16.10.2014 Views

Trigonometry Handout

Trigonometry Handout

Trigonometry Handout

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Trigonometry</strong><br />

Table of Contents:<br />

Background Information………………………………………2<br />

Pythagorean Theorem…………………………………2<br />

Similar Triangles………………………………………2<br />

Angles…………...………………………………....………….3<br />

Standard Position……………………………………...3<br />

Measurement of an Angle……………………………..3<br />

Converting Measures………………………………….4<br />

Angles and Arc Length………………………………..4<br />

The Trigonometric Functions………………………………....5<br />

Right Triangles and Acute Angles…………………….5<br />

General Angles………………………………………...6<br />

Conventional Notation…………………………………6<br />

Common Angles……………………………………….7<br />

Signs……………………………………………………7<br />

The Unit Circle…………………………………………………8<br />

Graphs of Trigonometric Functions……………………………9<br />

Inverse Trigonometric Functions……………………………...11<br />

Trigonometric Identities……………………………………….15<br />

Consequences of Definition…………………………...15<br />

Fundamental Identities…………………………………15<br />

Addition Identities……………………………………..16<br />

Subtraction Identities…………………………………..16<br />

Double Angle Identities………………………….…….17<br />

Half Angle Identities…………………………………..17<br />

Product Identities………………………………………17<br />

Trigonometric Problems……………………………………….17<br />

The Law of Sines………………………………………………19<br />

The Law of Cosines……………………………………………19<br />

Extra Problems…………………………………………………21<br />

Answers to Extra Problems…………………………………….23<br />

Page 1 of 23


<strong>Trigonometry</strong><br />

<strong>Trigonometry</strong> is the study of how the sides and angles of a triangle relate to each other.<br />

Background Information:<br />

1) The Pythagorean Theorem:<br />

Let Δ ABC be a right triangle (See Figure 1)<br />

B<br />

Let the length of AB = c (hypotenuse)<br />

Let the length of BC = a (leg)<br />

c<br />

a<br />

Let the length of AC = b (leg)<br />

C<br />

b<br />

Figure 1<br />

A<br />

2<br />

2<br />

2<br />

Then a + b = c . In other words, the sum of the squares of the legs of a right triangle<br />

equals the square of the hypotenuse.<br />

2) Similar Triangles<br />

Definition: Two triangles are similar if corresponding angles are congruent (of equal<br />

measure).<br />

For a triangle, it is enough for two corresponding angles to be congruent, because<br />

that would force the third set to be congruent.<br />

It is also enough for the corresponding sides to be proportional:<br />

a<br />

B<br />

b<br />

d<br />

E<br />

e<br />

Figure 2<br />

A<br />

c<br />

C<br />

D<br />

f<br />

F<br />

If<br />

Δ ABC is similar to Δ DEF , then ∠ A ≅ ∠D, ∠B<br />

≅ ∠E,<br />

∠C<br />

≅ ∠F<br />

and<br />

a<br />

d<br />

=<br />

b<br />

e<br />

=<br />

c<br />

f<br />

From this, we also obtain that the ratio of any two sides of one triangle is equal to the<br />

ratio of the corresponding sides of the similar triangle.<br />

a d<br />

For example: =<br />

b e<br />

Page 2 of 23


<strong>Trigonometry</strong><br />

Angles:<br />

1) Standard Position:<br />

Angle<br />

Terminal Side<br />

Figure 3<br />

Vertex<br />

Initial Side<br />

The Standard Position of an angle occurs when the vertex of the angle is placed at the<br />

origin of a coordinate system and its initial side is on the positive x-axis.<br />

Angles in<br />

Standard Position<br />

θ<br />

θ<br />

Figure 4 Figure 5<br />

- A positive angle is obtained by rotating the initial side counterclockwise until it<br />

coincides with the terminal side (Figure 4).<br />

- A negative angle is obtained by rotating the initial side clockwise until it coincides with<br />

the terminal side (Figure 5).<br />

2) Measurement of Angles:<br />

Angles can be measured in degrees or radians (abbreviated rad).<br />

A complete revolution is 360 or 2 π rad.<br />

o<br />

Thus: π rad = 180<br />

o<br />

o<br />

⎛180<br />

⎞ o o π<br />

⇒ 1 rad = ⎜ ⎟ ≈ 57.3 or 1 = rad ≅ 0. 017<br />

⎝ π ⎠<br />

180<br />

rad<br />

Page 3 of 23


<strong>Trigonometry</strong><br />

3) Converting from degrees to radians and from radians to degrees<br />

Example 1:<br />

o<br />

a) Find the radian measure of 90<br />

o ⎛ π ⎞<br />

o π<br />

Solution: 90( 1 ) = 90⎜<br />

⎟rad<br />

⇒ 90 = rad<br />

⎝180<br />

⎠<br />

2<br />

7π<br />

b) Express rad<br />

6<br />

in degrees<br />

7π<br />

1<br />

6<br />

Solution: ( )<br />

o<br />

rad<br />

o<br />

7π<br />

⎛180<br />

⎞ 7π<br />

= ⎜ ⎟ ⇒ rad = 210<br />

6 ⎝ π ⎠ 6<br />

The following table gives some conversions between radians and degrees of some<br />

common angles:<br />

Degrees 0 30 45 60 90 120 135 150 180 270 360<br />

Radians 0 π π π π 2π 3π 5π π 3π 2π<br />

6 4 3 2 3 4 6 2<br />

Figure 6 shows some angles in standard position:<br />

θ<br />

θ<br />

θ<br />

θ<br />

π<br />

θ =<br />

4<br />

θ = −<br />

7π<br />

4<br />

Figure 6<br />

9π<br />

θ =<br />

4<br />

5π<br />

θ = −<br />

4<br />

4) Angles and Arc Length:<br />

Let O be a circle with radius r (Figure 7)<br />

Let θ be a central angle.<br />

r<br />

Let a be the length of the arc subtended by θ<br />

a<br />

O θ<br />

Figure 7<br />

Page 4 of 23


<strong>Trigonometry</strong><br />

The length of the arc is proportional to the measure of the angle and since the entire circle<br />

a θ<br />

has circumference 2 πr<br />

and central angle measure 2π<br />

⇒ =<br />

2π r 2π<br />

a a<br />

⇒ a = rθ , r = , θ =<br />

θ r<br />

Note: These are only valid when θ is measured in radians.<br />

Example 2:<br />

a) If the radius of a circle is 7 cm, what angle is subtended by an arc of 21 cm?<br />

a 21<br />

Solution: θ = = = 3 rad<br />

r 7<br />

b) A circle has a radius of 4 cm. What is the length of the arc subtended by an<br />

o<br />

angle of 90 ?<br />

o π<br />

Solution: Step 1: Angle must be in radians 90 = rad<br />

2<br />

π<br />

Step 2: a = rθ = 4 ⋅ = 2π<br />

cm<br />

2<br />

The Trigonometric Functions:<br />

1) Right Triangles and Acute Angles<br />

⎛ π ⎞<br />

Let θ be an acute angle ⎜0<br />

≤ θ < ⎟<br />

⎝ 2 ⎠<br />

hypotenuse The trigonometric functions are defined as ratios of<br />

opposite<br />

lengths of sides of a right triangle<br />

θ<br />

adjacent<br />

Note: Any right triangle with angle θ is similar to any other right triangle with angle θ .<br />

Since the ratios of sides in similar triangles are equal, then the trig functions will remain<br />

the same regardless of the lengths of the sides.<br />

sinθ<br />

=<br />

cosθ<br />

=<br />

opp<br />

hyp<br />

adj<br />

hyp<br />

cscθ<br />

=<br />

secθ<br />

=<br />

hyp<br />

opp<br />

hyp<br />

adj<br />

A tool to remember SOHCAHTOA<br />

tanθ<br />

=<br />

opp<br />

adj<br />

cotθ<br />

=<br />

adj<br />

opp<br />

π<br />

NOTE: These ratios only apply if 0 ≤ θ < .<br />

2<br />

Page 5 of 23


<strong>Trigonometry</strong><br />

2) General Angles<br />

Let θ be any angle in standard position<br />

Let P ( x,<br />

y)<br />

be any point on the terminal side of θ<br />

Let r be the distance from the origin to P (See Figure 9)<br />

P ( x,<br />

y)<br />

Then,<br />

sinθ<br />

=<br />

y<br />

r<br />

cscθ<br />

=<br />

r<br />

y<br />

r<br />

θ<br />

cosθ<br />

=<br />

x<br />

r<br />

secθ<br />

=<br />

r<br />

x<br />

O<br />

Figure 9<br />

tanθ<br />

=<br />

y<br />

x<br />

cotθ<br />

=<br />

x<br />

y<br />

Note: If y=0, then csc θ and cot θ are not defined. If x=0, then tan θ and sec θ are not<br />

defined. These definitions are consistent with the previous definition if θ is an acute<br />

angle.<br />

3) Conventional Notation<br />

If θ is a number, then by convention<br />

of the angle whose radian measure is θ .<br />

≈ where as sin( 5 ) ≈ 0. 0876<br />

So, sin5<br />

−9.<br />

589<br />

o<br />

sin θ (or any trig function) means the sine<br />

When using your calculator to compute trigonometric functions, you need to make sure<br />

that your calculator is set to the correct mode. If you are computing radian measures, you<br />

need to have your calculator in radians, and in degrees if you are computing degree<br />

measures.<br />

4) Some Common Angles:<br />

Here is a table of common angles and the trig functions computed at them.<br />

θ 0<br />

sin θ 0<br />

cos θ 1<br />

tan θ 0<br />

π<br />

6<br />

π<br />

4<br />

π<br />

3<br />

π<br />

2<br />

1<br />

3<br />

2 22<br />

2<br />

1<br />

1<br />

23<br />

22<br />

2<br />

0<br />

3 1 3 Und.<br />

3<br />

Page 6 of 23


<strong>Trigonometry</strong><br />

5) Signs<br />

The signs of the trig functions for angles in each quadrant can be remembered by<br />

the following saying:<br />

All Students Take Calculus<br />

Quad I: All ratios are positive<br />

S<br />

A<br />

Quad II: Sine and cosecant are positive<br />

Rest are negative<br />

Quad III: Tangent and cotangent are positive<br />

Rest are negative<br />

T<br />

C<br />

Quad IV: Cosine and secant are positive<br />

Rest are negative<br />

Figure 10<br />

3π<br />

Example 3: Let P = (−1,1 ) be a point on the terminal side of the angle θ = . Find the<br />

4<br />

exact trigonometric ratios for θ .<br />

Solution: Since P = (−1,1 ) is a point on the terminal side of the angle<br />

2 2<br />

( −1)<br />

+ (1) = 2 ⇒ r = 2<br />

1<br />

-1<br />

P<br />

θ<br />

sinθ<br />

=<br />

1<br />

2<br />

=<br />

2<br />

2<br />

cscθ<br />

=<br />

2<br />

1<br />

=<br />

2<br />

cosθ<br />

=<br />

−1<br />

2<br />

=<br />

−<br />

2<br />

2<br />

secθ<br />

=<br />

2<br />

−1<br />

= −<br />

2<br />

tanθ<br />

=<br />

1<br />

−1<br />

= −1<br />

−1<br />

cotθ<br />

= = −1<br />

1<br />

Page 7 of 23


<strong>Trigonometry</strong><br />

π<br />

Note: You could have also formed the right triangle with θ = and made the appropriate<br />

4<br />

sign changes for the quadrant you were in.<br />

Example 4: Let sin − 5<br />

3π<br />

θ = where π < θ < . Find the values of the other trigonometric<br />

6<br />

2<br />

functions.<br />

Solution:<br />

5<br />

6<br />

x =<br />

11<br />

θ<br />

We know that θ is in the 3 rd Quadrant.<br />

Thus, only tangent and cotangent have<br />

positive signs. Every thing else will be<br />

negative. For now we will just drop the<br />

signs to form a right triangle with hyp = 6<br />

and opp = 5 since sine is -5/6<br />

By the Pythagorean Theorem, we know that<br />

2 2 2 2<br />

2<br />

x + 5 = 6 ⇒ x + 25 = 36 ⇒ x = 11 ⇒ x =<br />

11<br />

So, we get the following ratios for the other 5 trig functions<br />

11 5<br />

6<br />

6<br />

cos θ = − tanθ<br />

= cscθ<br />

= − secθ<br />

= − cotθ<br />

=<br />

6<br />

11 5<br />

11<br />

11<br />

5<br />

The Unit Circle:<br />

The unit circle is a circle centered at the origin with radius 1, hence the name unit<br />

circle. It allows us to easily find the values of sine and cosine, and thus the rest of the<br />

trigonometric functions quickly and easily. There is a picture of the unit circle on the<br />

following page (Figure 11). The x-coordinates are the values of cosine and the y-<br />

coordinates are the values of sine.<br />

Page 8 of 23


<strong>Trigonometry</strong><br />

Figure 11: The Unit Circle<br />

Graphs of the Trigonometric Functions:<br />

1) f ( x)<br />

= sin x<br />

Domain of f: All real numbers<br />

x-intercepts: Let y = 0 , sin x = 0 ⇒ x = nπ<br />

where n is an integer.<br />

y-intercept: Let x = 0 , sin 0 = 0<br />

π<br />

−<br />

2<br />

π<br />

2<br />

Figure 12:<br />

f ( x)<br />

= sin x<br />

Page 9 of 23


<strong>Trigonometry</strong><br />

Range of f: −1 ≤ sin x ≤ 1<br />

The function is odd (symmetric with respect to the origin)<br />

The period is 2 π<br />

2) f ( x)<br />

= cos x<br />

Domain of f: All real numbers<br />

nπ<br />

x-intercepts: Let y = 0 , cos x = 0 ⇒ x = where n is an odd integer<br />

2<br />

y-intercept: Let x = 0 , cos 0 = 1<br />

π<br />

−<br />

2<br />

π<br />

2<br />

Figure 13: f ( x)<br />

= cos x<br />

Range of f: −1 ≤ cos x ≤ 1<br />

The function is even (symmetric with respect to y-axis)<br />

The period is 2 π<br />

The graphs of the remaining trigonometric functions are as follows. It is left to the reader<br />

to determine the characteristics of the graphs. (x-scale is 2 π units)<br />

Figure 14:<br />

f ( x)<br />

= tan x<br />

Figure 15:<br />

f ( x)<br />

= csc x<br />

Figure 16: f ( x)<br />

= sec x<br />

Page 10 of 23


<strong>Trigonometry</strong><br />

Figure 17:<br />

f ( x)<br />

= cot x<br />

Inverse Trigonometric Functions<br />

The trigonometric functions allow us to find the ratio of sides of a triangle if we<br />

know a given angle. What happens if we know the ratio and want to find the angle?<br />

1<br />

For instance, we know that sin θ = and we want to find θ<br />

2<br />

This is similar to when you want to know the value of x when x<br />

2 = 5 . In that<br />

case, you use an inverse function – namely, the square root function – which undoes the<br />

operation of the squaring function. In the same way we want to build an inverse<br />

trigonometric function which undoes the operation of the trigonometric function.<br />

Now, in order for a function to have an inverse function, the original function<br />

must pass the Horizontal Line Test. This means that any horizontal line drawn intersects<br />

the graph in at most one place. This is a problem for the trigonometric functions since<br />

they are periodic. In order to get inverse functions, we must restrict our domains so that<br />

we are able to define a unique inverse.<br />

We must meet the following criteria for the trig functions to have an inverse<br />

function:<br />

1. Each value of the range is taken on only once so that we can pass the<br />

horizontal line test.<br />

2. The range of the function with its restricted domain is the same as the range of<br />

the original function.<br />

π<br />

3. The domain includes the most commonly used numbers (or angles) 0 < x <<br />

2<br />

1) Inverse Sine<br />

The range of sine is −1 ≤ y ≤ 1, so this will become the domain of our inverse<br />

sine function. Now we need to find our restricted domain. If we look at the graph of<br />

sine, we see that the range is satisfied and we pass the horizontal line test if we take only<br />

π π<br />

the values − ≤ x ≤ . This will become the range of our inverse sine function.<br />

2 2<br />

We now define our inverse sine function as follows:<br />

−1<br />

If −1 ≤ x ≤ 1, then f ( x)<br />

= sin x = arcsin x if and only if sin f ( x)<br />

= x<br />

π<br />

π<br />

and − ≤ f ( x)<br />

≤ .<br />

2 2<br />

Page 11 of 23


<strong>Trigonometry</strong><br />

π<br />

2<br />

Figure 18:<br />

f ( x)<br />

= sin<br />

−1<br />

x<br />

2) Inverse Cosine<br />

−1<br />

If −1 ≤ x ≤ 1, then f ( x)<br />

= cos x = arccos x<br />

0 ≤ f ( x)<br />

≤ π .<br />

if and only if<br />

cos f ( x)<br />

= x and<br />

π<br />

2<br />

Figure 19:<br />

f ( x)<br />

= cos<br />

−1<br />

x<br />

3) Inverse Tangent<br />

If x is any real number, then<br />

π<br />

π<br />

and − ≤ f ( x)<br />

≤ .<br />

2 2<br />

f ( x)<br />

= tan<br />

−1<br />

x = arctan x<br />

if and only if<br />

tan f ( x)<br />

= x<br />

π<br />

2<br />

Figure 20:<br />

f ( x)<br />

= tan<br />

−1<br />

x<br />

Page 12 of 23


<strong>Trigonometry</strong><br />

4) Inverse Cosecant<br />

If x ≥ 1 , then =<br />

− 1<br />

f ( x)<br />

csc x = arc csc x if and only if csc f ( x)<br />

= x and<br />

−<br />

f , f ( x)<br />

≠ 0<br />

π<br />

≤ ( x)<br />

≤<br />

π<br />

2 2<br />

π<br />

2<br />

Figure 21:<br />

f ( x)<br />

= csc<br />

−1<br />

x<br />

5) Inverse Secant<br />

If x ≥ 1 , then =<br />

− 1<br />

f ( x)<br />

sec x = arcsec x if and only if sec f ( x)<br />

= x and<br />

0 ≤ f ( x)<br />

≤ π , f x)<br />

≠<br />

2<br />

(<br />

π<br />

π<br />

2<br />

Figure 22:<br />

f ( x)<br />

= sec<br />

−1<br />

x<br />

6) Inverse Cotangent<br />

If x is any real number, then =<br />

− 1<br />

f ( x)<br />

cot x = arccot x if and only if cot f ( x)<br />

= x<br />

and 0 < f ( x)<br />

< π<br />

π<br />

2<br />

Figure 23:<br />

f ( x)<br />

= cot<br />

−1<br />

x<br />

Page 13 of 23


<strong>Trigonometry</strong><br />

Now, back to our problem, If<br />

1<br />

sin θ = , then what is θ ?<br />

2<br />

One way to come up with the solution is to look at the unit circle and find out<br />

which points have a y-coordinate of 1 π<br />

2<br />

. You will see that this occurs when θ = and<br />

6<br />

5π<br />

when θ = . Since sine is periodic, we know that we have infinite solutions to our<br />

6<br />

problem, namely θ = π + 2 nπ<br />

and θ 5 π<br />

= + 2n<br />

π .<br />

6 6<br />

1<br />

Now, say instead that we wanted to find (<br />

1<br />

sin − )<br />

. This will only give us one answer, but<br />

2<br />

1<br />

which one will it be? Well, by our restrictions, we need to find θ such that sin θ = and<br />

2<br />

π π<br />

−1<br />

− ≤ θ ≤ . Looking at all of our possible solutions, only one works, (<br />

1<br />

)<br />

π<br />

θ = sin =<br />

2 2<br />

2 6<br />

In general, there are infinitely many solutions to problems where you know the value of<br />

the trigonometric function but not the angle. Using inverse trigonometric functions gives<br />

us what is called the principal value of the relation. The principal value of the relation is<br />

the angle that is a solution to the problem and that has the smallest absolute value. If<br />

positive and negative values both satisfy, then we use the positive angle.<br />

Example: Find tan −1<br />

1<br />

π π<br />

Solution: We want to find x such that tan x = 1 and − ≤ x ≤ . If we use the<br />

2 2<br />

5<br />

unit circle, tan x = 1 when cos x = sin x , which occurs when x =<br />

π , π . Only one of these<br />

4 4<br />

−<br />

values is in our interval, so 1 π<br />

tan 1 = .<br />

4<br />

.<br />

Trigonometric Identities:<br />

1) Consequences of the Definitions<br />

1<br />

1<br />

1) csc θ = 2) sec θ = 3)<br />

sinθ<br />

cosθ<br />

cot θ =<br />

1<br />

tanθ<br />

4)<br />

sinθ<br />

tan θ = 5)<br />

cosθ<br />

cosθ<br />

cot θ =<br />

sinθ<br />

2) Some fundamental identities<br />

2 2<br />

6) cos θ + sin θ = 1<br />

Proof: Refer back to Figure 9. The distance formula gives that<br />

2 2 2<br />

2 2 ⎛ x ⎞ ⎛ y ⎞ x y x + y r<br />

x + y = r . Thus, cos θ + sin θ = ⎜ ⎟ + ⎜ ⎟ = + = = = 1<br />

2 2 2 2<br />

⎝ r ⎠ ⎝ r ⎠ r r r r<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

Page 14 of 23


<strong>Trigonometry</strong><br />

2<br />

2<br />

7) tan θ + 1 = sec θ<br />

2 2<br />

Proof: Take sin θ + cos θ = 1 and divide by cos<br />

2 θ<br />

2<br />

2<br />

sin θ cos θ 1<br />

2<br />

2<br />

+ = ⇒ tan θ + 1 = sec θ<br />

2 2<br />

2<br />

cos θ cos θ cos θ<br />

2<br />

2<br />

8) 1 + cot θ = csc θ<br />

2 2<br />

Proof: Take sin θ + cos θ = 1 and divide by sin<br />

2 θ<br />

9a) sin( − θ ) = −sinθ<br />

(sine is an odd function)<br />

9b) cos( − θ ) = cosθ<br />

(cosine is an even function)<br />

Proof: You can refer to figures 12 and 13, or<br />

By definition:<br />

(x, y)<br />

y<br />

sinθ<br />

=<br />

r<br />

θ<br />

− y<br />

sin( −θ<br />

) = = −sinθ<br />

− θ<br />

r<br />

x<br />

cosθ<br />

=<br />

r<br />

(x, -y)<br />

cos( −θ<br />

) =<br />

10a) sin( θ + 2π<br />

) = sinθ<br />

10b) cos( θ + 2π<br />

) = cosθ<br />

True because θ + 2 π = θ<br />

This implies that sine and cosine are<br />

x<br />

r<br />

= cosθ<br />

2π<br />

− periodic<br />

3) Addition Formulas<br />

11a) sin( x + y)<br />

= sin xcos<br />

y + sin y cos x<br />

11b) cos( x + y)<br />

= cos xcos<br />

y − sin xsin<br />

y<br />

Proof: Refer to Figure 25<br />

B<br />

y<br />

l(<br />

OB)<br />

= 1<br />

l(<br />

AE)<br />

= d<br />

l(<br />

BA)<br />

= a<br />

l(<br />

DA)<br />

= c<br />

l(<br />

OC)<br />

= f<br />

l(<br />

DC)<br />

= d<br />

l(<br />

BD)<br />

= g<br />

l(<br />

OA)<br />

= b<br />

l(<br />

BC)<br />

= e<br />

l(<br />

CE)<br />

= c<br />

O<br />

x<br />

y<br />

D<br />

F<br />

A<br />

C<br />

E<br />

∠ OAD ∠AEC<br />

∠OCB<br />

∠BDC<br />

are right angles<br />

m∠AFO<br />

= 90 − y = m∠DFC<br />

m∠DBC<br />

= 90 − m∠DFC<br />

= 90 − (90 − y)<br />

=<br />

y<br />

Figure 25(Not to Scale)<br />

Page 15 of 23


<strong>Trigonometry</strong><br />

From<br />

From<br />

From<br />

From<br />

Δ AOB , we get that sin( x + y)<br />

= a and cos( x + y)<br />

= b<br />

Δ OCB , we get that sin x = e and cos x = f<br />

c<br />

Δ OCE , we get that sin y = ⇒ c = cos xsin<br />

y and<br />

f<br />

b + d<br />

cos y = ⇒ d = cos x cos y − cos( x + y)<br />

f<br />

d<br />

g<br />

Δ BDC , we get that sin y = ⇒ d = sin xsin<br />

y and cos y = ⇒ g = cos y sin x<br />

e<br />

e<br />

Putting everything together, we get that<br />

d = sin xsin<br />

y = cos x cos y − cos( x + y)<br />

⇒ cos( x + y)<br />

= cos x cos y − sin xsin<br />

y<br />

And<br />

Since a = g + c , then sin( x + y)<br />

= sin x cos y + sin y cos x<br />

4) Subtraction Formulas<br />

12a) sin( x − y)<br />

= sin x cos y − sin y cos x<br />

12b) cos( x − y)<br />

= cos x cos y + sin xsin<br />

y<br />

Proof: Replace y by –y in Addition Formulas.<br />

5) Addition and Subtraction with Tangent<br />

tan x + tan y<br />

13a) tan( x + y)<br />

=<br />

1−<br />

tan x tan y<br />

tan x − tan y<br />

13b) tan( x − y)<br />

=<br />

1+<br />

tan x tan y<br />

sin( x + y)<br />

sin x cos y + cos xsin<br />

y<br />

Proof of 13a: =<br />

Left-hand side is<br />

cos( x + y)<br />

cos x cos y − sin xsin<br />

y<br />

tan( x + y) . Divide the top and bottom of the right-hand side by cos x cos y to get<br />

sin x cos y cos xsin<br />

y<br />

+<br />

cos x cos y cos x cos y tan x + tan y<br />

tan( x + y)<br />

=<br />

=<br />

cos x cos y sin xsin<br />

y 1−<br />

tan x tan y<br />

−<br />

cos x cos y cos x cos y<br />

6) Double Angle Formulas<br />

14a) sin 2x<br />

= 2sin x cos x<br />

2 2<br />

14b) cos2x<br />

= cos x − sin x<br />

Proof of 14a) sin 2x<br />

= sin( x + x)<br />

= sin x cos x + sin x cos x = 2sin x cos x<br />

Page 16 of 23


<strong>Trigonometry</strong><br />

7) Alternate forms of Double Angle Formulas for Cosine<br />

2<br />

15a) cos2x<br />

= 2cos x −1<br />

2<br />

15b) cos2x<br />

= 1−<br />

2sin x<br />

2 2<br />

Proof of 15a: Use sin θ + cos θ = 1<br />

2 2 2<br />

2<br />

2<br />

cos2x<br />

= cos x − sin x = cos x − (1 − cos x)<br />

= 2cos x −1<br />

8) Half Angle Formulas<br />

1 cos2<br />

16a) cos 2 + x<br />

x =<br />

2<br />

1 cos2<br />

16b) sin 2 − x<br />

x =<br />

2<br />

Proof of 16a:<br />

cos2x<br />

= 2cos<br />

cos2x<br />

+ 1 = 2cos<br />

cos<br />

2<br />

2<br />

x −1<br />

2<br />

1+<br />

cos2x<br />

x =<br />

2<br />

9) Product Formulas<br />

17a) sin x cos y =<br />

1 [ sin( x + y)<br />

+ sin( x − y )]<br />

2<br />

17b) cos x cos y =<br />

1 [ cos( x + y)<br />

+ cos( x − y )]<br />

2<br />

17c) sin x sin y =<br />

1 [ cos( x − y)<br />

− cos( x + y )]<br />

2<br />

Proof of 17a:<br />

1<br />

1<br />

sin( x + y)<br />

+ sin( x − y)<br />

= sin xcos<br />

y + sin y cos x + sin x cos y − sin y cos x<br />

2<br />

2<br />

1<br />

= 2sin xcos<br />

y = sin xcos<br />

x<br />

[ ] [ ]<br />

[ ] y<br />

2<br />

Trigonometric Problems<br />

Example 5: Find all values of x in the interval [ 0 ,2π ] such that cos x = cos2x<br />

.<br />

2<br />

2<br />

Solution: We know that, cos2x = 2cos x −1, so we get cos x = 2cos x −1<br />

2<br />

⇒ 2cos x − cos x −1<br />

= 0<br />

Let u = cos x<br />

2<br />

⇒ 2u<br />

− u −1<br />

= 0<br />

⇒ (2u<br />

+ 1)( u −1)<br />

= 0<br />

⇒ u = −<br />

1<br />

2<br />

⇒ cos x = −<br />

⇒ x =<br />

u = 1<br />

cos x = 1<br />

1<br />

2<br />

2π 4π<br />

x =<br />

3 3<br />

x = 0 x = 2<br />

π<br />

Page 17 of 23


<strong>Trigonometry</strong><br />

Example 6: Find the period of the function y = 17 sin(9t<br />

+ 21)<br />

Solution: We know that the period of sine is 2 π . sin(bt ) is going through the<br />

radians b times faster, so the values of sin(bt ) repeat b times sooner, or in b1<br />

th the time.<br />

This gives us that the period is 2 π<br />

. For )<br />

b<br />

sin( bt + c , the c does not change how quickly<br />

we go through the radians, it just affects where we start, so it has no impact on the period<br />

(It produces a horizontal shift, so it just moves the entire graph right or left, but does not<br />

change the shape, which would change the period). Thus the period of<br />

y = 17 sin(9t<br />

+ 21) is 2π 9<br />

.<br />

Example 7: The wheels of a bicycle have radius 55 cm and are rotating at 60 rpm. Find<br />

the speed of the bicycle in km/hour. Round your answer to the nearest tenth.<br />

Solution: In one minute, the angle changes by 60 ⋅ 2π = 120π<br />

radians<br />

In one hour, the angle changes by 60 ⋅ 120π = 7200π<br />

radians<br />

Hence, the linear speed in cm/hr is 55⋅ 7200π<br />

55⋅7200π<br />

So in km/hr we get ≈ 12. 4 km/hr<br />

100,000<br />

Example 8: The angle of elevation of tree 230 feet away is 12 degrees. Find the number<br />

of feet in the height of the tree. Round to the nearest integer.<br />

Solution: If we look at this problem as a right triangle, then we are looking for the<br />

length of the side opposite the 12 degree angle. We know that the adjacent side is 230<br />

o x<br />

o<br />

feet. Thus, tan( 12 ) = ⇒ x = 230tan(12 ) ⇒ x ≈ 49 feet tall.<br />

230<br />

1 1<br />

Example 9: The trigonometric function<br />

−<br />

is equal to which of the<br />

1−<br />

cos(7x ) 1+<br />

cos(7x)<br />

following?<br />

a) 2csc(7x )cot(7x)<br />

b) 2sec(7x )cot(7x)<br />

c) 2cot(14x )csc(7x)<br />

d) 2sec(7x<br />

csc(7x)<br />

Solution: We will start by getting a common denominator<br />

[ 1+<br />

cos(7x)<br />

] − [ 1−<br />

cos(7x)<br />

] 1+<br />

cos(7x)<br />

−1+<br />

cos(7x)<br />

2cos(7x)<br />

cos(7x)<br />

1<br />

=<br />

= = 2⋅<br />

⋅<br />

2 2<br />

[ 1−<br />

cos(7x)<br />

][ 1+<br />

cos(7x)<br />

] 1−<br />

cos (7x)<br />

sin (7x)<br />

sin(7x)<br />

sin(7x)<br />

= 2 cot(7x )csc(7x)<br />

= a<br />

5<br />

Example 10: If sin p = , cos = 12<br />

3<br />

4<br />

p , sin q = and cos = sin p + q .<br />

13<br />

13<br />

5<br />

5<br />

56<br />

Solution: sin( p + q)<br />

= sin p cosq<br />

+ sin qcos<br />

p =<br />

5 ⋅<br />

4 +<br />

3 ⋅<br />

12 =<br />

20 +<br />

36 =<br />

13 5 5 13 65 65 65<br />

q , find ( )<br />

Example 11: What are the solution(s) of sin 2 − 4sin x + 3 = 0<br />

− π ,π ?<br />

2<br />

Solution: Let u = sin x ⇒ u − 4u<br />

+ 3 = 0 ⇒ ( u − 3)( u −1)<br />

= 0 ⇒ u = 3, 1<br />

sin x = 3<br />

π<br />

⇒ ⇒ x = Note: sin x will never be 3 because the range of sine is −1 ≤ y ≤ 1<br />

2<br />

sin x = 1<br />

x in the interval ( )<br />

Page 18 of 23


<strong>Trigonometry</strong><br />

The Law of Sines<br />

In any triangle ABC with sides a, b, and c (as in Figure 26),<br />

a b c<br />

= =<br />

sin A sin B sinC<br />

Proof: B<br />

h<br />

From Δ ADB , sin A = ⇒ h = csin<br />

A<br />

c<br />

h<br />

a<br />

From Δ CDB , sin C = ⇒ h = asinC<br />

c h<br />

a<br />

Thus, csin A = asinC<br />

a c<br />

⇒ =<br />

A D b<br />

C sin A sinC<br />

Figure 26<br />

Other ratios can be found by constructing the perpendiculars from other vertices.<br />

The Law of Sines is used when we know more angles than sides.<br />

o<br />

Example 12: Solve Δ ABC if A = 32 , C = 81.8 , and a = 42. 9 cm<br />

Solution: We want to find the measure of angle B and the length of sides b and c.<br />

Step 1: We know two of the three angles. The sum of angles in a triangle<br />

o<br />

o o o o<br />

is 180 . So m ∠B = 180 − 32 − 81.8 = 66.2<br />

Step 2: We will use the Law of Sines to compute the sides.<br />

42.9 b 42.9 c<br />

= and =<br />

o<br />

o<br />

o<br />

o<br />

sin(32 ) sin(66.2 ) sin(32 ) sin(81.8 )<br />

With some computation, we find that b = 74. 1cm and c = 80. 1cm<br />

The Law of Cosines<br />

In any triangle ABC with sides a, b, and c,<br />

2 2 2<br />

a = b + c − 2bccos<br />

A<br />

2 2 2<br />

b = a + c − 2accos<br />

B<br />

2 2 2<br />

c = a + b − 2abcosC<br />

Proof: Let ( x , y)<br />

be the coordinates of A<br />

A<br />

y<br />

x<br />

sin B = and cos B =<br />

c<br />

c<br />

y<br />

b<br />

c<br />

⇒ y = csin<br />

B and x = ccos<br />

B<br />

⇒ A = ( ccos<br />

B,<br />

csin<br />

B)<br />

Also, C = (a,0 D ) and x l ( AC B ) = b . a By the distance C Formula,<br />

2<br />

2<br />

b = ( ccos<br />

B − a)<br />

+ ( csin<br />

B)<br />

Figure 27<br />

o<br />

Page 19 of 23


<strong>Trigonometry</strong><br />

By squaring both sides of the equation, we get<br />

2<br />

2<br />

2<br />

b = ( ccos<br />

B − a)<br />

+ ( csin<br />

B)<br />

2 2<br />

2 2 2<br />

= c cos B − 2accos<br />

B + a + c sin B<br />

2 2 2 2<br />

= a + c (cos B + sin B)<br />

− 2accos<br />

B<br />

2 2<br />

= a + c − 2accos<br />

B<br />

The other equations may be obtained by placing the other vertices at the origin.<br />

The Law of Cosines is used when we know more sides than angles.<br />

Example 13: A surveyor wishes to find the distance between two inaccessible points A<br />

and B on opposite sides of a lake. While standing at point C, she finds that l ( AC)<br />

= 259<br />

o<br />

meters, l ( BC)<br />

= 423 meters, and m ∠ACB = 125 . Find the distance from A to B. See<br />

Figure 28.<br />

Solution:<br />

The Law of Cosines can be used here since<br />

A<br />

we know the length of two sides and the<br />

measure of the included angle.<br />

B<br />

2 2 2<br />

o<br />

[ l ( AB)<br />

] = 259 + 423 − 2(259)(423)cos(125 )<br />

= 371688.63<br />

⇒ l( AB)<br />

= 609.66meters<br />

C<br />

Figure 28<br />

Page 20 of 23


<strong>Trigonometry</strong><br />

Extra Problems<br />

1. A circle has a radius of r cm. If θ = 3 rad, and the arc a = 33 cm, then what is the<br />

radius of the circle, r?<br />

2. The angle of elevation of a tree 219 feet away is 17 degrees. Find the number of feet<br />

in the height of the tree. Give your answer to the nearest integer.<br />

3. In a right triangle, a = 39 cm, b = 36 cm and c = 15 cm. Find cot θ .<br />

c<br />

a<br />

b<br />

4. Using the same right triangle from problem 3, but now with a = 37 cm, b = 35cm, and<br />

c = 12 cm, find sec θ .<br />

1 1<br />

5. The trigonometric function −<br />

1−<br />

sin(3x ) 1+<br />

sin(3x)<br />

is equal to which of the<br />

following:<br />

a) 2sec(3x )cot(3x)<br />

b) 2cot(6x )csc(3x)<br />

c) 2sec(3x<br />

)csc(3x)<br />

d) sec( 3x ) tan(3x)<br />

e) 2sec(3x<br />

) tan(3x)<br />

1+<br />

sin(6x)<br />

1−<br />

sin(6x)<br />

6. The trigonometric function − is equal to which of the<br />

1−<br />

sin(6x)<br />

1+<br />

sin(6x)<br />

following:<br />

a) 2sec(6x ) tan(6x)<br />

b) 4cot(12x )csc(6x)<br />

c) 4sec(6x<br />

)cot(6x)<br />

d) sec( 6x ) tan(6x)<br />

e) 4 tan(6x<br />

)sec(6x)<br />

8<br />

15<br />

5<br />

7. If sin p = , cos p = , sin q = , and cos q = 12 . Find sin( q − p)<br />

. Express your<br />

17<br />

17<br />

13<br />

13<br />

answer as a common fraction.<br />

8. Two straight railways cross each other at angle θ = 33 . Two trains A and B leave the<br />

intersection O at the same time. The velocity of train A is 29 mph and the velocity of<br />

train B is 57 mph. Find the distance between the two trains after 5 hours. Give your<br />

answer to the nearest integer. The picture is not drawn to scale.<br />

A<br />

θ<br />

o<br />

O<br />

θ<br />

B<br />

Page 21 of 23


<strong>Trigonometry</strong><br />

15<br />

9. If cos p = and sin p < 0. Find cot p<br />

17<br />

15<br />

10. If cos p = and sin p < 0. Find csc p<br />

17<br />

11. The period of the function y = 15sec(7t)<br />

is?<br />

12. The period of the function y = 13 cos(11t<br />

+ 15)<br />

is?<br />

13. The radius of the wheels of your car measure 27 cm. Suppose that each wheel is<br />

rotating at 964 rpm. Find the speed of your car in km/h. Round your answer to the<br />

nearest tenth.<br />

14. The rectangle below has a diagonal AC = 31cm. The angle θ = 27 . How many<br />

square centimeters are in the area of the rectangle. Picture not to scale.<br />

D<br />

C<br />

o<br />

A<br />

θ<br />

B<br />

5<br />

15. If sin p = , find sin( π − p)<br />

.<br />

7<br />

16. What are the solutions of 2sin + sin a −1<br />

= 0<br />

17. What are the solutions of 2sin b − 9sinb + 4 = 0 ?<br />

2<br />

2<br />

a in the interval ( 2π ,0)<br />

− ?<br />

18. Find<br />

−<br />

⎛ 3 ⎞<br />

sin 1 ⎜ ⎟<br />

−<br />

.<br />

⎝ 2 ⎠<br />

19. Find sec − 1 (2)<br />

.<br />

o<br />

20. Erin wishes to measure the distance across Eagle River. She find that C = 102 ,<br />

o<br />

A = 25 and b = 345 feet. Find the required distance. Round your answer to the nearest<br />

foot.<br />

A<br />

b<br />

B<br />

a<br />

C<br />

Page 22 of 23


<strong>Trigonometry</strong><br />

Answers to Extra Problems<br />

1. 11 cm<br />

2. 67 feet<br />

12<br />

3. cm<br />

5<br />

37<br />

4. 35<br />

cm<br />

5. e<br />

6. e<br />

39<br />

7. 221<br />

8. 181 miles<br />

15<br />

9. −<br />

8<br />

17<br />

10. −<br />

8<br />

11.<br />

2π<br />

7<br />

2π<br />

12.<br />

11<br />

13. 98.1 km/hr<br />

14. 388.73 square centimeters<br />

5<br />

15. 7<br />

16.<br />

11 π 7π<br />

a = − , − , −<br />

π<br />

6 6 2<br />

π 5π<br />

17. b = + 2nπ<br />

, + 2nπ<br />

6 6<br />

π<br />

18. −<br />

3<br />

π<br />

19.<br />

3<br />

20. 183 feet<br />

Page 23 of 23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!