1:<br />

ref G D0a = ∑ ∑<br />

Mo:Ni:Mo<br />

m<br />

i=Mo,Ni,Ta yI i j=Mo,Ni,Ta yIII 0 j G D0a<br />

i:Ni:j<br />

Ni:Ni:Mo<br />

0 G D0a = i:Ni:j 40 G fcc<br />

i<br />

+ 2 0 G fcc<br />

Ni<br />

+ 2 0 G bcc<br />

j<br />

+ G D0a<br />

i:Ni:j (Group 1)<br />

Ta:Ni:Ta<br />

0 G D0a<br />

i:Ni:j<br />

= (Group 2)<br />

D0 a I<br />

Ni:Ni:Ta<br />

id G D0a = ∑<br />

m RT i=Mo,Ni,Ta (4yI i ln yI + i 2III i ln y III<br />

i<br />

)<br />

Ni:Ni:Ni<br />

xs G D0a = ∑ ∑ ∑ ∑<br />

Group 2:<br />

m<br />

i k>i yI i yI n k<br />

L D0a<br />

j n=0 i,k:Ni:j (yI − i yI k )n<br />

+ ∑ ∑ ∑ ∑<br />

(Mo, Ta):Ni:Ni<br />

j i k>i yIII i y III<br />

k n=0 LD0a l:Ni:i,k (yIII i<br />

− y III<br />

k )n<br />

Mo:Ni:Ta<br />

Ta:Ni:Mo<br />

κ (Ni, Mo, Ta) 3 (Ni, Mo, Ta) ref 1 G Φ = ∑ ∑<br />

m i=Mo,Ni,Ta yI i j=Mo,Ni,Ta yII 0 j G Φ i:j<br />

D0 a II<br />

Note: 0 G D0aII = 0 Mo:Ta G D0aII = Ta:Mo 0<br />

0 G Φ = i:j p0 G ref<br />

i<br />

+ q 0 G ref<br />

j<br />

+ G Φ = i:j p0 G ref<br />

i<br />

+ q 0 G ref<br />

j<br />

+ a Φ + i:j bΦ i:j T<br />

C16 (Ni, Ta) id G Φ = m<br />

∑i=Mo,Ni,Ta RT (pyI i ln yI + i qyII i ln y II<br />

1 (Ni, Ta) 2<br />

) i xs G Φ = ∑ ∑ ∑ ∑<br />

C11<br />

m i l>i yI i yI k l<br />

L Φ b (Ni, Ta) 2 (Ni, Ta) 1<br />

j k=0 i,l:j (yI − i yI l )k<br />

+ ∑ ∑ ∑ ∑<br />

ζ<br />

(Ni) 8 (Mo, Ta)<br />

j i l>i yII i yII<br />

k l L Φ k=0 j:i,l (yII i<br />

− y II<br />

l )k<br />

(p <strong>and</strong> q are the subscript numbers <strong>of</strong> sublattices, respectively)<br />

∑j=Mo,Ta yIII 0 j G δ Ni:i:j<br />

ref G µ m = ∑ i=Mo,Ni,Ta yII i<br />

0 G δ = Ni:i:j 240 G fcc<br />

Ni<br />

+ 20 0 G bcc<br />

i<br />

+ 12 0 G bcc<br />

j<br />

+ G δ Ni:i:j<br />

δ (Ni) 24 (Mo, Ni, Ta) 20 (Mo, Ta) id 12 G δ = (∑ m RT i=Ni,Ta (20yII i ln y II<br />

i<br />

+ 12y III<br />

i ln y III<br />

i<br />

) )<br />

xs G δ = ∑ ∑ ∑<br />

m i=Mo,Ni<br />

∑j=Ni,Ta yII i yII j l=Mo,Ta k=0<br />

+ ∑ ∑<br />

i=Mo,Ni,Ta yIII Mo yIII k Ta L µ Ni:i:Mo,Ta (yIII − Mo yIII Ta )k<br />

k=0<br />

k L δ Ni:i,j:l (yII i<br />

− y II<br />

j )k<br />

Ni 2 Mo (Ni) 2 (Mo) 1 G Φ = m GΦ + Ni:Ta p0 G fcc<br />

Ni<br />

+ q 0 G bcc<br />

i(i=Mo,Ta)<br />

Ni 4 Mo (Ni) 4 (Mo) 1<br />

= a Φ + b Φ T + p 0 G fcc<br />

Ni<br />

+ q 0 G bcc<br />

i(i=Mo,Ta)<br />

D0 22 (Ni) 3 (Ta) 1<br />

(p <strong>and</strong> q are the subscript numbers <strong>of</strong> sublattices, respectively)<br />

Table 3. D0 a -Ni 3 Mo was also described with the two-sublattice<br />

model using the (Mo, Ni) 3 (Mo, Ni) 1 formulation in Ref. [8]. To<br />

be compatible with this treatment in the ternary system, another<br />

set <strong>of</strong> parameters is developed for the two-sublattice model, i.e.<br />

(Mo, Ni, Ta) 3 (Mo, Ni, Ta) 1 , denoted by D0 a II–Ni 3 (Mo, Ta). In this<br />

case, the Gibbs free energy functions can be written in the same<br />

form as those for κ-Ni 3 (Mo, Ta) in Table 3.<br />

3. Determination <strong>of</strong> the thermodynamic model parameters<br />

In the determination <strong>of</strong> the model parameters for the ternary<br />

Ni–Mo–Ta system, the Ni–Ta binary is evaluated first <strong>and</strong> then<br />

integrated with reported models for the Ni–Mo [8] in Fig. 1(d)<br />

<strong>and</strong> Mo–Ta [9] in Fig. 1(e) systems to build the thermodynamic<br />

description. With the thermodynamic models described in the<br />

preceding section, we employ a total <strong>of</strong> twenty-four Gibbs<br />

free energy <strong>of</strong> formation parameters <strong>and</strong> fourteen interaction<br />

parameters for the binary Ni–Ta system, as listed in Tables 4 <strong>and</strong> 5.<br />

The evaluation process, utilizing both experimental data <strong>and</strong> first<br />

principles results for the Ni–Ta system, is discussed in this section.<br />

Using VASP [38] with the V<strong>and</strong>erbilt ultras<strong>of</strong>t pseudopotential<br />

[39] within the generalized gradient approximation (GGA) [40],<br />

the total energy <strong>of</strong> the fcc-Ni, bcc-Mo, bcc-Ta, <strong>and</strong> compounds are<br />

calculated. Monkhorst 15 × 15 × 15 k points are used for the pure<br />

elements Ni, Mo <strong>and</strong> Ta, 11×11×11 k points for the end-members<br />

<strong>of</strong> the ζ -Ni 8 Ta, D0 22 -Ni 3 Ta, C11 b -Ni 2 Ta, D0 a -Ni 3 Mo <strong>and</strong> C16-NiTa 2<br />

phases, 9×9×9 k points for the end-members <strong>of</strong> the µ-NiTa phase<br />

<strong>and</strong> 4 × 4 × 4 k points for the end-members <strong>of</strong> the κ-Ni 3 Ta phase.<br />

To ensure that the unit cell corresponds to a stable structure, we<br />

fully relax the cell shape <strong>and</strong> the internal atomic coordinates for<br />

the stable end-members <strong>and</strong> relax only the cell volume for the unstable/metastable<br />

end-members.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!