29.10.2014 Views

Reconstructing the history of Maize streak virus ... - RUN-Emerge

Reconstructing the history of Maize streak virus ... - RUN-Emerge

Reconstructing the history of Maize streak virus ... - RUN-Emerge

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The emergence and spread <strong>of</strong> MSV in Africa<br />

Darren Martin<br />

University <strong>of</strong> Cape Town, South Africa


The <strong>history</strong> <strong>of</strong> maize <strong>streak</strong> disease<br />

<strong>Maize</strong> introduced to West Africa by <strong>the</strong><br />

Portuguese in <strong>the</strong> early 1500s<br />

Leaf chlorosis<br />

Deformed cobs<br />

Stunting<br />

Yield losses <strong>of</strong> up to 100%<br />

It reached sou<strong>the</strong>rn Africa in <strong>the</strong> mid<br />

1600s with <strong>the</strong> Dutch East India<br />

Company<br />

<strong>Maize</strong> <strong>streak</strong> disease was first described<br />

in 1901 in sou<strong>the</strong>rn Africa<br />

It had affected maize <strong>the</strong>re since at least<br />

<strong>the</strong> 1870s suggesting that <strong>the</strong> maizeadapted<br />

MSVs had already evolved by<br />

<strong>the</strong> mid 1800s


MSV-A: The maize adapted MSV<br />

There are 11 known MSV strains - <strong>the</strong>y<br />

are named MSV-A through MSV-K<br />

MSV-K<br />

MSV-A 4<br />

MSV-C<br />

MSV-A 6<br />

MSV-D<br />

MSV-E<br />

MSV-A 3<br />

MSV-B MSV-A 2<br />

O<strong>the</strong>r MSV strains<br />

MSV-J<br />

0.025 substitutions<br />

MSV-I<br />

per site<br />

0.05 substitutions<br />

per site<br />

MSV-A<br />

MSV-F<br />

MSV-G<br />

MSV-H<br />

O<strong>the</strong>r African <strong>streak</strong> <strong>virus</strong>es<br />

MSV-A 1<br />

Only MSV-A is known to cause serious<br />

disease in maize<br />

MSV-B to -K, collectively referred to as<br />

“grass infecting” or non-maize adapted<br />

MSVs – produce very mild symptoms in<br />

even <strong>the</strong> most MSV-sensitive maize<br />

genotypes<br />

MSV-A classified into 5 subtypes/variants<br />

Species > 75% identity<br />

Strain > 89% identity<br />

Subtype > 98% identity Digitaria sp.<br />

<strong>Maize</strong>


Where did MSV-A come from?<br />

Large-scale cataloguing <strong>of</strong> inter-strain MSV<br />

recombination<br />

Revealed clear evidence <strong>of</strong> recombination<br />

hot-spots in non-coding regions<br />

MSV-A variants are all descendants <strong>of</strong> <strong>the</strong><br />

recombinant progeny <strong>of</strong> ancestral MSV-B<br />

and MSV-G/-F variants


Distributions <strong>of</strong> African <strong>streak</strong> <strong>virus</strong>es<br />

African <strong>streak</strong> <strong>virus</strong>es<br />

MSV<br />

MSV-A<br />

A 6<br />

MSV<br />

PanSV-G<br />

MSV-A<br />

A 3<br />

AfSVs like PanSV display<br />

strong geographical<br />

clustering<br />

PanSV-F<br />

PanSV-E<br />

A 1<br />

Are MSVs more mobile<br />

than PanSVs?<br />

MSV-B<br />

PanSV-B<br />

PanSV-C<br />

Is MSV-A more mobile<br />

than o<strong>the</strong>r MSVs?<br />

PanSV-A<br />

PanSV-D<br />

PanSV-H<br />

PanSV-I<br />

0.2 substitutions per site<br />

MSV-G<br />

MSV-F<br />

MSV-H<br />

MSV-E<br />

MSV-I<br />

MSV-J<br />

MSV-C<br />

MSV-K<br />

MSV-D<br />

A 4<br />

A 2<br />

If all <strong>the</strong>se <strong>virus</strong>es are<br />

evolving at <strong>the</strong> same<br />

rates <strong>the</strong>n Yes x 2<br />

Indian Ocean islands<br />

Sou<strong>the</strong>rn Africa<br />

West Africa<br />

East Africa


Evolution experiments<br />

How fast are AfSVs Mutating?<br />

Transmission from Coix back<br />

to sugarcane sometime<br />

between 1977 and 1986<br />

Natural <strong>virus</strong> populations<br />

SSRV - A (32 years)<br />

MSV - F (6 years)<br />

Transmission from<br />

sugarcane to Coix in 1976<br />

Sugarcane plants split into<br />

MSV - A – three <strong>Maize</strong> lineages adapted in strain 1984<br />

SSRV - A (32 years)<br />

2008 (Sugarcane)<br />

2008 ( Coix )<br />

1989 MSV (Sugarcane) - A 1<br />

(All across Africa)<br />

1991 MSV (Sugarcane)<br />

- A 2 (West Africa)<br />

1997 MSV (Sugarcane)<br />

- A 3 (East Africa)<br />

1987 MSV (Sugarcane)<br />

- A 4 (Sou<strong>the</strong>rn Africa)<br />

MSV - B (6 years)<br />

MSV - B (5 years)<br />

MSV - F (6 years)<br />

1991<br />

1997<br />

WDV –<br />

Wheat adapted strain<br />

MSV - B (6 years)<br />

European WDV<br />

Chinese WDV<br />

1991<br />

1997<br />

0.004 subs/site<br />

0.004 subs/site<br />

Diversity arising during evolution experiments is comparable to that seen Chinawide<br />

for Wheat dwarf <strong>virus</strong> or Sou<strong>the</strong>rn-Africa wide MSV-A 4 populations


How fast are AfSVs Mutating?<br />

SSRV and MSV in 5-32 year<br />

long evolution experiments<br />

evolve very fast<br />

Using substitution rate<br />

inference methods in<br />

programs such as BEAST we<br />

could accurately date events<br />

during <strong>the</strong> 32 year SSRV<br />

experiment<br />

This is an important<br />

validation <strong>of</strong> <strong>the</strong>se<br />

techniques


Is MSV evolving so fast in <strong>the</strong> field?<br />

~1924<br />

Found and sequenced some<br />

field isolates sampled between<br />

<strong>the</strong> late 1970s and <strong>the</strong> early<br />

1990s<br />

~1904<br />

~1967<br />

~1969<br />

A 4<br />

A 3<br />

A 2<br />

Taking recombination into<br />

account estimated substitution<br />

rates with BEAST<br />

1870-1904<br />

~1922<br />

A 1<br />

Most recent common ancestor <strong>of</strong><br />

all sampled MSVs existed in <strong>the</strong><br />

late 1800s at around <strong>the</strong> time<br />

MSD was first reported in<br />

sou<strong>the</strong>rn Africa<br />

Date<br />

Years ago<br />

Sou<strong>the</strong>rn Africa<br />

East Africa<br />

West Africa<br />

La Réunion island<br />

1860 1900 1910 1920<br />

150<br />

110<br />

1930<br />

1940<br />

1950<br />

1960<br />

1970<br />

1980<br />

1990<br />

2000<br />

100 90 80 70 60 50 40 30 20 10 0<br />

2010<br />

A 6


Is MSV really evolving so fast?<br />

Substitution rate estimates are very similar when using experimental<br />

populations and field isolates


What is <strong>the</strong> cause <strong>of</strong> high basal mutation rates?<br />

Substitution matrices are “imbalanced”<br />

indicating strand specific mutational<br />

processes<br />

Imbalance suggests mutational<br />

processes acting on ssDNA (e.g. in<br />

double stranded DNA <strong>the</strong> rates <strong>of</strong> G to T<br />

and C to A mutations should be <strong>the</strong><br />

same)<br />

High rates <strong>of</strong> G to T, G to A and C to T<br />

mutations suggest viral ssDNA is<br />

particularly sensitive to oxidative<br />

stresses


When did MSV-A emerge?<br />

* best supported<br />

model sets<br />

The recombination event that generated MSV-A probably occurred after<br />

maize was introduced by <strong>the</strong> Dutch to sou<strong>the</strong>rn Africa<br />

The MRCA <strong>of</strong> all MSV-As probably existed within 20 years <strong>of</strong> <strong>the</strong><br />

recombination event taking place


Where did MSV-A emerge?<br />

Haplotype Classification<br />

Legend<br />

MSV-A 1<br />

MSV-A 3<br />

MSV-A 2<br />

MSV-A 4<br />

MSV-A 2 , -A 3 , -A 4 like variant<br />

MSV-A 2 , -A 4 like variant<br />

MSV-A 2 , -A 7 like variant<br />

MSV-A 6<br />

year<br />

2000 – 2008<br />

Using >350 MSV full genomes with<br />

known sampling coordinates we<br />

looked at <strong>the</strong> contemporary (2000-<br />

2008) distributions <strong>of</strong> 10 MSV-A 1<br />

and 2 MSV-A 4 lineages (groups <strong>of</strong><br />

<strong>virus</strong>es all sharing <strong>the</strong> same<br />

recombination mosaics)<br />

MSV-A 1 s have a pan-African<br />

distribution MSV-A 4 is found only in<br />

sou<strong>the</strong>rn Africa


Where did MSV-A emerge?<br />

1863<br />

1933<br />

(1809-1935)<br />

(1867-1950)<br />

Root probability<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

Root probability<br />

Full-genome dataset<br />

Recombination-free dataset<br />

Discrete phylogeography models (taking only countries <strong>of</strong> origin into account)


Where did MSV-A emerge?<br />

Continuous phylogeography models (taking actual GPS coordinates into account)<br />

Full genome dataset<br />

(80% HPD)<br />

1887(1842-1939)<br />

Recombination free<br />

dataset (80% HPD)<br />

1901 (1828-1941)


What are <strong>the</strong> most obvious movements?<br />

Age <strong>of</strong> migration (years before 2008)<br />

BF<br />

TD<br />

BE<br />

NG<br />

CAR<br />

CM<br />

UG<br />

KE<br />

Bayes Factor<br />

0<br />

10<br />

20<br />

30<br />

ZM<br />

ZW<br />

RE<br />

< 3.2<br />

> 3.2<br />

> 10<br />

> 100<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

ZA<br />

LS<br />

MZ<br />

Dataset<br />

Both<br />

Recombination free<br />

Full genome


A<br />

Are <strong>the</strong>re hotspots <strong>of</strong> recombinant genesis?<br />

B C D<br />

1995<br />

1975<br />

1994<br />

E<br />

(1997 -<br />

2002)<br />

MSV-A 1 I<br />

F<br />

(1970 -<br />

1980)<br />

MSV-A 1 II<br />

G<br />

(1988 -<br />

1998)<br />

MSV-A 1 III<br />

Every one <strong>of</strong> <strong>the</strong> 12 main MSV-A 1<br />

and MSV-A 4 lineages are inferred to<br />

have arisen in ei<strong>the</strong>r sou<strong>the</strong>rn Africa<br />

or East Africa<br />

1993<br />

1977<br />

1960<br />

(1987 -<br />

1999)<br />

MSV-A 1 IV<br />

H<br />

(1967 -<br />

1985)<br />

MSV-A 1 V<br />

I<br />

(1949 -<br />

1971)<br />

MSV-A 1 VI<br />

J<br />

The geographical origins <strong>of</strong> <strong>the</strong>se<br />

lineages are supported by analyses<br />

<strong>of</strong> both full- genome and<br />

recombination-free datasets<br />

1975<br />

1998<br />

1996<br />

(1967 -<br />

1983)<br />

MSV-A 1 VII<br />

K<br />

(1996 -<br />

2000)<br />

MSV-A 1 VIII<br />

L<br />

(1992 -<br />

1999)<br />

MSV-A 1 XI<br />

M<br />

Remember that <strong>the</strong>se lineages are<br />

defined by <strong>the</strong> recombination<br />

patterns <strong>the</strong>y carried<br />

1960<br />

(1950 -<br />

1968)<br />

MSV-A 1 XV<br />

1993<br />

(1981 -<br />

2000)<br />

MSV-A 4 I<br />

1947<br />

(1934 -<br />

1958)<br />

MSV-A 4 V<br />

Full-genome<br />

Recombination-free<br />

Sample location


Do different subtypes display <strong>the</strong> same<br />

movement dynamics?<br />

There may be differences in <strong>the</strong><br />

mobility <strong>of</strong> MSV-A 1 and MSV-A 4<br />

MSV-A 1 lineages that emerge in<br />

sou<strong>the</strong>rn Africa frequently (in ¾<br />

cases) move to East and/or West<br />

Africa<br />

Both MSV-A 4 lineages that emerged<br />

in sou<strong>the</strong>rn Africa stayed in<br />

sou<strong>the</strong>rn Africa


Wave-like east to west movements<br />

3.2<br />

6.0<br />

3.2<br />

< 4.8<br />

2.6<br />

5.9<br />

91.0<br />

7.1<br />

30.0<br />

< 3.7<br />

1975<br />

(1967-1983)<br />

MSV-A 1 VII<br />

< 4.4<br />

< 3.2<br />

< 3.9<br />

< 3.5


Wave-like east to west movements <strong>of</strong> MSV-A 1<br />

D<br />

76.2<br />

64.0<br />

72.0<br />

76.2<br />

73.7<br />

74.1<br />

2.3<br />

71.4<br />

9.1<br />

< 3.7<br />

1994<br />

(1988-1998)<br />

MSV-A 1 III<br />

< 4.4<br />

< 3.2<br />

< 3.9<br />

< 3.5


Dispersal rate (km per yr)<br />

How fast does MSV move across Africa?<br />

Recombination- free<br />

Continuous model<br />

Dispersal rates may have varied<br />

slightly over he last 100 years<br />

BUT detected differences are<br />

not significant<br />

60<br />

Dispersal rates<br />

50<br />

40<br />

30<br />

20<br />

On average over <strong>the</strong> past ~100<br />

years MSV has been moving at<br />

an average rate <strong>of</strong> 33Km/year<br />

(HPD = 15.6-51.6)<br />

10<br />

0<br />

Recombination<br />

free<br />

Full genome


Edward Rybicki - University <strong>of</strong> Cape Town, South Africa<br />

Aderito Monjane - University <strong>of</strong> Cape Town, South Africa<br />

Eric van der Walt - University <strong>of</strong> Cape Town, South Africa<br />

Betty Owor - University <strong>of</strong> Cape Town, South AfrIca<br />

Gordon Harkins - SANBI, South Africa<br />

Tania van Antwerpen - SASRI, South Africa<br />

Bradley Flett - ARC. South Africa<br />

Moses Ramusi - ARC, South Africa<br />

Darren Martin<br />

Dionne Shepherd<br />

Arvind Varsani<br />

Sunday Oluwafemi - Bowen University, Nigeria<br />

Innocent Zinga - University <strong>of</strong> Bangui, Central African Republic<br />

Appolinaire Tange - IRAD Yaounde, Cameroon<br />

Fidèle Tiendrebeogo, - Université de Ouagadougou, Burkina Faso<br />

Salem Samtally - MSIRI, Mauritius<br />

Pierre Lefeuvre - CIRAD, La Reunion<br />

Jean-Michel Lett - CIRAD, La Reunion<br />

Michel Peterschmitt - CIRAD, France<br />

Oliver Windram - University <strong>of</strong> Warwick, England<br />

Peter Markham - ex John Innes Centre, England<br />

Phillipe Lemey - Katholieke Universiteit Leuven, Leuven, Belgium<br />

Rob Briddon - NIBGE, Pakistan<br />

Siobhan Duffy - Rutguers University, USA<br />

Jane Polston - University <strong>of</strong> Florida, USA


Acknowledgements<br />

Arvind Varsani<br />

Carnegie Corporation <strong>of</strong> New York, USA<br />

Darren Martin<br />

Sydney Brenner Foundation<br />

Harry Oppenheimer Foundation, South Africa<br />

Wellcome trust research foundation, UK<br />

Dionne Shepherd<br />

Claude Leon Foundation and PANNAR (Pty) Ltd<br />

National Research Foundation, South Africa<br />

Harry Oppenheimer Foundation, South Africa<br />

University <strong>of</strong> Cape Town block grant, South Africa<br />

Wellcome trust research foundation, UK<br />

Marsden Fund, New Zealand<br />

University <strong>of</strong> Canterbury Early career research grant, New Zealand<br />

Bimolecular interaction centre seed grant, New Zealand

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!