01.11.2014 Views

新型金屬天線微帶匹配器的設計與開發 - 陸軍軍官學校

新型金屬天線微帶匹配器的設計與開發 - 陸軍軍官學校

新型金屬天線微帶匹配器的設計與開發 - 陸軍軍官學校

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

黃 埔 學 報 第 五 十 三 期 民 國 九 十 六 年<br />

WHAMPOA - An Interdisciplinary Journal 53(2007) 111-114<br />

111<br />

Microstrip Circuitry Impedance Matching Regulator Design for a Simple<br />

Rectangular Metal Radiator in an Antenna<br />

Shen Cherng 1 , Yuan-Tung Cheng 2 , Hsien-Chiao Teng 3<br />

1<br />

Graduate Intitute of Electrical Engineering, Chengshiu University<br />

2<br />

Graduate Intitute of Electronic Engineering, Chengshiu University<br />

3<br />

Department of Electrical Engineering, Chinese Military Academy<br />

Abstract<br />

A microstrip circuit recommended can be used as an impedance matching regulator<br />

for adjusting the VSWR of a loading device. A simple rectangular metal antenna is on the<br />

application of being improved the impedance matching and the antenna gain at specific<br />

operation frequencies. In this article, an equivalent circuit as the result of transmission line<br />

model is proposed.<br />

Key words: SWR , microstrip circuit , equivalent circuit<br />

1. Introduction<br />

Using probing network circuit to<br />

control the function of microstrip antenna<br />

has been discussed a lot [1]. However, the<br />

equivalent circuit created from the<br />

microstrip transmission line model is very<br />

difficult to be constructed due to the<br />

characteristics of the distributed microstrip<br />

elements of the circuit being coupled to the<br />

antenna operated on S band and C band.<br />

The dilemma exists in both Thevenin and<br />

Norton equivalents [2]. We proposed a<br />

circuit with loading device includes two<br />

admittances, one for the load of the<br />

functional microstrip band-pass circuit and<br />

one for the metal radiator [4, 5, 6, 7]. The<br />

microstrip circuit regulates the VSWR to<br />

filter out specific frequency on the bands<br />

and select available operation frequencies.<br />

2. Configuration<br />

Figure 1. shows schematic drawing<br />

of the top view of the proposed microstrip<br />

circuit. The circuit includes three parts<br />

(components), microstrip circuit, connecting<br />

path and a copper metal radiator (metal<br />

antenna). As shown in the figure, the<br />

filter circuit and via path connecting to the<br />

metal radiator can be analyzed by using<br />

transmission line model.<br />

3. Results and Discussion<br />

The proposed antenna is depicted in<br />

Figure 1. The thickness and dielectric<br />

constant of the FR4 plate are indicated d =<br />

0.4 mm, ε<br />

r<br />

= 4.4. Figure 2 depicts the<br />

return loss of the measurement of the<br />

antenna including microstrip strip circuit


112 黃 埔 學 報 第 五 十 三 期 民 國 九 十 六 年<br />

coupled to a major metal radiator as loading<br />

device.<br />

Figure 2. Measurement of the<br />

Return Loss.The impedance<br />

matching of the metal antenna<br />

at 2.85GHz is shown being<br />

improved by coupling to<br />

microstrip circuit regulator<br />

(1)<br />

(A) parameters of the circuit<br />

(B) parameters determined by<br />

neuronet calculation<br />

Figure 1. A microstrip circuit<br />

with loading device.<br />

Figure 3. depicted the prototype of<br />

the design constructed. Figure 4.<br />

demonstrates the field-patterns of the<br />

antenna, including radiator and the<br />

microstrip circuit impedance matching<br />

regulator, that the filter circuit via path being<br />

connected to radiator. The presence of the<br />

forward and backward scattering current<br />

driven by filter circuit delivers the excitation<br />

power via path for the modes of resonances<br />

of the metal radiator. In Figure 5., the gain<br />

of the proposed antenna is depicted. The<br />

filter circuit can improve the impedance<br />

matching and select 2.85 GHz in S band as<br />

well as reducing XPL at elevation plan.<br />

Morover, at other available operating<br />

frequencies, we can observe much better<br />

omnidirectional field pattern and reduced<br />

XPL .(not shown in figure)


Shen Cherng、Yuan Tung Cheng Hsien-Chiao Teng:Microstrip Circuitry Impedance Matching 113<br />

Regulator Design for a Simple Rectangular Metal Radiator in an Antenna<br />

Figure 3. The prototype of the proposed<br />

design constructed<br />

The parameters of the microstrip<br />

lines can be optimized by radial basis<br />

neuronet model. The calculated parameters<br />

are depicted in the following table I.<br />

Figure 5. Gain of the metal antenna<br />

coupling to the proposed microstrip<br />

circuit<br />

Conclusion<br />

Figure 4. The measured radiation<br />

pattern at 2.85GHz<br />

The proposed design of microstrip<br />

filter circuit coupling to metal radiator can<br />

be used to select available frequency-bands<br />

for carrying out specific gain for mobile<br />

system, for instance space shuttle or<br />

WiMAX consideration. Under the<br />

conditions of least XPL, the optional design<br />

of the filter circuit can be performed to<br />

satisfy the specification for the users.<br />

References<br />

Table ( I ) The parameters of the<br />

microstrip lines<br />

unit:mm<br />

(W 1 S 1 ) (W 2 S 2 ) (W 3 S 3 ) (W 4 S 4 ) (W 5 S 5 )<br />

(4,8) (2,1) (6,9) (2,1) (4,8)<br />

[1]. KL Wong, Planar antennas for wireless<br />

communications, Chapter 5~7, John<br />

Wiley & Sons, New York, NY.2003<br />

[2]. JV Bladel, ” On equivalent circuit of a<br />

receiving antenna ,” IEEE Antennas and<br />

Propagation Magazine, vol.44, No.1,<br />

pp164~165, February, 2002<br />

[3]. KL Wong, CH Wu and FS Chang, “A


114 黃 埔 學 報 第 五 十 三 期 民 國 九 十 六 年<br />

compact wideband omnidirectional cross<br />

plate monopole antenna,” Microwave<br />

and Optical Technology Letters, vol.44,<br />

No.6, pp492~494, March 20, 2005<br />

[4]. JP Kim, ”Analysis and equivalent circuit<br />

of aperture-coupled cavity-fed<br />

microstrip patch antenna,” Microwave<br />

and Optical Technology Letters, vol.48,<br />

No.5, pp843~846, May, 2006<br />

[5]. AW Love,” Comment : On equivalent<br />

circuit of a receiving antenna,” IEEE<br />

Antennas and Propagation Magazine,<br />

vol.44, No. 5, pp124~125, October, 2002<br />

[6]. JV Bladel, ” On equivalent circuit of a<br />

receiving antenna ,” IEEE Antennas and<br />

Propagation Magazine, vol.44, No.1,<br />

pp164~165, February, 2002<br />

[7]. TW Chiou and KL Wong, ”Designs of<br />

compact microstrip antennas with a<br />

slotted ground plan,” 2001 IEEE<br />

Antennas Propagat. Soc.Int. Symp. Dig.,<br />

pp732~735<br />

新 型 金 屬 天 線 微 帶 匹 配 器 的 設 計 與 開 發<br />

程 深<br />

1 , 程 遠 東<br />

2 , 鄧 先 巧<br />

3<br />

1<br />

正 修 科 技 大 學 電 機 研 究 所<br />

2<br />

正 修 科 技 大 學 電 子 研 究 所<br />

3<br />

陸 軍 軍 官 學 校 電 機 系<br />

摘 要<br />

利 用 微 帶 線 設 計 濾 波 電 路 , 可 以 用 作 天 線 的 匹 配 器 , 選 擇 想 要 的 操 作 頻 率 與 適 當 的<br />

匹 配 條 件 。 本 篇 論 文 提 出 一 種 簡 單 的 濾 波 電 路 , 可 以 作 為 匹 配 器 , 具 有 良 好 的 選 頻 以<br />

及 調 整 匹 配 SWR 的 功 能 。<br />

關 鍵 字 : SWR, 微 帶 電 路 , 等 效 電 路

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!