12.10.2014 Views

Flavonoid-Drug Interactions: Effects of Flavonoids on ABC ...

Flavonoid-Drug Interactions: Effects of Flavonoids on ABC ...

Flavonoid-Drug Interactions: Effects of Flavonoids on ABC ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>-<str<strong>on</strong>g>Drug</str<strong>on</strong>g> <str<strong>on</strong>g>Interacti<strong>on</strong>s</str<strong>on</strong>g>:<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s <strong>on</strong> <strong>ABC</strong> Transporters<br />

Marilyn E. Morris, Ph.D.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmaceutical Sciences


<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s<br />

Basic Structure:<br />

Subclasses:<br />

7<br />

6<br />

8<br />

A<br />

5<br />

1<br />

O<br />

C<br />

4<br />

2<br />

3<br />

2’ 3’<br />

B 4’<br />

5’<br />

6’<br />

‣The most abundant<br />

polyphenols present in<br />

human diet<br />

(vegetables, fruits, red<br />

wine and tea)<br />

O<br />

O<br />

O<br />

O<br />

flav<strong>on</strong>es<br />

O<br />

O<br />

OH<br />

flav<strong>on</strong>ols<br />

O<br />

O<br />

flavan<strong>on</strong>es<br />

O<br />

is<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<strong>on</strong>es<br />

chalc<strong>on</strong>es


<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s<br />

‣ Epidemiological studies:<br />

reduced risk <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer, cor<strong>on</strong>ary heart disease,<br />

and osteoporosis<br />

‣ Biochemical and Pharmacological activities:<br />

anti-oxidant;<br />

anti-viral;<br />

anti-carcinogenic;<br />

anti-inflammatory;<br />

anti-angiogenic;<br />

anti-estrogenic (estrogenic).


‣ Toxicity:<br />

<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s Have Little Toxicity<br />

• L<strong>on</strong>g history <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> with excepti<strong>on</strong>al safety record;<br />

• Extremely large doses used in animal studies;<br />

Acute LD 50 for rats: 2 g / kg BW by direct injecti<strong>on</strong> into<br />

blood.<br />

“The margin <str<strong>on</strong>g>of</str<strong>on</strong>g> safety for the therapeutic use <str<strong>on</strong>g>of</str<strong>on</strong>g> flav<strong>on</strong>oids<br />

in humans, therefore, is very large and probably not<br />

surpassed by any other drug in current use”<br />

Havsteen, (2002), Pharmacology and Therapeutics 96:67-202.


<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g> Products


Herbal Use in Select Populati<strong>on</strong>s<br />

• HIV infected patients<br />

(Fairfield etal Arch Intern Med 158:2257-2264, 1998)<br />

– 68% <str<strong>on</strong>g>of</str<strong>on</strong>g> patients used herbs, vitamin, dietary supplements<br />

– C<strong>on</strong>sumed herbal remedies to boost immunity, prevent<br />

nausea, diarrhea, or weight loss, relieve stress or<br />

depressi<strong>on</strong>.<br />

• Post-menopausal women<br />

(Mahady et al. Menopause 10:65-72, 2003)<br />

– Botanical dietary supplements used by 79% (395/500) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

post-menopausal women within the last year.<br />

• Comm<strong>on</strong>ly used supplements include Soy (42%), green tea (35%),<br />

Chamomile (21%), Ginkgo (20%), Ginseng (18%), Echinacea<br />

(15%), & SJW (7%).


<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g> Products<br />

Do not need FDA approval<br />

<str<strong>on</strong>g>Drug</str<strong>on</strong>g> interacti<strong>on</strong>s with c<strong>on</strong>venti<strong>on</strong>al drugs<br />

have not been evaluated


<strong>ABC</strong> Proteins<br />

• ATP binding cassette (<strong>ABC</strong>) superfamily<br />

P-glycoprotein (MDR1, <strong>ABC</strong>B1)<br />

Multidrug Resistance Associated Proteins (MRP,<br />

<strong>ABC</strong>C)<br />

Breast Cancer Resistance Protein (BCRP, <strong>ABC</strong>G2)<br />

• Efflux molecules out <str<strong>on</strong>g>of</str<strong>on</strong>g> cells<br />

• Tumor → multi-drug resistance<br />

• Present in the liver, kidney, BBB,<br />

gastrointestinal tract where important<br />

for drug dispositi<strong>on</strong><br />

in<br />

out


Hepatocyte<br />

OCT1<br />

SMALL<br />

ORGANIC<br />

CATIONS<br />

OAT<br />

ORGANIC<br />

ANIONS<br />

MONOVALENT<br />

BILE SALTS<br />

NTCP<br />

BULKY ORGANIC<br />

COMPOUNDS<br />

OATP<br />

GSH<br />

E<br />

R<br />

MDR1<br />

MRP 2<br />

MRP 2<br />

MRP 3<br />

MRP1<br />

MDR3<br />

PHOSPHATIDYL<br />

- CHOLINE<br />

MRP 6<br />

BSEP/SPGP<br />

BCRP<br />

©MM 98<br />

NTCP<br />

MONOVALENT<br />

BILE SALTS<br />

Michael Müller


Intestine<br />

Transporters<br />

• absorpti<strong>on</strong><br />

• efflux<br />

apical<br />

OATP3 OCT1<br />

MCT1 CNT<br />

PEPT1<br />

MRP2<br />

BCRP<br />

MDR1<br />

Metabolism<br />

CYP<br />

UGT<br />

GST<br />

PST<br />

Transporters<br />

basolateral<br />

MRP3<br />

MRP3<br />

MCT1<br />

MRP1<br />

Sandy K Pang


<strong>ABC</strong> Transporter Expressi<strong>on</strong> in the Liver and<br />

Gastrointestinal Tract<br />

‣High expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

MDR1, MRP2 and BCRP<br />

in the liver<br />

‣Expressi<strong>on</strong> throughout<br />

the gastrointestinal tract<br />

Dietrich et al, Gut 2003,<br />

52:1788


‣ Two homologous<br />

halves<br />

‣ Each c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g>:<br />

6 TM<br />

1 ATP binding site<br />

‣ Substrate binding sites<br />

are located in TMs<br />

P-glycoprotein<br />

Broad substrate specificity:<br />

anthracyclines, Vinca alkaloids, epipodophyllotoxins and taxol<br />

cyclosporine, digoxin, verapamil etc.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the major mechanisms for cancer MDR and<br />

drug-drug, drug-food interacti<strong>on</strong>s.


General Study Design<br />

‣ In vitro studies- sensitive (no expressi<strong>on</strong>) and<br />

overexpressing cell lines (characterized) examining<br />

accumulati<strong>on</strong> or flux<br />

‣In vitro studies- effects <strong>on</strong> the cytotoxicity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chemotherapeutic drugs<br />

‣In vitro studies- mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>; additive<br />

effects; SAR/QSAR<br />

‣In vivo studies in animals


(% <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol)<br />

3 H-DNM accumulati<strong>on</strong><br />

(% <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol)<br />

3 H-DNM Accumulati<strong>on</strong> in MCF-7 cells<br />

Verapamil<br />

Silymarin<br />

Phloretin<br />

Morin<br />

Biochanin A<br />

200<br />

150<br />

100<br />

50<br />

C<strong>on</strong>trol<br />

0<br />

MCF-7/sensitive<br />

MCF-7/ADR<br />

400<br />

300<br />

200<br />

100<br />

0<br />

***<br />

***<br />

***<br />

***<br />

***<br />

3 H-DNM accumulati<strong>on</strong><br />

Verapamil<br />

Silymarin<br />

Phloretin<br />

Morin<br />

Biochanin A<br />

C<strong>on</strong>trol<br />

<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>: 50 µM, Verapamil c<strong>on</strong>centrati<strong>on</strong>: 100 µM<br />

Data expressed as mean ±SD, N= 9-12; ***: p < 0.001


Increase <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 H-DNM accumulati<strong>on</strong> in P-gp<br />

Positive Cells Is <str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g> C<strong>on</strong>centrati<strong>on</strong><br />

Dependent<br />

3 H-DNM accumulati<strong>on</strong><br />

(% <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol)<br />

1400 Biochanin A<br />

1200<br />

Morin<br />

Phloretin<br />

1000<br />

Silymarin<br />

800<br />

600<br />

Minimal C<strong>on</strong>c. for significant change:<br />

400<br />

200<br />

Biochanin A and morin: 20-30 µM<br />

Phloretin and silymarin: 30-50 µM<br />

0<br />

0 20 40 60 80 100 120<br />

<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> (µM)<br />

DNM accumulati<strong>on</strong> was determined in MDA435/LCC6MDR1 cells


Increase <str<strong>on</strong>g>of</str<strong>on</strong>g> Doxorubicin Cytotoxicity by<br />

Biochanin A<br />

Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell growth<br />

1<br />

IC 50 =30.2 µM<br />

IC 50 =0.80µM<br />

0<br />

0.001 0.01 0.1 1 10 100 1000<br />

C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> doxorubicin (µM)<br />

C<strong>on</strong>trol<br />

10 µM biochanin A<br />

30 µM biochanin A<br />

50 µM biochanin A<br />

100 µM biochanin A<br />

Doxorubicin cytotoxicity<br />

was determined in<br />

MDA435/LCC6MDR1 cells


<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>-P-gp <str<strong>on</strong>g>Interacti<strong>on</strong>s</str<strong>on</strong>g><br />

Mechanisms:<br />

‣Biochanin A is not a substrate<br />

‣<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s affect P-gp ATPase activity or the P-gp<br />

ATPase activity induced by verapamil<br />

‣ Some flav<strong>on</strong>oids can inhibit P-gp ATP and/or substrate<br />

binding<br />

Bifuncti<strong>on</strong>al binding interacti<strong>on</strong>s with nucleotide<br />

binding domains at ATP and vicinal substrate binding site<br />

(DiPietro et al., 2002)<br />

‣No effect <strong>on</strong> P-gp expressi<strong>on</strong> in MCF-7/ADR cells or<br />

human hepatocytes following l<strong>on</strong>ger incubati<strong>on</strong>s for the<br />

flav<strong>on</strong>oids and c<strong>on</strong>centrati<strong>on</strong>s examined


<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>-<str<strong>on</strong>g>Drug</str<strong>on</strong>g> <str<strong>on</strong>g>Interacti<strong>on</strong>s</str<strong>on</strong>g><br />

flav<strong>on</strong>e + paclitaxel in rats<br />

quercetin + paclitaxel in rats<br />

20 mg/kg flav<strong>on</strong>e<br />

10 mg/kg flav<strong>on</strong>e<br />

2 mg/kg flav<strong>on</strong>e<br />

c<strong>on</strong>trol<br />

10 mg/kg quercetin<br />

2 mg/kg quercetin<br />

c<strong>on</strong>trol<br />

Choi et al. (2004) Int J Pharm 275: 165-170<br />

Choi et al. (2004) Eur J Pharm Biopharm 57: 313-8


<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>-<str<strong>on</strong>g>Drug</str<strong>on</strong>g> <str<strong>on</strong>g>Interacti<strong>on</strong>s</str<strong>on</strong>g><br />

quercetin + cyclosporine in pigs<br />

phellamurin + cyclosporine in rats<br />

Cyclosporin plasma<br />

C<strong>on</strong>centrati<strong>on</strong> (ng/ml)<br />

+quercetin<br />

c<strong>on</strong>trol<br />

Cyclosporin blood<br />

C<strong>on</strong>centrati<strong>on</strong> (ng/ml)<br />

c<strong>on</strong>trol<br />

+phellamurin<br />

AUC 0-3 : 56%<br />

Cmax: 47%<br />

Hsiu et al. (2002) Life Sciences 72:227-235<br />

AUC: 56%<br />

Cmax: 77%<br />

Chen et al. (2002) Planta Med 68:138-141


<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>-<str<strong>on</strong>g>Drug</str<strong>on</strong>g> <str<strong>on</strong>g>Interacti<strong>on</strong>s</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>-drug interacti<strong>on</strong>s could occur up<strong>on</strong> coadministrati<strong>on</strong><br />

but appear to be substrate dependent (and will be flav<strong>on</strong>oid<br />

dependent)<br />

However, other factors (for example, other transporters) may<br />

be important – there may be poor predicti<strong>on</strong> if <strong>on</strong>ly based <strong>on</strong> their<br />

interacti<strong>on</strong> with P-glycoprotein and CYP3A4


Multidrug Resistance-Associated Protein 1<br />

(MRP1, <strong>ABC</strong>C1)<br />

MRP1 is a 190-kDa protein<br />

encoded by the MRP1 gene.<br />

Expressed in most normal tissues<br />

in the human body and in several<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors such as lung<br />

carcinoma, myeloid leukemia,<br />

neuroblastoma, and breast cancer<br />

Substrates <str<strong>on</strong>g>of</str<strong>on</strong>g> MRP1:<br />

• Endogenous substrates: leukotriene C 4 , glutathi<strong>on</strong>e disulfide, steroid<br />

glucur<strong>on</strong>ides (17β-estradiol 17-β-D-glucur<strong>on</strong>ide)<br />

• Exogenous substrates: daunomycin, vinca alkaloid (vinblastine),<br />

methotrexate, fluorouracil, chlorambucil, calcein, drug c<strong>on</strong>jugates


Involvement <str<strong>on</strong>g>of</str<strong>on</strong>g> GSH in MRP1-mediated transport<br />

ATP<br />

GSSG<br />

MRP1<br />

oxidative<br />

stress<br />

GSH<br />

(reduced)<br />

GSTase<br />

ADP + Pi<br />

GSSG<br />

(oxidized)<br />

GSH<br />

reductase<br />

GSH<br />

c<strong>on</strong>jugate<br />

ATP<br />

ADP + Pi<br />

endogenous<br />

or exogenous<br />

compound<br />

GSH<br />

vincristine<br />

ADP + Pi<br />

ATP<br />

MRP1<br />

GSH<br />

GS-X<br />

MRP1<br />

GSH<br />

+<br />

vincristine<br />

Qingcheng Mao


<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s increase the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 H-VBL in<br />

Panc-1 Cells<br />

700<br />

600<br />

**<br />

C<strong>on</strong>trol<br />

Positive c<strong>on</strong>trol<br />

Flav<strong>on</strong>ol<br />

Flav<strong>on</strong>e<br />

Flavanol<br />

Is<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<strong>on</strong>e<br />

3 H-VBL % Accumulati<strong>on</strong><br />

500<br />

400<br />

300<br />

200<br />

**<br />

*<br />

**<br />

**<br />

** ** **<br />

**<br />

100<br />

0<br />

C<strong>on</strong>trol Verapamil Kaempferol Morin Quercetin Phloretin Chalc<strong>on</strong>e Siymarin Biochanin-A Genistein<br />

* p < 0.05<br />

** p < 0.01<br />

Nguyen et al, J Pharm Sci 2003


<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s that have no effect <strong>on</strong> the accumulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 3 H-VBL in Panc-1 cells<br />

500<br />

400<br />

C<strong>on</strong>trol<br />

Positive c<strong>on</strong>trol<br />

Flav<strong>on</strong>e<br />

Flav<strong>on</strong>ol<br />

Flav<strong>on</strong><strong>on</strong>es<br />

Flavanol<br />

Is<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<strong>on</strong>e<br />

300<br />

200<br />

C<strong>on</strong>trol<br />

Verapamil<br />

Apigenin<br />

ChrysinDiosminLuteolinGalanginMyricetin<br />

Rutin<br />

Hesperetin<br />

NaringeninNaringin<br />

100<br />

0<br />

Epigallocatechin<br />

Daizdein<br />

3 H-VBL % Accumulati<strong>on</strong>


Inhibitory c<strong>on</strong>stants for 3 H-LTC4<br />

transport in MRP1 membrane vesicles<br />

FLAVONOID<br />

myricetin<br />

Ki (µM)<br />

13.3 ± 2.7 (SD)<br />

quercetin 8.1 ± 1.7<br />

naringenin<br />

20.8 ± 6.4<br />

(+ GSH)<br />

kaempferol 2.4 ± 1.6<br />

apigenin (+GSH) 4.9 ± 0.7<br />

Leslie et al., Mol Pharmacol, 2001


Mechanisms involved in MRP1<br />

Inhibiti<strong>on</strong><br />

‣Decreased intracellular GSH appears to be important for some,<br />

but not all, flav<strong>on</strong>oids<br />

‣No effects <strong>on</strong> glutathi<strong>on</strong>e S-transferase were observed<br />

‣ No effects <strong>on</strong> the expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MRP1 were seen with l<strong>on</strong>gerterm<br />

incubati<strong>on</strong>s<br />

‣Significant effects <strong>on</strong> MRP1 ATPase activity<br />

‣Likely not substrates<br />

‣Binding at a substrate or ATP domain is likely also involved


Breast Cancer Resistance Protein (BCRP)<br />

A new member <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ABC</strong> transporter superfamily;<br />

Also known as <strong>ABC</strong>P (<strong>ABC</strong> transporter in placenta),<br />

MXR (mitoxantr<strong>on</strong>e-resistance protein)<br />

<strong>ABC</strong>G2 (the 2nd family <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ABC</strong> subgroup G)<br />

Broad substrate specificity;<br />

mitoxantr<strong>on</strong>e, topoisomerase I inhibitors, methotrexate, topotecan<br />

zidovudine, lamivudine, flavopiridol, sulfate c<strong>on</strong>jugates, omeprazole<br />

genistein


Breast Cancer Resistance Protein (BCRP)<br />

Expressi<strong>on</strong> in tumors:<br />

• leukemia: AML<br />

• solid tumors: col<strong>on</strong> cancer, lung cancer, myeloma,<br />

endometrial tumor, etc.<br />

Role in clinical MDR<br />

Expressi<strong>on</strong> in normal tissues:<br />

• placenta<br />

• intestine (expressi<strong>on</strong> level is higher than P-glycoprotein)<br />

• liver canalicular membrane<br />

• brain microvessels<br />

An important determinant for drug dispositi<strong>on</strong><br />

Steinbach et al. (2002) Leukemia 16: 1443-1447 Cooray et al (2002) Neuroreport 13:2059-2063<br />

Diestra et al (2002) J. Pathol. 198: 213-219 Maliepaard et al (2001) Cancer Res 61:3458-3464<br />

J<strong>on</strong>ker et al. (2000) J Natl Cancer Inst 92:1651-1656


BCRP Clinical Implicati<strong>on</strong>s<br />

• Apparent oral bioavailability : 40.0% ⇒ 97.1%<br />

With inhibitor<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong><br />

both P-gp and<br />

BCRP<br />

Kruijtzer, C. M. et al., J. Clin. Oncol. 20, 2943–2950, 2002


Breast Cancer Resistance Protein (BCRP)<br />

GF120918 + topotecan in P-gp knockout mice, oral administrati<strong>on</strong><br />

Plasma c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> topotecan<br />

Biliary excreti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> topotecan<br />

Topotecan c<strong>on</strong>centrati<strong>on</strong><br />

(ng/ml)<br />

c<strong>on</strong>trol<br />

GF120918<br />

Cumulative biliary<br />

topotecan (% <str<strong>on</strong>g>of</str<strong>on</strong>g> dose)<br />

GF120918<br />

c<strong>on</strong>trol<br />

J<strong>on</strong>ker et al. (2000) J Natl Cancer Inst 92:1651-1656


Investigated <str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s<br />

A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 naturally occurring flav<strong>on</strong>oids were studied.<br />

Flav<strong>on</strong>es:<br />

apigenin<br />

chrysin<br />

luteolin<br />

Flav<strong>on</strong>ols:<br />

fisetin<br />

kaempferol<br />

morin<br />

myricetin<br />

quercetin<br />

Is<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<strong>on</strong>es:<br />

biochanin A<br />

daidzein<br />

genistein<br />

Chalc<strong>on</strong>es:<br />

phloretin<br />

phloridzin<br />

Flavan<strong>on</strong>es:<br />

hesperetin<br />

naringenin<br />

silybin<br />

silymarin<br />

epigallocatechin (EGC)<br />

epigallocatechin gallate (EGCG)<br />

naringin


Mitoxantr<strong>on</strong>e Accumulati<strong>on</strong><br />

In MCF-7 Cells<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

***<br />

***<br />

***<br />

***<br />

∗∗∗<br />

***<br />

***<br />

***<br />

***<br />

*** ***<br />

∗∗∗ ∗∗∗<br />

*<br />

*<br />

***<br />

***<br />

c<strong>on</strong>trol<br />

apigenin<br />

Biochanin A<br />

chrysin<br />

daidzein<br />

EGC<br />

EGCG<br />

fisetin<br />

genistein<br />

hesperetin<br />

kaempferol<br />

luteolin<br />

morin<br />

myricetin<br />

naringenin<br />

naringin<br />

phloretin<br />

phloridzin<br />

quercetin<br />

silybin<br />

silymarin<br />

FTC<br />

MCF-7/sensitive (-BCRP)<br />

MCF-7 MX100 (+BCRP)<br />

Mitoxantr<strong>on</strong>e: 3 µM<br />

<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>: 50 µM<br />

N = 6 or 7<br />

MX accumulati<strong>on</strong><br />

(% <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol)


Correlati<strong>on</strong> Between MX Accumulati<strong>on</strong><br />

In H460 MX20 and MCF-7 MX100 Cells<br />

Accumulti<strong>on</strong> in MCF-7 MX100<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 100 200 300 400 500<br />

Accumulati<strong>on</strong> in H460 MX20<br />

R 2 =0.74, p < 0.05


Mitoxantr<strong>on</strong>e Cytotoxicity in<br />

MCF-7 Cells<br />

MCF-7/sensitive<br />

MCF-7 MX100<br />

compounds 10 µM 50 µM 2.5 µM 5 µM 10 µM 50 µM<br />

c<strong>on</strong>trol 5.30 ± 2.22 199 ± 19.3<br />

apigenin 3.66 ± 0.52 3.44 ± 0.35 219 ± 10.0 10.5 ±7.13*** 1.73 ± 1.42***<br />

BA 2.40 ±0.27*** 1.86 ±0.35*** 107 ± 17.6*** 30.9 ± 5.18*** 9.23 ± 2.07*** 2.19 ± 1.04***<br />

chrysin 0.95 ± 0.46*** 18.8 ± 0.06*** 6.25 ± 2.13*** 3.35 ± 1.70*** 1.13 ± 1.11***<br />

genistein 6.98 ± 0.81 148 ± 23.2 29.3 ± 6.76*** 2.29 ± 0.86***<br />

kaempferol 6.10 ± 0.96 196 ± 20.9 228 ± 13.8 0.95 ± 0.19***<br />

hesperetin 88.6 ± 20.8*** 11.6 ± 0.83*** 1.23 ± 0.16***<br />

naringenin 189 ± 11.6 163 ± 29.5 1.23 ± 0.16***<br />

silymarin 99.1 ± 50.2*** 104 ± 35.5*** 53.0 ± 7.27***<br />

FTC 2.30 ± 0.29*** 1.79 ± 1.52***<br />

N = 1 experiment performed in quadruplicate in MCF-7/sensitive cells<br />

N = 3 independent experiments performed in triplicate in MCF-7 MX100 cells


Combined <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s <strong>on</strong><br />

BCRP-mediated Transport<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dose-resp<strong>on</strong>se pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> individual<br />

flav<strong>on</strong>oids and flav<strong>on</strong>oid combinati<strong>on</strong>s;<br />

Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> EC 30 , EC 50 and EC 70;<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> potential interacti<strong>on</strong>s using isobologram and<br />

Berenbaum’s interacti<strong>on</strong> index methods<br />

Equal molar c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each c<strong>on</strong>stituent is present in<br />

the combinati<strong>on</strong>s.


Dose-Resp<strong>on</strong>se Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for<br />

Single <str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s<br />

Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximal increase<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

apigenin<br />

0 2 4 6 8 10<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

biochanin A<br />

0 2 4 6 8 10<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

chrysin<br />

0 1 2 3 4 5<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximal increase<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

hesperetin<br />

0 10 20 30 40 50<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

kaempferol<br />

0 5 10 15 20 25 30<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

genistein<br />

0 10 20 30 40 50<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

naringenin<br />

silymarin<br />

Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximal increase<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 20 40 60 80 100<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 10 20 30 40 50<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)


Dose-Resp<strong>on</strong>se Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for<br />

<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g> Combinati<strong>on</strong>s<br />

Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximal increase<br />

Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximal increase<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

AB<br />

0 2 4 6 8 10<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

<strong>ABC</strong><br />

0.0 0.5 1.0 1.5 2.0<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

BC<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

<strong>ABC</strong>GK<br />

0.0 0.5 1.0 1.5<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

AB: apigenin + biochanin A<br />

BC: biochanin A + chrysin<br />

<strong>ABC</strong>: apigenin + biochanin A + chrysin<br />

<strong>ABC</strong>GK: apigenin + biochanin A + chrysin<br />

+ genistein + kaempferol<br />

<strong>ABC</strong>GKHNS: all the eight flav<strong>on</strong>oids<br />

investigated<br />

Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximal increase<br />

<strong>ABC</strong>GKHNS<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4<br />

C<strong>on</strong>centrati<strong>on</strong> (µM)<br />

The c<strong>on</strong>centrati<strong>on</strong> values indicate the c<strong>on</strong>centrati<strong>on</strong>s for<br />

each individual flav<strong>on</strong>oid in the combinati<strong>on</strong>


EC 50 , EC 30 , EC 70<br />

for Increasing MX Accumulati<strong>on</strong><br />

<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s EC 30<br />

(µM) EC 50<br />

(µM) EC 70<br />

(µM)<br />

Apigenin (A) 0.97 ± 0.38 1.66 ± 0.55 2.86 ± 0.80<br />

Biochanin A (B) 0.70 ± 0.47 1.62 ± 1.02 3.72 ± 2.24<br />

Chrysin (C) 0.24 ± 0.07 0.39 ± 0.13 0.61 ± 0.23<br />

Genistein (G) 8.91 ± 2.35 14.9 ± 2.69 25.0 ± 2.58<br />

Hesperetin (H) 7.12 ± 1.39 12.4 ± 2.21 21.8 ± 3.59<br />

Kaempferol (K) 3.79 ± 0.33 6.04 ± 0.09 9.67 ± 0.65<br />

Naringenin (N) 17.5 ± 2.36 32.0 ± 3.22 59.1 ± 10.5<br />

Silymarin (S) 10.6 ± 1.01 33.7 ± 2.78 109 ± 28.0<br />

AB 0.39 ± 0.04 0.81 ± 0.17 1.69 ± 0.55<br />

BC 0.15 ± 0.08 0.32 ± 0.16 0.69 ± 0.32<br />

<strong>ABC</strong> 0.16 ± 0.08 0.27 ± 0.01 0.48 ± 0.09<br />

<strong>ABC</strong>GK 0.14 ± 0.07 0.23 ± 0.08 0.40 ± 0.10<br />

<strong>ABC</strong>GKHNS 0.13 ± 0.06 0.20 ± 0.10 0.34 ± 0.19<br />

• N = 3 independent experiments performed in triplicate<br />

• C<strong>on</strong>centrati<strong>on</strong>s for combinati<strong>on</strong>s indicate the c<strong>on</strong>centrati<strong>on</strong> for individual flav<strong>on</strong>oid in the combinati<strong>on</strong><br />

Zhang et al. Pharm Res, 2004


Berenbaum’s Interacti<strong>on</strong> Index Method<br />

Berenbaum’s Interacti<strong>on</strong> Index<br />

D<br />

= ∑<br />

x,<br />

I<br />

EC<br />

i<br />

x,<br />

i<br />

EC x,I<br />

: the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>stituent “i” to produce x effect;<br />

D x,I<br />

: the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>stituent “i” in the combinati<strong>on</strong><br />

that will produce x effect.<br />

I = 1, additive;<br />

I < 1, synergistic<br />

I > 1, antag<strong>on</strong>istic.<br />

Interacti<strong>on</strong> index<br />

2<br />

1<br />

0<br />

30 %<br />

50 %<br />

70 %<br />

AB<br />

BC<br />

<strong>ABC</strong><br />

<strong>ABC</strong>GK<br />

<strong>ABC</strong>GKHNS<br />

<str<strong>on</strong>g>Interacti<strong>on</strong>s</str<strong>on</strong>g> were additive<br />

Zhang et al. (2004) Pharm Res, 21: 1263-73


SAR and QSAR Study<br />

Objective:<br />

To identify structural elements required for potent<br />

BCRP inhibiti<strong>on</strong>;<br />

To derive a QSAR equati<strong>on</strong> for the predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

flav<strong>on</strong>oid-BCRP interacti<strong>on</strong> activity.


C<strong>on</strong>clusi<strong>on</strong>s<br />

<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s can inhibit human BCRP with flav<strong>on</strong>oids<br />

such as chrysin, biochanin A, apigenin and<br />

benz<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<strong>on</strong>e having IC50 values in the sub- or low µM<br />

range<br />

Multiple flav<strong>on</strong>oids result in additive inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

BCRP<br />

The diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> flav<strong>on</strong>oids allow the determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> SAR and QSAR for these compounds. SAR studies<br />

indicated the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> lipophilicity, the placement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxyl groups and the 2,3 double b<strong>on</strong>d.


<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> flav<strong>on</strong>oids <strong>on</strong> topotecan<br />

pharmacokinetics in vivo


Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> GF120918 <strong>on</strong> Topotecan PK<br />

in SD Rats<br />

Animal: SD female rats (180~220 g)<br />

Dosing regimen:<br />

C<strong>on</strong>trol: vehicle: glyc<str<strong>on</strong>g>of</str<strong>on</strong>g>urol, oral<br />

Treatment: 50 mg/kg GF120918, oral<br />

3 min later, topotecan 2mg/kg, oral<br />

(in saline c<strong>on</strong>taining 5% glucose)<br />

For iv dosing: topotecan (1mg/kg)<br />

Topotecan analysis: validated HPLC method<br />

Topotecan plasma<br />

c<strong>on</strong>centrati<strong>on</strong> (ng/ml)<br />

1000<br />

c<strong>on</strong>trol<br />

GF120918 (50mg/kg)<br />

iv topotecan (1mg/kg)<br />

100<br />

10<br />

1<br />

0 200 400 600<br />

Time (min)<br />

Parameters<br />

AUC 0-360<br />

(ng/ml•min)<br />

AUC 0-∞<br />

(ng/ml·min)<br />

Tmax (min)<br />

Cmax (ng/ml)<br />

terminal T 1/2<br />

(min)<br />

F (%)<br />

C<strong>on</strong>trol (n=7)<br />

1.74 ± 0.86 (×10 4 )<br />

1.80 ± 0.89 (×10 4 )<br />

52 ± 85.3<br />

86.4 ± 42.9<br />

127 ± 20.0<br />

29.7± 14.8<br />

GF120918 (50mg/kg) (n=4)<br />

7.65 ± 3.78 (×10 4 )**<br />

7.91 ± 356 (×10 4 )**<br />

75 ± 30<br />

257 ± 154*<br />

167 ± 65.1<br />

130 ± 58.8**


Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Chrysin <strong>on</strong> Topotecan PK<br />

in SD Rats<br />

EC 50<br />

in MCF-7 MX100: 0.39± 0.13 µM<br />

substrate: mitoxantr<strong>on</strong>e<br />

Animal: SD female rats (180~220 g)<br />

Dosing regimen:<br />

C<strong>on</strong>trol: vehicle: glyc<str<strong>on</strong>g>of</str<strong>on</strong>g>urol, oral<br />

Treatment: 5 or 50 mg/kg chrysin, oral<br />

3 min later, topotecan 2mg/kg, oral<br />

(in saline c<strong>on</strong>taining 5% glucose)<br />

Topotecan plasma<br />

c<strong>on</strong>centrati<strong>on</strong> (ng/ml)<br />

100<br />

10<br />

1<br />

c<strong>on</strong>trol<br />

chrysin (5mg/kg)<br />

chrysin (50mg/kg)<br />

0 200 400 600<br />

Time (min)<br />

Parameters C<strong>on</strong>trol (n=7) Chrysin (5mg/kg) (n=3) chrysin (50mg/kg) (n=6)<br />

AUC 0-360<br />

(ng/ml•min) 1.74 ± 0.86 (×10 4 ) 1.29 ± 0.24 (×10 4 ) 0.88 ± 0.83 (×10 4 )<br />

AUC 0-∞<br />

(ng/ml·min) 1.80 ± 0.89 (×10 4 ) 1.34 ± 0.27 (×10 4 ) 0.93 ± 0.85 (×10 4 )<br />

Tmax (min) 52 ± 85.3 35.0 ± 22.9 75.0 ± 82.2<br />

Cmax (ng/ml) 86.4 ± 42.9 68.3 ±32.2 36.0 ± 37.9<br />

terminal T1/2 (min) 127 ± 20.0 139 ± 40.4 173 ± 47.7<br />

F (%) 29.7± 14.8 22.1 ± 4.47 15.3 ± 14.1


Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Chrysin <strong>on</strong> Topotecan PK<br />

in mdr1a/1b (-/-) mice<br />

Animal: mdr1a/1b (-/-) mice (23~26.5 g)<br />

Dosing regimen:<br />

C<strong>on</strong>trol: vehicle: olive oil, oral<br />

Treatment: 50 mg/kg chrysin, oral<br />

3 min later, topotecan 2mg/kg, oral<br />

(in saline c<strong>on</strong>taining 5% glucose)<br />

Topotecan plasma<br />

c<strong>on</strong>centrati<strong>on</strong> (ng/ml)<br />

100 c<strong>on</strong>trol<br />

50 mg/kg chrysin<br />

10<br />

1<br />

0.1<br />

0 100 200 300 400<br />

Time (min)<br />

Parameters<br />

C<strong>on</strong>trol (n=4)<br />

Chrysin (50mg/kg)<br />

(n=4)<br />

AUC 0-360<br />

(ng/ml·min) 4.56 ± 3.95 (×10 3 ) 4.17 ± 2.93 (×10 3 )<br />

AUC 0-∞<br />

(ng/ml·min) 5.01 ± 3.96 (×10 3 ) 4.65 ± 2.98 (×10 3 )<br />

Tmax (min) 45.0 ± 46.4 33.7 ± 18.9<br />

Cmax (ng/ml) 45.2 ± 47.3 50.8 ± 45.8<br />

terminal T1/2 (min) 63.6 ± 42.7 90.6 ± 20.5


Possible Reas<strong>on</strong>s for the In vitro<br />

and In vivo Discrepancy<br />

Metabolism<br />

Substrate dependence<br />

Species difference<br />

Inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> topotecan uptake transporter


Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> 7,8-benz<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<strong>on</strong>e (BF) <strong>on</strong><br />

Topotecan PK in SD Rats<br />

EC 50<br />

in MCF-7 MX100: 0.07± 0.02 µM<br />

substrate: mitoxantr<strong>on</strong>e<br />

Animal: SD female rats (180~220 g)<br />

Dosing regimen:<br />

C<strong>on</strong>trol: vehicle: glyc<str<strong>on</strong>g>of</str<strong>on</strong>g>urol, oral<br />

Treatment: 10 or 50 mg/kg BNF, oral<br />

3 min later, topotecan 2mg/kg, oral<br />

(in saline c<strong>on</strong>taining 5% glucose)<br />

Plasma c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> topotecan (ng/ml)<br />

100<br />

10<br />

1<br />

c<strong>on</strong>trol<br />

Benz<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<strong>on</strong>e (10 mg/kg)<br />

Benz<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<strong>on</strong>e (50 mg/kg)<br />

0 200 400 600<br />

Time (min)<br />

Parameters<br />

C<strong>on</strong>trol (n=7)<br />

benz<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<strong>on</strong>e (10 mg/kg)<br />

(n=9)<br />

benz<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<strong>on</strong>e (50mg/kg)<br />

(n=8)<br />

AUC 0-360<br />

(ng/ml·min) 1.74 ± 0.86 (×10 4 ) 2.04 ± 0.48 (×10 4 ) 2.50 ± 1.14 (×10 4 )<br />

AUC 0-∞<br />

(ng/ml·min) 1.80 ± 0.89 (×10 4 ) 2.15 ± 0.43 (×10 4 ) 2.57 ± 1.15 (×10 4 )<br />

Tmax (min) 52.0 ± 85.3 82.4 ± 91.4 107 ± 91.2<br />

Cmax (ng/ml) 86.4 ± 42.9 98.0 ± 45.7 101 ± 50.9<br />

terminal T1/2 (min) 127 ± 20.0 150 ± 63.6 127 ± 37.3<br />

F (%) 29.7± 14.8 35.5 ± 7.33 42.5 ± 7.09


Possible Reas<strong>on</strong>s for the In vitro<br />

and In vivo Discrepancy<br />

Metabolism<br />

Substrate dependence<br />

Species difference<br />

Inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> topotecan uptake transporter


Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s <strong>on</strong> Topotecan<br />

Accumulati<strong>on</strong> in MCF-7 cells<br />

Accumulati<strong>on</strong> time: 10 min;<br />

Topotecan c<strong>on</strong>centrati<strong>on</strong>: 5 µM;<br />

Cells were harvested and<br />

s<strong>on</strong>icated<br />

Topotecan in cell lysate was<br />

assayed by HPLC<br />

Accumulati<strong>on</strong> were normalized<br />

by protein c<strong>on</strong>tent<br />

N = 4<br />

Topotecan accumulati<strong>on</strong><br />

(% <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

***<br />

***<br />

c<strong>on</strong>trol<br />

10 µM PSC833<br />

10 µM FTC<br />

10 µM PSC833 + 10 µM FTC<br />

***<br />

***<br />

50 µM chrysin<br />

5 µM BF<br />

Chrysin and BF can inhibit BCRP-mediated<br />

efflux <str<strong>on</strong>g>of</str<strong>on</strong>g> topotecan<br />

MCF-7 MX100<br />

MCF-7/sensitive


Possible Reas<strong>on</strong>s for the In vitro<br />

and In vivo Discrepancy<br />

Metabolism<br />

Substrate dependence<br />

Species difference<br />

Inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> topotecan uptake transporter


Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s <strong>on</strong> Topotecan<br />

Accumulati<strong>on</strong> in MDCK-bcrp1 Cells<br />

Accumulati<strong>on</strong> time: 10 min;<br />

Topotecan c<strong>on</strong>centrati<strong>on</strong>: 5 µM;<br />

Cells were harvested and<br />

s<strong>on</strong>icated<br />

Topotecan in cell lysate was<br />

assayed by HPLC<br />

Accumulati<strong>on</strong> were normalized<br />

by protein c<strong>on</strong>tent<br />

N = 4<br />

Chrysin and BF may <strong>on</strong>ly have weak<br />

inhibiti<strong>on</strong> activity <strong>on</strong> mouse bcrp1<br />

Topotecan accumulati<strong>on</strong><br />

(% <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol)<br />

500<br />

***<br />

***<br />

400<br />

***<br />

300<br />

200<br />

100<br />

0<br />

c<strong>on</strong>trol<br />

PSC833 (10 µM)<br />

GF120918 (10 µM)<br />

FTC (10 µM)<br />

PSC833 (10 µM)+FTC (10 µM)<br />

chrysin (50 µM)<br />

BF (5 µM)<br />

MDCK-mock<br />

MDCK-bcrp1<br />

*


Summary<br />

Chrysin and BF did not change topotecan PK in rats or mice<br />

Tentative explanati<strong>on</strong> for the discrepancy: species difference<br />

with respect to inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> topotecan<br />

(species difference not seen with mitoxantr<strong>on</strong>e)<br />

Other possibilities could not be excluded, such as involvement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> other transporters


<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g> <str<strong>on</strong>g>Interacti<strong>on</strong>s</str<strong>on</strong>g> with <strong>ABC</strong><br />

Transporters<br />

‣<str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s are widely-present in food and herbal products.<br />

‣Inhibitory interacti<strong>on</strong>s occur with P-glycoprotein, MRP1 and<br />

BCRP. These interacti<strong>on</strong>s may be beneficial for the reversal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

multidrug resistance in cancer. <str<strong>on</strong>g>Flav<strong>on</strong>oid</str<strong>on</strong>g>s may also increase the<br />

bioavailability and decrease the clearance <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs.<br />

‣C<strong>on</strong>centrati<strong>on</strong>s achievable in vivo in the gastrointestinal tract are<br />

likely high enough to result in significant interacti<strong>on</strong>s with <strong>ABC</strong><br />

transporters. This is particularly true with respect to flav<strong>on</strong>oid<br />

c<strong>on</strong>centrati<strong>on</strong>s after herbal medicines.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!