18.10.2014 Views

MRA acquisition

MRA acquisition

MRA acquisition

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Annual RSNA meeting, Chicago, 2007<br />

How to do <strong>MRA</strong>: basic questions<br />

<strong>MRA</strong> <strong>acquisition</strong><br />

Prof. Dr. Stefan O. Schoenberg<br />

Professor and Chairman of Radiology<br />

1. What are the different <strong>MRA</strong> techniques?<br />

2. What are the fundamental principles?<br />

3. How to increase spatial and temporal resolution?<br />

4. How to expand anatomic coverage?<br />

5. What are typical artifacts and how to avoid them?<br />

Department of Clinical Radiology and Nuclear Medicine<br />

University Hospital Mannheim,<br />

Medical Faculty Mannheim – University of Heidelberg, Germany<br />

http://www.ma.uni-heidelberg.de/inst/ikr/RSNA2007/<strong>MRA</strong><strong>acquisition</strong><br />

Fundamental principles: TOF <strong>MRA</strong><br />

Inflowing, previously un-saturated spins (e.g. blood)<br />

produce a stronger signal than stationary spins<br />

Imaging plane<br />

Fundamental principles: TOF <strong>MRA</strong><br />

Inflowing, previously un-saturated spins (e.g. blood)<br />

produce a stronger signal than stationary spins<br />

1. Pre-saturation of imaging plane<br />

2. Magnetization transfer pulse for<br />

background suppression<br />

3. Inflow of blood (90°angle to the<br />

imaging plane)<br />

4. Insensitive for inplane flow<br />

3D Acquisition<br />

3D Acquisition<br />

k Slice<br />

k Slice<br />

RF<br />

α<br />

RF<br />

α<br />

Readout<br />

gradient<br />

k Readout<br />

Readout<br />

gradient<br />

k Readout<br />

Phase<br />

gradient<br />

Phase<br />

gradient<br />

Slab/Slice<br />

gradient<br />

Slab/Slice<br />

gradient<br />

k Phase<br />

k Phase<br />

Readout of k-space line (1st dimension)<br />

Readout of k-space plane (2nd dimension)


3D Acquisition<br />

3D Acquisition: 3D Time-of-flight<br />

k Slice<br />

RF<br />

α<br />

Readout<br />

gradient<br />

k Readout<br />

k Readout<br />

Phase<br />

gradient<br />

Slab/Slice<br />

gradient<br />

k Slice<br />

Readout of k-space volume (3rd dimension)<br />

Fourier<br />

transform<br />

k Phase<br />

k Phase<br />

Readout of k-space volume (3rd dimension)<br />

3D Time-of-flight @ 3 Tesla<br />

Time-of-flight 3T versus 7T<br />

3 Tesla 7 Tesla<br />

ACA<br />

ACA<br />

MCA<br />

MCA<br />

MCA<br />

MCA<br />

CS CS<br />

CS CS<br />

post. CA<br />

post. CA<br />

PCA<br />

PCA<br />

PCA<br />

PCA<br />

Courtesy of Paul Finn MD PhD<br />

0.3mm x 0.3mm x 0.5mm<br />

Advantages / disadvantages of TOF <strong>MRA</strong><br />

Contrast-enhanced <strong>MRA</strong><br />

Advantages<br />

• No contrast media<br />

• Easy, completely noninvasive<br />

technique<br />

• Acquisition of 3D data<br />

sets possible<br />

Disadvantages<br />

• Long <strong>acquisition</strong> times<br />

motion artifacts<br />

• insensitive for slow<br />

flow and inplane flow<br />

• High background<br />

signal<br />

• High contrast due to contrast media application<br />

• Fast <strong>acquisition</strong><br />

• High isotropic spatial resolution up to 1mm 3<br />

• Acquisition of 3D data sets<br />

• Minimum artifacts<br />

• Flow-independent b/o CM imaging of slow flow<br />

• State-of-the art in clinical routine for most applications


Application of contrast agents<br />

Technical principles of <strong>MRA</strong><br />

Image<br />

Rawdata<br />

Technical principles of <strong>MRA</strong><br />

Technical principles of <strong>MRA</strong><br />

Image<br />

Rawdata<br />

Image<br />

Rawdata<br />

Technical principles of <strong>MRA</strong><br />

K-space bolus-timing<br />

Fourier-<br />

Transformation<br />

Fourier-<br />

Fast (< seconds)<br />

Transformation<br />

Fourier-<br />

Transformation<br />

Fourier-<br />

Slow (min)<br />

Transformation<br />

• Central parts of k-space CM bolus<br />

• Timing too late venous overlay<br />

• Timing too early poor vessel contrast<br />

• Determine time between injection and CM peak at the<br />

level of the target vessel<br />

test-bolus, automatic detection, fluoroscopic realtime<br />

visualization<br />

Image<br />

Rawdata


Timing is everything<br />

Test-Bolus technique<br />

Too early: “Ringing” artifact<br />

Too late: Venous overlay<br />

Courtesy of Martin Prince, MD PhD<br />

2000<br />

Automatic Gd Detection: Smartprep ®<br />

Start<br />

scanning<br />

Fluoroscopic assessment: Care Bolus®, Bolustrak®,<br />

MR Fluoroscopy®<br />

1800<br />

Integral of Echo Speed<br />

1600<br />

1400<br />

1200<br />

1000<br />

Start<br />

Injecting<br />

Gd<br />

Detect<br />

Gd<br />

2D Real time<br />

Visualization of contrast<br />

media arrival<br />

3D HR-<strong>MRA</strong><br />

MIP<br />

800<br />

0 10 20 30 40 50 60<br />

Time (sec)<br />

Courtesy of Martin R. Prince, MD PhD<br />

Problem: delay (1-5 s) for online switch between fluoroscopy<br />

and <strong>MRA</strong> <strong>acquisition</strong><br />

<strong>MRA</strong>:<br />

problem of<br />

spatial<br />

resolution<br />

Intravascular<br />

contrast agent<br />

(SHU 555C )<br />

DSA<br />

0.3 x 0.3 mm<br />

<strong>MRA</strong>: Voxel size<br />

2.5 x 1.5 x 2 mm<br />

<strong>MRA</strong>: Voxel size<br />

1.7 x 0.8 x 1.5 mm<br />

<strong>MRA</strong>: Voxel size<br />

1.2 x 0.8 x 1.0 mm<br />

CE <strong>MRA</strong> – Increase of spatial resolution /<br />

decrease of scan time<br />

• (Zero Filling)<br />

• Partial Fourier Imaging<br />

• Elliptical centric <strong>acquisition</strong><br />

• Parallel Imaging<br />

• Higher field strength<br />

• Radial Imaging


Acquired<br />

data<br />

Zero Filling<br />

k y<br />

k x<br />

128×128 128×128, zerofilled to 256×256<br />

Partial Fourier techniques<br />

• K-space is nearly symmetric<br />

• Acquisition of k-space parts with mirroring of the data <br />

number of phase-encoding steps ↓ <strong>acquisition</strong> time ↓<br />

k y<br />

Zerofilled<br />

C<br />

B<br />

A<br />

k y<br />

256×256<br />

256×256, zerofilled to 512×512<br />

Fill periphery of k-space with zeros<br />

Interpolation of image matrix Acquisition time ↓<br />

Partial Fourier techniques<br />

Partial Fourier techniques & zero-filling<br />

60%<br />

60% of k-space no artifacts, slight blurring<br />

40%<br />

40% of k-space few artifacts, details ↓<br />

Partial Fourier techniques & zero-filling<br />

Elliptical centric <strong>acquisition</strong>:<br />

higher spatial resolution<br />

k y<br />

k z<br />

20%<br />

20% of k-space severe truncation artifacts, details ↓


Elliptical centric: aneurysm of ACA<br />

Parallel <strong>acquisition</strong> techniques (PAT)<br />

„+“<br />

Image<br />

Rawdata<br />

Parallel <strong>acquisition</strong> techniques (PAT)<br />

Parallel <strong>acquisition</strong> techniques (PAT)<br />

Reconstruction<br />

Reconstruction<br />

Fourier-<br />

2x faster<br />

Transformation<br />

PAT-<br />

PAT-<br />

Coil-<br />

Sensitivity-<br />

Profiles<br />

Aliased image<br />

Reconstructed image<br />

High-res. <strong>MRA</strong>: cross-sectional reformats<br />

Higher acceleration factors @ 1.5 T<br />

Voxel size: 3.4 0.7 mm 3<br />

PAT (GRAPPA ×2)<br />

26 s <strong>acquisition</strong> time<br />

26 s (PAT 2) 0.9 x 0.8 x 1.0 mm 19 s (PAT3)<br />

Schoenberg SO et al. Radiology 2005; 235:687–698<br />

Michaely HM, … Schoenberg SO. JMRI 2006; 24: 95-100


Artifacts: GRAPPA vs. mSENSE<br />

CE <strong>MRA</strong> – Increase of temporal resolution<br />

• Parallel Imaging (PAT): higher acceleration<br />

factors<br />

• View-sharing: TRICKS (time-resolved imaging<br />

of contrast kinetics)<br />

• View-sharing + PAT: TREAT<br />

• Variable k-space sampling + PAT: TWIST<br />

GRAPPA<br />

SENSE<br />

Schoenberg SO et al. Radiology 2005; 235:687–698<br />

Problem:<br />

Time-resolved<br />

<strong>MRA</strong> using TRICKS<br />

Low spatial resolution of<br />

time-resolved imaging<br />

Solution:<br />

Periphery of k-space is less<br />

frequently sampled than k-<br />

space center<br />

Signal<br />

time<br />

C<br />

B<br />

A<br />

TREAT<br />

(time-resolved echo-shared angiographic technique)<br />

• Combination of parallel imaging and view-sharing<br />

2,0x2,0x2,0 mm<br />

1 Bild / 2 s<br />

5 ml KM<br />

Korosec F et al. MRM 1996<br />

TWIST: time-resolved angiography with<br />

interleaved stochastic trajectories<br />

2x 3x 4x faster<br />

Parallel <strong>acquisition</strong> techniques: noise<br />

B 12<br />

3<br />

k z<br />

v<br />

A<br />

k x<br />

SNR =<br />

R<br />

SNR<br />

0<br />

g R<br />

R = 1<br />

Higher R = 2 field strength R = 3<br />

R = 4


Contrast-enhanced <strong>MRA</strong> at 3T<br />

Signal ratio: contrast-enhanced arterial blood – fat tissue<br />

T 1<br />

arterial blood<br />

T 1<br />

fat<br />

R 1<br />

Magnevist<br />

T 1<br />

blood + Gad (5 mmol/L)<br />

Signal ratio blood/fat<br />

TR=3.5 ms, a = 30°, C blood<br />

= 5 mmol/L<br />

1.5 T<br />

1250 ms<br />

343 ms<br />

4.1 L/mmol/s<br />

47 ms<br />

5.15<br />

3.0 T<br />

1650 ms<br />

382 ms<br />

3.7 L/mmol/s<br />

52 ms<br />

5.30<br />

High-resolution <strong>MRA</strong> @ 3 Tesla<br />

1.5T <strong>MRA</strong><br />

3.0T <strong>MRA</strong><br />

TR / TE [ms]<br />

3.77 / 1.39<br />

3.14 / 1.1<br />

Flip angle [°]<br />

25<br />

23<br />

Bandwidth [Hz/Px] ∆: 1.5T 3.0T350<br />

510<br />

Matrix<br />

512 x 80%<br />

Voxel volume -28%<br />

512 x 80%<br />

FOV [mm²]<br />

400 x 87%<br />

400 x 81%<br />

Slab thickness +8%<br />

Phase Oversampling [%]<br />

0<br />

8<br />

Voxel size [mm³] Scan time 0.8 -6%<br />

0.65<br />

Spatial resolution [mm³]<br />

1 x 0.8 x 1<br />

0.9 x 0.8 x 0.9<br />

Better background (fat) suppression for <strong>MRA</strong><br />

Higher vessel contrast!<br />

Decrease contrast amount by 10%-20%<br />

Scan time [s]<br />

19<br />

Partitions<br />

80<br />

Parallel imaging<br />

GRAPPA factor 3<br />

Michaely HJ, Nael K et al. Rofo. 2005; 177: 800-804<br />

18<br />

96<br />

GRAPPA factor 3<br />

From spatial to temporal resolution<br />

1.5T<br />

3.0T<br />

Spatial resolution 1.4 x 1.4 x 1.5 mm, 10 ml CM<br />

3.7 s (PAT3) Temporal Resolution 2.9 s (PAT4)<br />

3T<br />

Michaely HJ, et al. Radiology 2007; 244: 907-913<br />

Kramer H, et al.<br />

Invest Radiol 2007; 42: 477-483<br />

From spatial to temporal resolution<br />

(2D-)PAT and image geometry<br />

TWIST at 3 Tesla<br />

Courtesy of Mike Notohamiprodjo MD and Christian Glaser MD, LMU Munich


Further gains in <strong>acquisition</strong> speed:<br />

Parallel imaging with acceleration in 2D (PAT 2 )<br />

Radial <strong>acquisition</strong><br />

Rawdata<br />

Arteriogram (PAT 6 – 3x2):<br />

mild disease<br />

Courtesy of Paul Finn MD PhD, UCLA<br />

Venogram (PAT 6 – 3x2)<br />

Fenchel M, Invest Radiol 2006<br />

Willinek WA, ISMRM 2006<br />

Conventional cartesian readout<br />

in parallel lines<br />

Radial readout<br />

(rotating lines)<br />

Rawdata<br />

Radial <strong>acquisition</strong>: Streak artifacts<br />

Image<br />

Radial <strong>acquisition</strong>: Streak artifacts<br />

Fourier-<br />

32× faster<br />

Transformation<br />

but severe streak artifacts<br />

32× 16× 8× 4× 2×<br />

Extended anatomic coverage<br />

• Moving-table technique<br />

• Whole-body scanners<br />

• Continuous table movement (move during<br />

scan)<br />

CM<br />

Whole Body <strong>MRA</strong><br />

standard MR System<br />

Courtesy of Anna Gerlach, MD, Katherinenhospital Stuttgart


2 Pelvis<br />

1.5x0.7x1.5 mm<br />

19 sec<br />

3 Thigh<br />

1.5x0.7x1.4 mm<br />

13 sec<br />

Conflict to current clinical<br />

approaches<br />

4 Proximal Calf<br />

1.5x0.7x1.25 mm<br />

18 sec<br />

A<br />

B<br />

Problem: venous overlay occurring<br />

in step-by-step angiography. C<br />

Solution on a dedicated whole-body<br />

scanner:<br />

First carotids and calves<br />

then abdomen and thighs.<br />

Whole Body <strong>MRA</strong><br />

CM<br />

whole-body MRI System<br />

+ matrix coils<br />

1 Lower Calf/<br />

Forefoot<br />

1.4x0.7x0.9 mm<br />

32 sec / phase<br />

Meissner OA, …, Schoenberg SO. Radiology 2005; 235: 308–318<br />

Pereless FS, et al. Radiology. 2006; 240: 283-290<br />

Kramer H, Schoenberg SO, et al. Radiology 2005; 236: 300-310<br />

Recent studies on whole-body <strong>MRA</strong><br />

Whole-body<br />

<strong>MRA</strong>: 1.5 vs. 3 Tesla<br />

Author<br />

Field<br />

strength<br />

Minimum acquired<br />

resolution [mm]<br />

Accuracy for significant<br />

disease<br />

> 50% (* ≥70%)<br />

Interobserver<br />

variability [κ]<br />

1.5T<br />

Nael 2007<br />

1.5 T<br />

1.1 x 1.0 x 1.8<br />

SN 93%, SP 97%<br />

0.84<br />

Nael 2007<br />

3T<br />

0.87 x 0.94 x 1.0<br />

0.92<br />

Goyen 2006<br />

1.5 T<br />

1.7 x 1.5 x 2.9<br />

wb-<strong>MRA</strong> ready for clinical routine<br />

PPV 100%, NPV?<br />

3T<br />

Hansen 2006<br />

1.5 T<br />

1.76 x 1.76 x 4.0<br />

SN 83%, SP 94%<br />

Fenchel 2006*<br />

1.5 T<br />

1.6 x 1.0 x 1.5<br />

SN 96%, SP 96%<br />

Fenchel 2005*<br />

1.5 T<br />

1.6 x 1.0 x 1.5<br />

SN 96%, SP 95%<br />

0.93<br />

B1-Inhomogeneity<br />

“Move During Scan” MR Angiography @ 3Tesla<br />

=<br />

constructive<br />

=<br />

destructive<br />

RF Coil<br />

Phase<br />

B0=1.5T<br />

λH O = 52 cm<br />

2<br />

Exclusively constructive<br />

Readout<br />

B0=3T<br />

λH O = 26 cm<br />

2<br />

constructive und destructive<br />

interferences<br />

Courtesy of Harald Kramer MD, LMU Munich<br />

Reconstruction: 1. Fourier transform in readout direction<br />

2. Move data in readout direction<br />

3. Fourier transform in phase direction


How to do <strong>MRA</strong>: basic questions<br />

1. What are the different <strong>MRA</strong> techniques?<br />

2. What are the fundamental principles?<br />

3. How to increase spatial and temporal resolution?<br />

4. How to expand anatomic coverage?<br />

5. What are typical artifacts and how to avoid them?<br />

http://www.radiologie-lmu.de/RSNA2006/<strong>MRA</strong><strong>acquisition</strong><br />

Acknowledgment<br />

• Department of Radiology and Nuclear Medicine, University Hospital Mannheim,<br />

Germany: Henrik Michaely MD, Christian Fink MD<br />

• Department of Radiology, LMU Munich, Germany:<br />

Olaf Dietrich PhD, Harald Kramer MD, Mike Notohamiprodjo MD, Christian Glaser MD<br />

• Department of Radiology, Ohio State University Medical Center:<br />

Johannes Heverhagen MD, Michael V. Knopp MD<br />

• Department of Radiology, UCLA:<br />

J Paul Finn MD, Gerhard Laub PhD<br />

• Department of Radiology, Cornell University:<br />

Martin R Prince MD PhD<br />

• Department of Radiology, University of Wisconsin:<br />

Thomas Grist MD<br />

• Department of Radiology, University of Michigan:<br />

Frank Londy RT<br />

http://www.ma.uni-heidelberg.de/inst/ikr/RSNA2007/<strong>MRA</strong><strong>acquisition</strong><br />

Question to Dr. Martin Prince<br />

How do you prevent venous overlay?<br />

Decreased Venous<br />

Contamination Using Thigh<br />

Compression on Peripheral <strong>MRA</strong><br />

• Thigh cuffs with long extension tubing<br />

• Inflation pressure = 60 mmHg<br />

• Inflate just prior to mask <strong>acquisition</strong><br />

• Venous contamination is delayed<br />

• ↑ calf station to 60 seconds<br />

Zhang et al: AJR 2004; 183:1041-10<br />

• Supra-systolic in arm (200mmHghand <strong>MRA</strong>)<br />

Wentz et al: Lancet 2003;361:49-50<br />

Bilecen et al: AJR 2004; 182:180-2<br />

• Sub-systolic in legs (40 to 60 mm Hg)<br />

Meaney et al: US Patent 5,924,987<br />

Herborn et al: Radiology 2004; 230:872-8<br />

Bilecen et al: JMRI 2004; 20:347-51<br />

Vogt et al: Radiology 2004; 233:913-20<br />

60 mm<br />

Hg<br />

w/o thigh compression<br />

with thigh compression<br />

Question to Dr. Tom Grist<br />

Benefits of time-resolved imaging protocol<br />

When do you use time-resolved imaging?<br />

Left Popliteal Occlusion


Benefits of time-resolved imaging protocol<br />

Benefits of time-resolved imaging protocol<br />

Causes of early venous enhancement<br />

• Ulceration<br />

• Phlebitis<br />

• Neuropathic joint<br />

• Reduced muscle mass<br />

Neuropathic joint with hyper-enhancement<br />

enhancement<br />

58 year-old male post repair of ASD and PAPVR<br />

TR – 3.3 ms<br />

TE – 0.9 ms<br />

Flip - 30 0<br />

BW – 62.5 kHz<br />

FOV - 400 x 400 mm<br />

Matrix – 256 x 192<br />

24 x 10 mm slices (Zip 2)<br />

31 x 0:02.9 time frames<br />

15 cc at 3.0 cc/s Gadolinium<br />

Relative SNR% - 245%<br />

Scan Time 1:53 (Mask – 0:13)<br />

“Pause On” with separate mask and post-contrast<br />

<strong>acquisition</strong> breath-hold<br />

Incidentally diagnosed Right Pulmonary Venous Varix<br />

45 year-old patient with chronic pelvic pain<br />

Radial <strong>acquisition</strong>: HYPR<br />

• HYPR: HighlY constrained back-PRojection<br />

• Single radial readout used to reconstruct<br />

projection data<br />

• Very efficient for time-resolved <strong>MRA</strong><br />

TRICKS<br />

Radial readout<br />

(rotating lines)<br />

Mistretta CA, Wieben O, Velikina J, Block W, Perry J, Wu Y, Johnson K, Wu Y. Highly<br />

constrained backprojection for time-resolved MRI. Magn Reson Med. 2006;55:30-40.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!