25.10.2014 Views

Technical Note Amman, October 29, 2006 (draft) Note: M ... - SESAME

Technical Note Amman, October 29, 2006 (draft) Note: M ... - SESAME

Technical Note Amman, October 29, 2006 (draft) Note: M ... - SESAME

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Technical</strong> <strong>Note</strong><br />

__________________________________________________________________________________________________<br />

<strong>Amman</strong>, <strong>October</strong> <strong>29</strong>, <strong>2006</strong><br />

(<strong>draft</strong>) <strong>Note</strong>: M-04<br />

Design Study of an Elliptically Polarizing Undulator for <strong>SESAME</strong><br />

Hamed Tarawneh<br />

1. INTRODUCTION<br />

<strong>SESAME</strong> will be a third generation light source with electron energy of 2.5 GeV and 400 mA beam<br />

current. The <strong>SESAME</strong> users have defined their demands of the photon energy. One demand is an<br />

elliptically polarized light with an energy range of 100 eV to 1500 eV. In this note a proposed design<br />

of an elliptically polarizing undulator ( EPU ) is presented. The undulator has a period length u of 60<br />

mm, a magnetic gap of 13 mm and a total length of 1.782 m. The interaction of the EPU with the<br />

electron beam is presented. The feasibility to house the EPU in both long and short straight section has<br />

been investigated.<br />

2. CHOICE OF THE EPU MAGNET PARAMETERS<br />

The <strong>SESAME</strong> lattice [1] will define the minimum gap and the length of any insertion device ( ID ) in<br />

both the short and long straight sections in order to maintain a decent vacuum lifetime. The lifetime is<br />

an important issue for <strong>SESAME</strong> since the storage ring will be injected at 800 MeV beam energy.<br />

The <strong>SESAME</strong> users demand a photon flux of 5 ×10 14 photons/sec/0.1%BW [ 2 ] and low photon<br />

energy of less than 100 eV. To meet such demands, the proposed design of the EPU magnet has a<br />

magnetic gap of 13 mm, period length of 60 mm and 28 periods. This satisfies a stay clear aperture 8.5<br />

mm for an ID length of about 2 m [1] and fundamental photon energy of elliptically polarized light<br />

less than 100 eV at minimum undulator gap.<br />

3.1. MAGNETIC DESIGN AND LAYOUT<br />

The Apple-II type helical undulator [ 3 ] has been chosen to achieve this demand. The magnet is a pure<br />

permanent magnet structure which composed of four sub-assemblies as shown in Figure 1. S1 and S3<br />

are fixed, S2 and S4 are allowed to move longitudinally parallel to the magnetic axis (y-axis in the<br />

figure). The relative movement, called undulator phase, of the two sub-assemblies changes the<br />

strength of the magnetic field B x and B z and hence the polarization of the emitted radiation, i.e.<br />

horizontally, vertically and elliptically polarized source.<br />

The design calculations have been done using RADIA code from ESRF [4] and using<br />

MATHEMATICA as a front end. The permanent magnetic material (PM) used in the calculations is<br />

NdFeB with B r = 1.22 T with a relative permeability of 1.05 parallel to and 1.17 perpendicular to the<br />

easy axis of the blocks. The blocks have a thickness of ¼ period and 40 mm × 40mm cross section<br />

with 5 mm × 5mm cuts needed to clamp the blocks in the holders, see Figure 2. The main parameters<br />

of the <strong>SESAME</strong> EPU are summarized in Table 1.<br />

Table 1. <strong>SESAME</strong> EPU main parameters.<br />

Magnet period [ mm ] 60<br />

Number of periods 28<br />

Magnetic gap [ mm ] 13<br />

Max. gap between adjacent assemblies [mm] 1<br />

PM material<br />

NdFeB with B r =1.22T<br />

Block dimension<br />

15 mm × 40mm × 40mm<br />

Cuts dimension<br />

5 mm × 5 mm


S1<br />

S2<br />

z<br />

S4<br />

S3<br />

x<br />

y<br />

Figure 1. Four sub-assemblies schematic of <strong>SESAME</strong> EPU.<br />

3.2. MODES OF OPERATIONS<br />

Figure 2. One permanent magnetic material block.<br />

Three modes of operation are foreseen for this magnet;<br />

1. Horizontally polarized mode: an undulator phase of 0 mm.<br />

2. Vertically polarized mode: an undulator phase of u /2 mm.<br />

3. Elliptically polarized mode: an undulator phase between 0 mm and u /2 mm.<br />

2


The inclined mode of operation has not been considered for this magnet. The inclined polarized light is<br />

achieved by moving the assemblies S2 and S4 longitudinally but opposing each other.<br />

3.3. END BLOCKS CONFIGURATION<br />

It is important that there is no net change in angle or transverse position on the electron beam in the<br />

EPU undulator, i.e. zero first and second field integrals [5, 6]. This effect, determined by the non-unit<br />

permeability of the PM material, can be significantly minimized by the design of the end blocks of the<br />

magnet [7, 8]. The Elettra scheme has been used for the <strong>SESAME</strong> EPU which makes use of halfthickness<br />

( u /8) blocks with spaces (A1, A2, A3) that are numerically optimized to reduce the field<br />

integrals [8], see Figure 3. The length of the full-size magnet is 1.752 m and by adding half a period<br />

length for the longitudinal translation of the two sub-assemblies, a total length of 1.782 m needed to<br />

house this magnet.<br />

Figure 3. End blocks configuration for <strong>SESAME</strong> EPU.<br />

The criteria specifications on the field integrals for the <strong>SESAME</strong> EPU are as below;<br />

First Integral: ∫ B<br />

, z<br />

( x z = 0)<br />

Second Integral: ∫∫ B x z<br />

( x = z = )<br />

3.4. FLUX DENSITIES AND FIELD INTEGRALS<br />

= dy ≤ 100G<br />

cm<br />

x<br />

.<br />

'<br />

5<br />

,<br />

0 dy dy ≤10<br />

G.<br />

cm<br />

An asymmetric layout has been adopted for the <strong>SESAME</strong> EPU, i.e. the vertical field has the same<br />

polarities at the entrance and exit of the magnet. The magnetic flux densities B x (horizontal) and B z<br />

(vertical) for an EPU device can be written as follows<br />

2<br />

Where φ<br />

B<br />

φ 2π<br />

φ<br />

0,0, s)<br />

= Bz<br />

.cos( ).sin( y + )<br />

2 λ 2<br />

z<br />

(<br />

0<br />

φ 2π<br />

φ<br />

Bx<br />

( 0,0, s)<br />

= −Bx0.sin(<br />

).cos( y + )<br />

2 λu<br />

2<br />

∆y<br />

φ = 2π<br />

λ<br />

u<br />

u<br />

is the undulator phase and y is the longitudinal translation of the assemblies in meter.<br />

3


The magnetic flux density on-axis for the three modes of operations as a function of undulator gap<br />

and phase are shown in Figures 4. The fundamental photon energies are shown in Figure 5. Table 2<br />

summarizes the main magnetic properties of the <strong>SESAME</strong> EPU at minimum gap.<br />

1.2<br />

Magnetic Flux Density [Tesla]<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

gap= 13mm<br />

gap= 16mm<br />

gap= 20mm<br />

gap= 30mm<br />

gap= 50mm<br />

gap= 75mm<br />

gap=100mm<br />

0<br />

0 5 10 15 20 25 30 35<br />

Undulator Phase [mm]<br />

Figure 4. On-axis magnetic flux densities of the <strong>SESAME</strong> EPU.<br />

Fundamental Photon Energy [eV]<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 10 20 30 40<br />

Undulator Phase [mm]<br />

Figure 5. Fundamental photon energies of the <strong>SESAME</strong> EPU.<br />

gap= 13mm<br />

gap= 16mm<br />

gap= 20mm<br />

gap= 30mm<br />

gap= 50mm<br />

gap= 75mm<br />

gap=100mm<br />

4


Table 2. Flux densities, k-values and minimum photon energies at minimum gap of 13mm.<br />

Undulator<br />

Phase<br />

Horizontal Flux<br />

Density (T)<br />

Vertical Flux<br />

Density (T)<br />

k-value Photon Energy<br />

(eV)<br />

Horizontal<br />

- 0.9724 5.44 62<br />

0 mm<br />

Circular 0.60 0.60 3.36 79<br />

17.2 mm<br />

Vertical<br />

30 mm<br />

0.7617 - 4.26 98<br />

The magnetic flux densities, both longitudinal and transverse, for a 10-periods model at minimum gap<br />

of 13 mm for the three modes of operation are shown in Figures 6 to 11. The dip at x=0 in Figure 7 is<br />

due to the 1 mm separation distance between the left and the right assemblies of the magnet. This<br />

effect, called transverse roll off, will result in different flux densities seen by the electron far out from<br />

the centre of the transverse phase space. This focusing effect leads to an angular kick of the off-centre<br />

electron and, hence, reduces the dynamic aperture of the storage ring, see Section 4.3. The transverse<br />

roll off becomes very strong for the vertical mode of operation as shown in Figure 11.<br />

1.5<br />

1<br />

Flux Density [ T ]<br />

0.5<br />

0<br />

-500 -300 -100 100 300 500<br />

-0.5<br />

-1<br />

-1.5<br />

Longitudinal position [ mm ]<br />

Figure 6. Longitudinal flux density for the horizontal undulator phase at minimum gap.<br />

5


Transverse Flux Density [ T ]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-100 -50 0 50 100<br />

x [ mm ]<br />

Figure 7. Transverse flux density of the horizontal undulator phase at minimum gap.<br />

0.8<br />

0.6<br />

Bx<br />

Bz<br />

0.4<br />

Flux Density [ T ]<br />

0.2<br />

0<br />

-500 -300 -100 100 300 500<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

Longitudinal position [ mm ]<br />

Figure 8. Longitudinal flux density for the circular undulator phase at minimum gap.<br />

6


Flux Density [ T ]<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-150 -100 -50 -0.1 0 50 100 150<br />

-0.2<br />

-0.3<br />

-0.4<br />

x [ mm ]<br />

Bx<br />

Bz<br />

Figure 9. Transverse flux density of the circular undulator phase at minimum gap.<br />

1<br />

0.8<br />

0.6<br />

Bx<br />

Bz<br />

Flux Density [ T ]<br />

0.4<br />

0.2<br />

0<br />

-500 -300 -100<br />

-0.2<br />

100 300 500<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Longitudinal position [ mm ]<br />

Figure 10. Longitudinal flux density for the vertical undulator phase at minimum gap.<br />

7


1<br />

Horizontal Flux Density [ T ]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-120 -80 -40<br />

-0.2<br />

0 40 80 120<br />

-0.4<br />

-0.6<br />

x [ mm ]<br />

Figure 11. Transverse flux density of the vertical undulator phase at minimum gap.<br />

As mentioned in Section 3.3, the end block configuration is capable of reducing the first and second<br />

field integrals below the specified limits without using passive (shimming technique ) or active (trim<br />

coils) correction schemes at this stage of the design. Figure 12 shows the on-axis first field integral at<br />

minimum gap as a function of the undulator phase. The values are still less than 20% of the specified<br />

limit. Figure 13 shows the first field integral for the three modes of operation at minimum gap as a<br />

function of the transverse x-axis. The values for x = ±25mm are within 35% of the specified limit.<br />

15<br />

10<br />

First vert. integral [ G.cm ]<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

0 5 10 15 20 25 30 35<br />

-25<br />

Undulator Phase [ mm ]<br />

Figure 12. On-axis first field integral of the <strong>SESAME</strong> EPU at minimum gap.<br />

8


First vert. integral [ G.cm ]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-30 -20 -10 0 10 20 30<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

x [ mm ]<br />

Phase = 0 mm<br />

Phase =10 mm<br />

Phase =17.2mm<br />

Phase =23mm<br />

Phase = 30mm<br />

Figure 13. First field integral as function of x-axis at minimum gap.<br />

Figures 14 to 19 show the electron beam orbit, both longitudinal and projected on the xz-plane,<br />

through the 10-periods model magnet. We could see that the maximum orbit offset inside the EPU is<br />

about 24 m horizontally for the planar mode and -3 m vertically for the vertical mode. The second<br />

integral of the full size magnet can be extrapolated from the model. The results for the second field<br />

integrals and the beam position at the magnet exit are shown in Table 3. All values of the second<br />

integrals are within the specified limits, expect for the case of B z for the planar mode of operation.<br />

This can be easily reduced by using a long correction (trim) coils with vertical field.<br />

Table 3. The second integrals and beam position at the exit of the <strong>SESAME</strong> EPU.<br />

Phase B x .dy’dy<br />

[G.cm 2 ]<br />

Beam<br />

Position [m]<br />

B z .dy’dy<br />

[G.cm 2 ]<br />

Beam<br />

Position [m]<br />

Horizontal 0 0 10640 12.72<br />

Circular 520 0.62 7280 8.74<br />

Vertical <strong>29</strong>96 3.60 5392 6.47<br />

9


40<br />

35<br />

30<br />

Hor. Traj.<br />

Ave. Hor. traj.<br />

Trajectory [ micrometer ]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-500 -300 -100<br />

-5<br />

100 300 500<br />

-10<br />

y [ mm ]<br />

Figure 14. The 2.5 GeV electron trajectory in the model magnet for the horizontal undulator phase.<br />

0.E+00<br />

-40 -35 -30 -25 -20 -15 -10 -5 0 5<br />

-1.E-06<br />

-2.E-06<br />

z [ micrometer ]<br />

-3.E-06<br />

-4.E-06<br />

-5.E-06<br />

-6.E-06<br />

x [ micrometer ]<br />

-7.E-06<br />

Figure 15. The 2.5 GeV electron trajectory in the xz-plane for the horizontal undulator phase.<br />

10


Trajectory [ micrometer ]<br />

55<br />

45<br />

35<br />

25<br />

15<br />

5<br />

Hor. Trajectory<br />

Aver. Hor. Trajectory<br />

Vert. Trajectory<br />

Aver. Vert. Trajectory<br />

-500 -300 -100 -5 100 300 500<br />

-15<br />

y [ mm ]<br />

Figure 16. The 2.5 GeV electron trajectory in the model magnet for the circular undulator phase.<br />

z [ micrometer ]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-35 -30 -25 -20 -15 -10 -5 0<br />

-2<br />

5<br />

-4<br />

-6<br />

-8<br />

x [ micrometer ]<br />

-10<br />

Figure 17. The 2.5 GeV electron trajectory in the xz-plane for the circular undulator phase.<br />

11


Trajectory [ micrometer ]<br />

30<br />

Hor. Trajectory<br />

25<br />

Ave. Hor. Traj.<br />

Vert. Trajectory<br />

20<br />

Ave. Vert. Traj.<br />

15<br />

10<br />

5<br />

0<br />

-600 -400 -200 0 200 400 600<br />

-5<br />

-10<br />

-15<br />

y [ mm ]<br />

Figure 18. The 2.5 GeV electron trajectory in the model magnet for the vertical undulator phase.<br />

10<br />

5<br />

z [ micrometer ]<br />

-30 -25 -20 -15 -10 -5 0<br />

0<br />

-5<br />

-10<br />

x [ micrometer ]<br />

-15<br />

Figure 19. The 2.5 GeV electron trajectory in the xz-plane for the vertical undulator phase.<br />

12


4. INTERACTION BETWEEN EPU AND ELECTRON BEAM<br />

4.1. FOCUSING POTENTAIL<br />

The transverse roll off of the magnetic flux results in an angular kicks and, hence a tune shift. This is<br />

expressed by a focusing potential given by [7, 9];<br />

∞<br />

2<br />

1 e<br />

' ' 2<br />

' ' 2<br />

Φ(<br />

x , z)<br />

= − ( ) ∫((<br />

∫Bx<br />

( x,<br />

z,<br />

y ) dy ) + ( ∫Bz<br />

( x,<br />

z,<br />

y ) dy ) ) dy<br />

2 γmc<br />

−∞<br />

z<br />

−∞<br />

where e is the electron charge, mc the electron momentum and B x and B z the horizontal and vertical<br />

components of the magnetic flux density. The integrals can be solved analytically if we keep only the<br />

dominant n = 1 Fourier component of the flux density.<br />

Φ<br />

L ⎛ ecλ<br />

2 ⎜<br />

⎝ 2πE<br />

2<br />

z<br />

−∞<br />

2 Ψ<br />

( )<br />

( x,<br />

z)<br />

=<br />

u<br />

2<br />

( x,<br />

z) = − ⎜ ⎟ B ( x,<br />

z) + B ( x,<br />

z)<br />

e<br />

⎞<br />

⎟<br />

⎠<br />

1, x<br />

where L is the length of the undulator, u the undulator period length, E e the electron beam energy and<br />

B 1,x and B 1,z the n = 1 component in the Fourier expansion. This is a very good approximation for PPM<br />

undulators, where the n = 1 component dominates. The potential is largest at minimum gap, where the<br />

flux density is largest, and decreases rapidly with increasing gap.<br />

The energy-independent part of the potential (x,z) at minimum gap is shown in Figures 20 – 22 for<br />

the Horizontal, Circular and Vertical modes of operation.<br />

1, y<br />

E<br />

2<br />

e<br />

Focusing Potential<br />

120000<br />

110000<br />

100000<br />

Pot.HT 2 mm 3L<br />

90000<br />

- 20<br />

- 10<br />

0<br />

0<br />

XHmmL<br />

10<br />

2<br />

- 4-<br />

80000<br />

4<br />

2<br />

ZHmmL<br />

20<br />

Figure 20. The focusing potential for the horizontal undulator phase at minimum gap<br />

13


FocusingPotential<br />

100000<br />

80000<br />

60000<br />

Pot.HT 2 mm 3L<br />

- 20<br />

- 10<br />

2<br />

0<br />

0<br />

XHmmL<br />

10<br />

2<br />

- 4-<br />

20<br />

40000<br />

4<br />

ZHmmL<br />

Figure 21. The focusing potential for the circular undulator phase at minimum gap<br />

FocusingPotential<br />

100000<br />

75000<br />

50000<br />

Pot.HT 2 mm 3L<br />

25000<br />

- 20<br />

- 10<br />

0<br />

0<br />

XHmmL<br />

10<br />

- 2<br />

- 4<br />

2<br />

0<br />

4<br />

ZHmmL<br />

20<br />

Figure 22. The focusing potential for the vertical undulator phase at minimum gap<br />

14


4.2. ANGULAR KICK AND TUNE SHIFT<br />

The horizontal x and the vertical z angular kicks the electrons will experience when traversing the<br />

undulator due to the transverse roll off are given by [7 ].<br />

∂Φ<br />

θ<br />

x<br />

= −<br />

∂x<br />

∂Φ<br />

θ<br />

z<br />

= −<br />

∂z<br />

Figures 23 to 26 show the angular kick due to transverse roll off. In the vicinity of x=z=0, the kicks<br />

behave as being generated by an integrated quadrupole.<br />

4<br />

Horizontal Angular Kick [ G.m ]<br />

3<br />

circular<br />

horizontal<br />

2<br />

vertical<br />

1<br />

0<br />

-30 -20 -10 0 10 20 30<br />

-1<br />

-2<br />

-3<br />

-4<br />

x [ mm ]<br />

Figure 23. The horizontal angular kicks along the x-axis for all undulator phases at min. gap<br />

Vertical Angular Kick [ G.m ]<br />

circular<br />

horizontal<br />

vertical<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

-30 -20 -10 -0.005 0 10 20 30<br />

-0.01<br />

-0.015<br />

-0.02<br />

-0.025<br />

x [ mm ]<br />

Figure 24. The vertical angular kicks along the x-axis for all undulator phases at min. gap<br />

15


Horizontal Angular Kick [ G.m ]<br />

horizontal<br />

circular<br />

vertical<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-6 -4 -2 -0.2 0 2 4 6<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

z [ mm ]<br />

Figure 25. The horizontal angular kicks along the z-axis for all undulator phases at min. gap<br />

Vertical Angular Kick [ G.m ]<br />

40<br />

30<br />

20<br />

horizontal<br />

circular<br />

vertical<br />

10<br />

0<br />

-6 -4 -2<br />

-10<br />

0 2 4 6<br />

-20<br />

-30<br />

-40<br />

z [ mm ]<br />

Figure 26. The vertical angular kicks along the z-axis for all undulator phases at min. gap<br />

16


Depending on the position x,z of the electrons, focusing takes place due to the angular kicks. The focal<br />

lengths are given by [7 ];<br />

Which induces a tune shiftδ given by [10 ];<br />

Where<br />

x, z<br />

Q<br />

x , z<br />

2 ∞<br />

2<br />

1 1 ⎛ e ⎞ ∂<br />

= − ⎜ ⎟ Φ( x,<br />

z,<br />

y)dy<br />

2<br />

F x<br />

2 ⎝ γmc<br />

∫<br />

⎠ ∂x<br />

−∞<br />

2 ∞<br />

2<br />

1 1 ⎛ e ⎞ ∂<br />

= − ⎜ ⎟ Φ( x,<br />

z,<br />

y)dy<br />

2<br />

F z<br />

2 ⎝ γmc<br />

∫<br />

⎠ ∂z<br />

−∞<br />

1 β<br />

δ Qx,<br />

z<br />

=<br />

4π<br />

F<br />

β is the beta function at the location of the EPU magnet. The machine parameters used to<br />

evaluate the tune shifts are given in Table 4 at the middle of a short straight section of the <strong>SESAME</strong><br />

lattice [1].<br />

Table 4. Main parameters of the <strong>SESAME</strong> lattice.<br />

Beam Energy<br />

2.5 GeV<br />

Beam Current<br />

400 mA<br />

Horizontal Emittance<br />

25.7 nm.rad<br />

Natural Energy Spread 1.086 × 10 -3<br />

Coupling 1 %<br />

Betatron function in the middle of short straight section<br />

x / x / x / ' x 13.30m / 0 / 0.53m / 0<br />

z / z / z / ' z 0.77m / 0 / 0 / 0<br />

Figures 27 to 30 show the horizontal and vertical betatron tune shifts on both x and z-axis’s. The<br />

horizontal tune shift on the z-axis is a bit large mainly due to the large x at the EPU location. A<br />

possible cure for that is by running an electric current in a copper strips between the right and left subassemblies<br />

to generate a normal quadrupole component to locally compensate for the angular kick at<br />

different modes of operation.<br />

0.01<br />

x,<br />

z<br />

x,<br />

z<br />

0.005<br />

Horizontal Tune Shift<br />

0<br />

-30 -20 -10 0 10 20 30<br />

-0.005<br />

-0.01<br />

-0.015<br />

vertical<br />

horizontal<br />

circular<br />

-0.02<br />

x [ mm ]<br />

17


Figure 27. Horizontal tune shift across the x-axis for all undulator phases at min. gap.<br />

0.0016<br />

0.0014<br />

Vertical Tune Shift<br />

0.0012<br />

0.001<br />

0.0008<br />

0.0006<br />

0.0004<br />

0.0002<br />

vertical<br />

horizontal<br />

circular<br />

0<br />

-30 -20 -10 0 10 20 30<br />

x [ mm ]<br />

Figure 28. Vertical tune shift across the x-axis for all undulator phases at min. gap.<br />

Horizontal Tune Shift<br />

0.2<br />

0.15<br />

0.1<br />

vertical<br />

horizontal<br />

circular<br />

0.05<br />

0<br />

-6 -4 -2 0 2 4 6<br />

-0.05<br />

-0.1<br />

-0.15<br />

z [ mm ]<br />

Figure <strong>29</strong>. Horizontal tune shift across the z-axis for all undulator phases at min. gap.<br />

18


0.025<br />

Vertical Tune Shift<br />

0.02<br />

0.015<br />

vertical<br />

horizontal<br />

circular<br />

0.01<br />

0.005<br />

0<br />

-6 -4 -2 0 2 4 6<br />

-0.005<br />

-0.01<br />

z [ mm ]<br />

Figure 30. Vertical tune shift across the z-axis for all undulator phases at min. gap.<br />

4.3. MACHINE FUNCTIONS AND DYNAMIC APERTURE<br />

Installing an EPU device in the <strong>SESAME</strong> lattice will create a beta beat (associated with the tune shifts)<br />

in both planes since there are magnetic fields in both directions. In the BETA code any insertion<br />

device can be described by interpolation tables which provide an angular kick in T 2 m 2 as a function of<br />

the coordinates of the particle passing that element, i.e. mapped insertion device [11].<br />

Figures 31 to 33 show the effect of inserting an EPU device (mapped EPU) in a short straight section<br />

in the <strong>SESAME</strong> lattice, see Table 4, without using any active (trim coils for field integrals and copper<br />

strips for the angular kicks) or passive (shimming for both field or phase errors) correction scheme.<br />

The <strong>SESAME</strong> EPU maps are shown in Appendix A.<br />

The betatron beta beat is given by;<br />

β<br />

bare<br />

− β<br />

mod<br />

Beta − Beat[ %] =<br />

× 100%<br />

βbare<br />

Where bare is the beta value for the bare lattice and mod is the beta value with the EPU magnet<br />

engaged at different modes of operation.<br />

The vertical beta beat is not that significant, for the vertical mode of operation a maximum beta beat of<br />

0.5 %, because of the low z value at the EPU location whereas the horizontal beta beat is rather<br />

significant, the worst case is with the vertical mode of operation where the peak horizontal field is B x<br />

= 0.9724 T, mainly due to the high x value of 13.3m. The beta beats in both planes for all modes of<br />

operation are shown in Figures 34 and 35. The quadrupole doublet flanking the EPU magnet can be<br />

used to compensate for the beat beats in both planes and restore the tunes to the bare lattice values [1].<br />

Table 5 shows the change in the strength of the quadrupole doublet to match the beta beats in both<br />

planes.<br />

Table 5. Changes in strength of the quadrupole doublet to match the EPU’s effect.<br />

Mode of Bare Latice Matched lattice Percentage [%] Tunes<br />

operation QF QD QF QD QF QD Q x / Q z<br />

Horizontal 2.03217 -1.22628 2.02069 -1.20057 -0.56 -2.09 7.2300 / 6.1900<br />

Circular 2.03217 -1.22628 2.04797 -1.23976 +0.78 +1.10 7.2300 / 6.1900<br />

Vertical 2.03217 -1.22628 2.06450 -1.26312 +1.59 +3.00 7.2300 / 6.1900<br />

19


The map describing the EPU device has a finite size, ±30 mm in x-axis and ±5 mm in z-axis, which is<br />

considered as a physical limitation in the BETA code. Tracking the particles for 500 turns within this<br />

map (aperture) for the three modes of operation has not lead to significant reduction in the dynamic<br />

aperture of the <strong>SESAME</strong> lattice, see Figure 35.<br />

In Appendix B, the feasibility of housing <strong>SESAME</strong> EPU in a long straight section of the <strong>SESAME</strong><br />

lattice has been presented.<br />

OPTICAL FUNCTIONS<br />

30<br />

Beta Z Beta X 10*Dx<br />

Betatron Functions [ meter ]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 20 40 60 80<br />

s [ meter ]<br />

100 120<br />

Figure 31. Machine functions for the horizontal undulator phase, The EPU magnet in red.<br />

OPTICAL FUNCTIONS<br />

30<br />

Beta Z Beta X 10*Dx<br />

Betatron Functions [ meter ]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 20 40 60 80 100 120<br />

s [ meter ]<br />

Figure 32. Machine functions for the vertical undulator phase, The EPU magnet in red.<br />

20


OPTICAL FUNCTIONS<br />

30<br />

Beta Z Beta X 10*Dx<br />

25<br />

Betatron Functions [ meter ]<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 20 40 60 80 100 120<br />

s [ meter ]<br />

Figure 33. Machine functions for the circular undulator phase, The EPU magnet in red.<br />

15<br />

10<br />

vertical mode<br />

circular mode<br />

horizontal mode<br />

Horizontal Beta Beat<br />

5<br />

0<br />

-5<br />

0 20 40 60 80 100 120 140<br />

-10<br />

-15<br />

s [ meter ]<br />

Figure 34. Horizontal beta beat for all undulator phases before matching.<br />

21


0.8<br />

0.6<br />

vertical mode<br />

circular mode<br />

horizontal mode<br />

0.4<br />

Vertical Beta Beat<br />

0.2<br />

0<br />

-0.2<br />

0 20 40 60 80 100 120 140<br />

-0.4<br />

-0.6<br />

-0.8<br />

s [ meter ]<br />

Figure 35. Vertical beta beat for all undulator phases before matching.<br />

2.5<br />

Horizontal Beta Beat<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

vertical mode<br />

circular mode<br />

horizontal mode<br />

0 20 40 60 80 100 120 140<br />

s [ meter ]<br />

Figure 36. Horizontal beta beat for all undulator phases after matching.<br />

22


Vertical Beta Beat<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

vertical mode<br />

circular mode<br />

horizontal mode<br />

0 20 40 60 80 100 120 140<br />

s [ meter ]<br />

Figure 37. Vertical beta beat for all undulator phases after matching.<br />

0.01<br />

0.009<br />

z [ meter ]<br />

0.008<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

circular<br />

vertical<br />

horizontal<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04<br />

x [ meter ]<br />

Figure 38. Dynamic aperture for the <strong>SESAME</strong> lattice with the mapped EPU magnet engaged.<br />

23


5. MAGNETIC FORCE<br />

There are three types of magnetic forces on the magnet assemblies, transverse, longitudinal and<br />

vertical forces which vary with the undulator gap and phase. The transverse force is due to the 1 mm<br />

space between the left and right sub-assemblies. Figures 39 to 41 show the three types of the magnetic<br />

forces on top right sub-assembly from the full-size undulator. In Figure 39, the transverse force is<br />

repulsive for small phase values, attractive for large values and not dependant on the undulator gap. In<br />

Figure 40, the longitudinal force is anti-parallel to the movement and has the opposite behavior to the<br />

other sub-assembly. In Figure 41, the vertical force is attractive for small phase values and repulsive<br />

for large values.<br />

Transverse Force [Newton]<br />

1.5E+04<br />

1.0E+04<br />

5.0E+03<br />

0.0E+00<br />

-5.0E+03<br />

-1.0E+04<br />

-1.5E+04<br />

gap=13mm<br />

gap=25mm<br />

gap=75mm<br />

0 5 10 15 20 25 30 35<br />

-2.0E+04<br />

Undulator Phase [mm]<br />

Figure 39. Transverse magnetic force on the top right sub-assembly.<br />

12000<br />

Longitudinal Force [Newton]<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

-2000<br />

gap=13mm<br />

gap=25mm<br />

gap=75mm<br />

0 5 10 15 20 25 30 35<br />

Undulator Phase [mm]<br />

Figure 40. Longitudinal magnetic force on the top right sub-assembly.<br />

24


10000<br />

Vertical Force [Newton]<br />

5000<br />

0<br />

-5000<br />

-10000<br />

0 5 10 15 20 25 30 35<br />

gap = 13mm<br />

gap = 25mm<br />

gap = 75mm<br />

-15000<br />

Undulator Phase [mm]<br />

6. PHOTON OUTPUT<br />

Figure 41. Vertical magnetic force on the top right sub-assembly.<br />

The magnetic field model has been used to calculate the synchrotron radiation output from the<br />

<strong>SESAME</strong> EPU undulator using the SPECTRA code [12]. The broadening of the peaks due to<br />

emittance and energy spread are included in the calculations. The machine parameters used to evaluate<br />

the photon flux density and brilliance are found in Table 4.<br />

Figures 42 to 47 show the photon flux density and brilliance for all mode of operation of the <strong>SESAME</strong><br />

EPU undulator. The overlap between the first four harmonics is very good for the horizontal and the<br />

vertical modes of operation.<br />

1.E+15<br />

Flux [ Photon/s/0.1% BW]<br />

1.E+14<br />

1.E+13<br />

1.E+12<br />

1.E+11<br />

1.E+10<br />

1.E+09<br />

1.E+08<br />

10 100 1000 10000<br />

Photon Energy [ eV ]<br />

Figure 42. <strong>SESAME</strong> EPU photon flux density for the horizontal undulator phase.<br />

25


1.E+18<br />

Brilliance<br />

[Photon/s/mm 2 /mrad 2 /0.1%BW]<br />

1.E+17<br />

1.E+16<br />

1.E+15<br />

1.E+14<br />

1.E+13<br />

10 100 1000 10000<br />

Photon Energy [eV ]<br />

Figure 43. <strong>SESAME</strong> EPU estimated brilliance for the horizontal undulator phase.<br />

1.E+16<br />

Flux [ Photon/s/0.1%BW ]<br />

1.E+15<br />

1.E+14<br />

1.E+13<br />

1.E+12<br />

1.E+11<br />

10 100 1000 10000<br />

Photon Energy [ eV ]<br />

Figure 44. <strong>SESAME</strong> EPU photon flux density for the circular undulator phase.<br />

26


Brilliance<br />

[Photon/s/mm 2 /mrad 2 /0.1% BW ]<br />

1.E+19<br />

1.E+18<br />

1.E+17<br />

1.E+16<br />

1.E+15<br />

10 100 1000 10000<br />

Photon Energy [ eV ]<br />

Figure 45. <strong>SESAME</strong> EPU estimated brilliance for the circular undulator phase.<br />

1.E+15<br />

Flux [ Photon/s/0.1BW ]<br />

1.E+14<br />

1.E+13<br />

1.E+12<br />

1.E+11<br />

1.E+10<br />

10 100 1000 10000<br />

Photon Energy [ eV ]<br />

Figure 46. <strong>SESAME</strong> EPU photon flux density for the vertical undulator phase.<br />

27


1.E+18<br />

Brilliance<br />

[Photon/s/mm 2 /mrad 2 /0.1BW]<br />

1.E+17<br />

1.E+16<br />

1.E+15<br />

1.E+14<br />

1.E+13<br />

10 100 1000 10000<br />

Photon Energy [ eV ]<br />

Figure 47. <strong>SESAME</strong> EPU estimated brilliance for the vertical undulator phase.<br />

7. CONCLUSIONS AND FURTHER WORK<br />

A variable polarization undulator of the Apple-II type has been designed for the <strong>SESAME</strong> light<br />

source. The device is designed to operate in the helical mode, i.e. horizontally, vertically and<br />

elliptically polarized light, which satisfies the demand of the <strong>SESAME</strong> users. This design provides<br />

low field integrals in both planes that can be corrected with trim coils and hence, maintain very low<br />

position and angle deviation of the electron beam through the undulator.<br />

The dynamic aperture of the <strong>SESAME</strong> lattice has not suffered a severe reduction due to the inclusion<br />

of the EPU magnet and the effect on the emitance and energy spread is negligible. The quadrupole<br />

doublets flanking the EPU magnet are adequate to compensate for the beta beats in both planes.<br />

A further work, which needs to be thoroughly investigated, is summarized below;<br />

• Modeling of the trim coils to further reduce the field integrals.<br />

• Modeling of a copper strips to further reduce the angular kick by generating a normal<br />

quadrupole field.<br />

• Modeling of shims for phase and field errors.<br />

• Investigation of the power loading on the vacuum chamber for all modes of operation.<br />

• Using the estimated magnetic forces in order to check the effect of deflection of the magnet<br />

block holders and the magnet girder.<br />

28


REFERENCES<br />

[1] G. Vignola, M. Attal, “ <strong>SESAME</strong> Lattice”, <strong>Technical</strong> <strong>Note</strong>: O-1, December 21, 2004, <strong>Amman</strong>,<br />

Jordan<br />

[2] 4 th <strong>SESAME</strong> Users Meeting,6-8 Dec. 2005 Dead Sea, Jordan.<br />

[3] Sasaki, “Analysis for a planar variably-polarizing undulator”, Nuclear Instruments and Method in<br />

Physics Research A, NIMA 347, 1994.<br />

[4] P. Elleaume, O. Chubar, J. Chavanne, “Computing 3D Magnetic Field for Insertion Devices”,<br />

Proceedings of PAC’97, Vancouver.<br />

[5] J. Chavanne, P. Elleaume, P. Van Vaerenbergh, “End Field Structures for Linear/Helical Insertion<br />

Devices”, Proceedings of PAC’99, New York.<br />

[6] R. P. Walker, 'Insertion devices, Undulators and Wigglers', CERN Accelerator School, CAS<br />

Proceedings, 98-04, pp. 1<strong>29</strong>.<br />

[7] P. Elleaume, “A New Approach to the Electron Beam Dynamics in Undulators and Wigglers”,<br />

Proceedings of EPAC’92, Berlin.<br />

[8] B. Diviacco, et. al. “Development of elliptical undulator for Elettra”, Proceedings of EPAC’00,<br />

Vienna, Austria.<br />

[9] K. I. Blomqvist, private communications.<br />

[10] H. Wiedemann, “Particle accelerator physics” Vol. 1, Springer-Verlag, Berlin Heidelberg 1993.<br />

[11] L. Farvacque, et. al. “BETA users’ guide”, Grenoble, France, 3 rd edition, July 2001.<br />

[12] http://radiant.harima.riken.go.jp/spectra/index.html<br />

<strong>29</strong>


APPENDIX A<br />

ANGULAR KICK MAPS FOR THE <strong>SESAME</strong> EPU<br />

0.006<br />

0.004<br />

Hor.<br />

Ang.<br />

Kick<br />

0.002<br />

0<br />

-0.002<br />

-0.004<br />

-0.006<br />

-0.03<br />

-0.025<br />

-0.02<br />

-0.015<br />

-0.01<br />

-0.005<br />

0<br />

0.005<br />

0.01<br />

0.015<br />

0.02<br />

0.025<br />

0.03<br />

T 2 m 2 x z<br />

0.005<br />

-0.005<br />

Figure A1.Horizontal angular kick map for the horizontal mode of operation.<br />

0.015<br />

0.01<br />

Vert.<br />

Ang.<br />

Kick<br />

[T 2 m 2 ]<br />

0.005<br />

0<br />

-0.005<br />

-0.01<br />

-0.015<br />

-0.03<br />

-0.025<br />

-0.02<br />

-0.015<br />

-0.01<br />

-0.005<br />

x<br />

0<br />

0.005<br />

0.01<br />

0.015<br />

0.02<br />

0.025<br />

0.03<br />

0.005<br />

z<br />

Figure A2.Vertical angular kick map for the horizontal mode of operation.<br />

30


0.004<br />

0.003<br />

Hor.<br />

Ang.<br />

Kick<br />

[T 2 m 2 ]<br />

0.002<br />

0.001<br />

0<br />

-0.001<br />

-0.002<br />

-0.003<br />

-0.004<br />

-0.03<br />

-0.026<br />

-0.022<br />

-0.018<br />

-0.014<br />

-0.01<br />

x<br />

-0.006<br />

-0.002<br />

0.002<br />

0.006<br />

0.01<br />

0.014<br />

0.018<br />

0.022<br />

0.026<br />

0.03<br />

0.005<br />

z<br />

Figure A3. Horizontal angular kick map for the circular mode of operation<br />

0.015<br />

Vert.<br />

Ang.<br />

Kick<br />

[T 2 m 2 ]<br />

0.01<br />

0.005<br />

0<br />

-0.005<br />

-0.01<br />

-0.015<br />

-0.03<br />

-0.025<br />

-0.02<br />

-0.015<br />

-0.01<br />

-0.005<br />

x<br />

0<br />

Figure A4. Vertical angular kick map for the circular mode of operation<br />

0.005<br />

0.01<br />

0.015<br />

0.02<br />

0.025<br />

0.03 0.005<br />

-0.002<br />

z<br />

31


0.008<br />

0.006<br />

0.004<br />

0.002<br />

0<br />

-0.002<br />

Hor.<br />

Ang.<br />

Kick<br />

[T 2 m 2 ]<br />

-0.03<br />

-0.024<br />

-0.018<br />

-0.012<br />

x<br />

-0.006<br />

0<br />

0.006<br />

0.012<br />

0.018<br />

0.024<br />

0.03 0.005<br />

0<br />

z<br />

-0.005<br />

-0.004<br />

-0.006<br />

-0.008<br />

Figure A5. Horizontal angular kick map for the vertical mode of operation.<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

-0.005<br />

Vert.<br />

Ang.<br />

Kick<br />

[T 2 m 2 ]<br />

-0.01<br />

-0.03<br />

-0.025<br />

-0.02<br />

x<br />

-0.015<br />

-0.01<br />

-0.005<br />

0<br />

0.005<br />

0.01<br />

0.015<br />

0.02<br />

0.025<br />

0.03 0.005<br />

0.001<br />

-0.003<br />

z<br />

-0.015<br />

-0.02<br />

-0.025<br />

Figure A6. Vertical angular kick map for the vertical mode of operation<br />

32


APPENDIX B<br />

FEASIBILITY OF HOUSING <strong>SESAME</strong> EPU IN A LONG STRAIGHT SECTION<br />

The feasibility of housing the <strong>SESAME</strong> EPU in a long straight section of the <strong>SESAME</strong> lattice has<br />

been investigated. The betatron functions in the middle of the long straight section are given Table B1;<br />

Table B1. Betatron functions in the middle of long straight section<br />

x / x / x / ' x 13.61 m / 0 / 0.53m / 0<br />

z / z / z / ' z 1.65 m / 0 / 0 / 0<br />

The machine functions are shown in Figures B1 to B3 for all modes of operation of the EPU magnet.<br />

The influence in the horizontal plane is comparable to the case of short straight section but more<br />

pronounced in the vertical plane due to larger z . This can be compensated by using the flanking<br />

quadrupole doublet and achieving a maximum beta beats of 3.1 % in the horizontal plane and 2.5 % in<br />

the vertical plane, See Figures B4 and B5. The change in the quadrupoles strength is shown Table B2;<br />

Table B2. Changes in strength of the quadrupole doublet to match the EPU’s effect.<br />

Mode of Bare Latice Matched lattice Percentage [%] Tunes<br />

operation QF QD QF QD QF QD Q x / Q z<br />

Horizontal 2.03217 -1.22628 2.01916 -1.19338 -0.64 -2.68 7.2300 / 6.1900<br />

Circular 2.03217 -1.22628 2.04734 -1.23839 +0.75 +0.99 7.2300 / 6.1900<br />

Vertical 2.03217 -1.22628 2.06452 -1.26516 +1.59 +3.17 7.2300 / 6.1900<br />

The degradation in the dynamic aperture is more severe, i.e. a loss of approximately 20%, see Figure<br />

B6. Furthermore, the electron beam size is larger than the one in the short straight section resulting in<br />

lower brilliance.<br />

OPTICAL FUNCTIONS<br />

30<br />

Beta Z Beta X 10*Dx<br />

25<br />

Betatron Functions [ meter ]<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 20 40 60 80 100 120<br />

s [ meter ]<br />

Figure B1. Machine functions for the horizontal undulator phase, The EPU magnet in red.<br />

33


OPTICAL FUNCTIONS<br />

30<br />

Beta ZY<br />

Beta X 10*Dx<br />

25<br />

Betatron Functions [ meter ]<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 20 40 60 80 100 120<br />

s [ meter ]<br />

Figure B2. Machine functions for the circular undulator phase, The EPU magnet in red.<br />

30<br />

OPTICAL FUNCTIONS<br />

Beta Z Beta X 10*Dx<br />

25<br />

Betatron Functions [ meter ]<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 20 40 60 80 100 120<br />

s [ meter ]<br />

Figure B3. Machine functions for the vertical undulator phase, The EPU magnet in red.<br />

34


Horizontal Beta Beat<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

vertical mode<br />

circular mode<br />

horizontal mode<br />

0 20 40 60 80 100 120 140<br />

-1<br />

s [ meter ]<br />

Figure B4. Horizontal beta beat for all undulator phases after matching.<br />

Vertical Beta Beat<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

vertical mode<br />

circular mode<br />

horizontal mode<br />

0 20 40 60 80 100 120 140<br />

s [ meter ]<br />

Figure B5. Vertical beta beat for all undulator phases after matching.<br />

35


0.01<br />

0.009<br />

z [ meter ]<br />

0.008<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

circular<br />

vertical<br />

horizontal<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04<br />

x [ meter ]<br />

Figure B6. Dynamic aperture for the <strong>SESAME</strong> lattice with the mapped EPU magnet engaged in a long<br />

straight section.<br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!