01.11.2014 Views

the reef biota at bunurong marine national park - Parks Victoria

the reef biota at bunurong marine national park - Parks Victoria

the reef biota at bunurong marine national park - Parks Victoria

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>park</strong>s victoria technical series<br />

Number 84<br />

<strong>Victoria</strong>n Subtidal Reef Monitoring Program:<br />

The Reef Biota <strong>at</strong> Bunurong<br />

Marine N<strong>at</strong>ional Park<br />

S. Davis, K. Pritchard and M. Edmunds<br />

May 2011


© <strong>Parks</strong> <strong>Victoria</strong><br />

All rights reserved. This document is subject to <strong>the</strong> Copyright Act 1968, no part of this public<strong>at</strong>ion<br />

may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means,<br />

electronic, mechanical, photocopying or o<strong>the</strong>rwise without <strong>the</strong> prior permission of <strong>the</strong> publisher.<br />

First published 2013<br />

Published by <strong>Parks</strong> <strong>Victoria</strong><br />

Level 10, 535 Bourke Street, Melbourne <strong>Victoria</strong> 3000<br />

Opinions expressed by <strong>the</strong> Authors of this public<strong>at</strong>ion are not necessarily those of <strong>Parks</strong> <strong>Victoria</strong>,<br />

unless expressly st<strong>at</strong>ed. <strong>Parks</strong> <strong>Victoria</strong> and all persons involved in <strong>the</strong> prepar<strong>at</strong>ion and distribution<br />

of this public<strong>at</strong>ion do not accept any responsibility for <strong>the</strong> accuracy of any of <strong>the</strong> opinions or<br />

inform<strong>at</strong>ion contained in <strong>the</strong> public<strong>at</strong>ion.<br />

Authors:<br />

Shaun Davis – Marine Ecologist, Australian Marine Ecology Pty. Ltd.<br />

K<strong>at</strong>harine Pritchard – Marine Ecologist, Australian Marine Ecology Pty. Ltd.<br />

M<strong>at</strong>t Edmunds – Principal Ecologist, Australian Marine Ecology Pty. Ltd.<br />

N<strong>at</strong>ional Library of Australia<br />

C<strong>at</strong>aloguing-in-public<strong>at</strong>ion d<strong>at</strong>a<br />

Includes bibliography<br />

ISSN 1448-4935<br />

Cit<strong>at</strong>ion<br />

S. Davis, K. Pritchard and M. Edmunds (2011) <strong>Victoria</strong>n Subtidal Reef Monitoring Program:<br />

<strong>the</strong> <strong>reef</strong> <strong>biota</strong> <strong>at</strong> Bunurong Marine N<strong>at</strong>ional Park, May 2011. <strong>Parks</strong> <strong>Victoria</strong> Technical Series<br />

No. 84. <strong>Parks</strong> <strong>Victoria</strong>, Melbourne.<br />

The <strong>Victoria</strong>n Subtidal Reef Monitoring Program was initi<strong>at</strong>ed and funded by <strong>the</strong> <strong>the</strong>n Department<br />

of N<strong>at</strong>ural Resources and Environment until 2002, when <strong>Parks</strong> <strong>Victoria</strong> assumed responsibility.<br />

Printed on environmentally friendly paper


<strong>Parks</strong> <strong>Victoria</strong> Technical Paper Series No. 84<br />

<strong>Victoria</strong>n Subtidal Reef Monitoring<br />

Program:<br />

The Reef Biota <strong>at</strong> Bunurong Marine<br />

N<strong>at</strong>ional Park, May 2011<br />

Shaun Davis<br />

K<strong>at</strong>harine Pritchard<br />

M<strong>at</strong>t Edmunds<br />

Australian Marine Ecology Pty. Ltd.


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

EXECUTIVE SUMMARY<br />

Shallow <strong>reef</strong> habit<strong>at</strong>s cover extensive areas along <strong>the</strong> <strong>Victoria</strong>n coast and are domin<strong>at</strong>ed by<br />

seaweeds, motile invertebr<strong>at</strong>es and fishes. These <strong>reef</strong>s are known for <strong>the</strong>ir high biological<br />

complexity, species diversity and productivity. They also have significant economic value<br />

through commercial and recre<strong>at</strong>ional fishing, diving and o<strong>the</strong>r tourism activities. In order to<br />

effectively manage and conserve <strong>the</strong>se important and biologically rich habit<strong>at</strong>s, <strong>the</strong> <strong>Victoria</strong>n<br />

government has established a long-term Subtidal Reef Monitoring Program (SRMP). Over<br />

time <strong>the</strong> SRMP will provide inform<strong>at</strong>ion on <strong>the</strong> st<strong>at</strong>us of <strong>Victoria</strong>n <strong>reef</strong> flora and fauna and<br />

determine <strong>the</strong> n<strong>at</strong>ure and magnitude of trends in species popul<strong>at</strong>ions and species diversity<br />

through time.<br />

The monitoring program in and around <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park (MNP) began in<br />

1999. Since th<strong>at</strong> time, 12 census events have occurred surveying between 4 and 12 sites<br />

each time. The monitoring involves standardised underw<strong>at</strong>er visual census methods to a<br />

depth of 8 m. This report aims to provide:<br />

• a general description of <strong>the</strong> biological communities and species popul<strong>at</strong>ions <strong>at</strong> each<br />

monitoring site; and<br />

• an identific<strong>at</strong>ion of any unusual biological phenomena, interesting communities,<br />

strong temporal trends and/or <strong>the</strong> presence of any introduced species.<br />

The surveys were done along a 200 m transect line. Each transect was surveyed for:<br />

1. abundance and size structure of large fishes;<br />

2. abundance of cryptic fishes and benthic invertebr<strong>at</strong>es;<br />

3. percentage cover of macroalgae; and<br />

4. density of a dominant kelp species (Macrocystis pyrifera).<br />

To d<strong>at</strong>e over 300 different species have been observed during <strong>the</strong> monitoring program in and<br />

around Bunurong Marine N<strong>at</strong>ional Park. The algal community structure <strong>at</strong> Bunurong is one of<br />

<strong>the</strong> most diverse of <strong>the</strong> <strong>Victoria</strong>n coast. This is partly due to <strong>the</strong> predominance of large brown<br />

algal species including Seirococcus axillaris, Cystophora species, Sargassum species and<br />

Acrocarpia panicul<strong>at</strong>a. The invertebr<strong>at</strong>e community was largely composed of <strong>the</strong> blacklip<br />

abalone Haliotis rubra, <strong>the</strong> gastropod Turbo undul<strong>at</strong>us and a variety of sea stars, particularly<br />

Meridiastra gunnii and Tosia australis. The common fish species included blue-thro<strong>at</strong>ed<br />

wrasse Notolabrus tetricus, purple wrasse Notolabrus fucicola, sen<strong>at</strong>or wrasse Pictilabrus<br />

l<strong>at</strong>iclavius, silver sweep Scorpis aequipinnis and scalyfin Parma victoriae.<br />

I


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Key observ<strong>at</strong>ions from <strong>the</strong> monitoring program were:<br />

• seaweed species richness remained rel<strong>at</strong>ively high and was consistently higher within<br />

<strong>the</strong> MNP, seaweed diversity during 2011 was <strong>the</strong> lowest since <strong>the</strong> MNP introduction;<br />

• <strong>the</strong> seagrass Amphibolis antarctica was <strong>at</strong> maximum cover in 2011;<br />

• little change in <strong>the</strong> cover of canopy algal species occurred inside and outside <strong>the</strong><br />

MNP since its introduction. In 2011 however, <strong>the</strong>re was a reduction in <strong>the</strong> cover of C.<br />

pl<strong>at</strong>ylobium and an increase in <strong>the</strong> cover of A. panicul<strong>at</strong>a in both reference and MNP<br />

sites;<br />

• invertebr<strong>at</strong>e abundance in both <strong>the</strong> MNP and reference sites peaked during <strong>the</strong><br />

baseline period in 2001 to 2002 surveys. Since this time <strong>the</strong> abundance of <strong>the</strong> most<br />

dominant invertebr<strong>at</strong>es H. rubra, T. undul<strong>at</strong>us, D. orbita and H. erythrogramma have<br />

declined;<br />

• invertebr<strong>at</strong>e control charts indic<strong>at</strong>e a shift in <strong>the</strong> assemblage structure of<br />

invertebr<strong>at</strong>es in <strong>the</strong> eastern reference sites, <strong>at</strong>tributed to major declines in <strong>the</strong><br />

abundance of T. undul<strong>at</strong>us and M. gunnii;<br />

• <strong>the</strong> close-interval baseline monitoring identified intra and inter-annual fluctu<strong>at</strong>ions in<br />

density of <strong>reef</strong> fishes, particularly blue thro<strong>at</strong>ed wrasse N. tetricus, purple wrasse N.<br />

fucicola and sen<strong>at</strong>or wrasse P. l<strong>at</strong>iclavius;<br />

• <strong>the</strong> densities of blue thro<strong>at</strong>ed wrasse N. tetricus were similar inside and outside <strong>the</strong><br />

MNP, with densities after MNP declar<strong>at</strong>ion varying within a similar range;<br />

• <strong>the</strong> densities of purple wrasse N. fucicola were higher inside <strong>the</strong> MNP before<br />

declar<strong>at</strong>ion, but have since dropped to densities similar to <strong>the</strong> reference areas. No N.<br />

fucicola were observed in MNP sites in <strong>the</strong> 2011 survey;<br />

• <strong>the</strong> density of sen<strong>at</strong>or wrasse P. l<strong>at</strong>iclavius was generally low inside <strong>the</strong> MNP<br />

following declar<strong>at</strong>ion. In reference areas a spike in abundance in 2006, has not been<br />

repe<strong>at</strong>ed in subsequent surveys;<br />

• exceptionally low densities were observed for zebrafish Girella zebra in 2005, 2006<br />

and 2010 and for magpie morwong Cheilodactylus nigripes in 2010, inside and<br />

outside <strong>the</strong> MNP. Girella zebra abundances increased in reference areas in 2011,<br />

associ<strong>at</strong>ed with a large number of individuals <strong>at</strong> Cape P<strong>at</strong>terson (Site 1);<br />

• no introduced species were sighted in any of <strong>the</strong> 12 censuses <strong>at</strong> Bunurong;<br />

• very low abundances of <strong>the</strong> coldw<strong>at</strong>er string kelp M. pyrifera were recorded from<br />

2003 onwards. In 2011 M. pyrifera was sighted <strong>at</strong> three sites in low abundances;<br />

• <strong>the</strong>re was a substantial decline in sizes of blacklip abalone H. rubra in MNP sites and<br />

a drastic decline <strong>at</strong> reference sites; and<br />

II


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

• a distinct decline occurred in fish abundances over 200 mm length, with densities in<br />

2010 and 2011 being <strong>at</strong> or below previously recorded levels. This decline was more<br />

marked inside <strong>the</strong> Bunurong MNP.<br />

III


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

CONTENTS<br />

EXECUTIVE SUMMARY .............................................................................................. I<br />

CONTENTS ............................................................................................................... IV<br />

INDEX OF FIGURES AND TABLES .......................................................................... V<br />

1 INTRODUCTION .................................................................................................. 1<br />

1.1 Subtidal Reef Ecosystems on <strong>the</strong> <strong>Victoria</strong>n Coast ........................................ 1<br />

1.2 Subtidal Reef Monitoring Program ................................................................ 6<br />

1.2.1 Objectives .............................................................................................. 6<br />

1.2.2 Monitoring Protocols and Loc<strong>at</strong>ions ....................................................... 8<br />

1.3 Subtidal Reef Monitoring <strong>at</strong> Bunurong ........................................................... 9<br />

2 METHODS ......................................................................................................... 10<br />

2.1 Site Selection and Survey Times ................................................................ 10<br />

2.2 Census Method ........................................................................................... 13<br />

2.2.1 Underw<strong>at</strong>er Visual Census Approach .................................................. 13<br />

2.2.2 Survey Design ...................................................................................... 13<br />

2.2.3 Method 1 – Mobile Fishes and Cephalopods ....................................... 14<br />

2.2.4 Method 2 – Invertebr<strong>at</strong>es and Cryptic Fishes ....................................... 14<br />

2.2.5 Method 3 – Macroalgae ....................................................................... 15<br />

2.2.6 Method 4 – Macrocystis ....................................................................... 15<br />

2.2.7 Method 5 – Fish Stereo Video .............................................................. 16<br />

2.3 D<strong>at</strong>a Analysis - Condition indic<strong>at</strong>ors ............................................................ 22<br />

2.3.1 Approach .............................................................................................. 22<br />

2.3.2 Biodiversity ........................................................................................... 23<br />

2.3.3 Ecosystem Functional Components ..................................................... 25<br />

2.3.4 Introduced species ............................................................................... 26<br />

2.3.5 Clim<strong>at</strong>e change .................................................................................... 26<br />

2.3.6 Fishing ................................................................................................. 28<br />

3 RESULTS ........................................................................................................... 30<br />

3.1 Biodiversity .................................................................................................. 30<br />

3.1.1 Community Structure ........................................................................... 30<br />

3.1.2 Species richness and Diversity ............................................................ 39<br />

3.1.3 Abundances of Selected Species ......................................................... 43<br />

3.2 Ecosystem Components ............................................................................. 53<br />

3.3 Introduced Species ...................................................................................... 60<br />

3.4 Clim<strong>at</strong>e Change........................................................................................... 61<br />

3.5 Fishing ......................................................................................................... 70<br />

4 REFERENCES ................................................................................................... 79<br />

5 ACKNOWLEDGEMENTS .................................................................................. 82<br />

IV


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Index of Figures and Tables<br />

FIGURES<br />

Figure 1.1. Examples of macroalgae found on subtidal <strong>reef</strong>s on <strong>the</strong> <strong>Victoria</strong>n coast. .............. 3<br />

Figure 1.2. Examples of species of invertebr<strong>at</strong>es and cryptic fish found on <strong>Victoria</strong>n subtidal<br />

<strong>reef</strong>s. ........................................................................................................................ 4<br />

Figure 1.3. Examples of fish species found on <strong>Victoria</strong>n subtidal <strong>reef</strong>. .................................... 5<br />

Figure 1.4. An example plot depicting change in an environmental, popul<strong>at</strong>ion or community<br />

variable over time (days, months or years) and potential p<strong>at</strong>terns from isol<strong>at</strong>ed<br />

observ<strong>at</strong>ions. ............................................................................................................ 7<br />

Figure 1.5. The Eagles Nest stack rising above intertidal pl<strong>at</strong>forms, eastern end of Shack<br />

Bay. .......................................................................................................................... 9<br />

Figure 2.1. Loc<strong>at</strong>ion of survey sites associ<strong>at</strong>ed with <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park and<br />

Eastern and Western Conserv<strong>at</strong>ion Zones of <strong>the</strong> Bunurong Marine and Coastal<br />

Park. ....................................................................................................................... 12<br />

Figure 2.2. Biologist-diver with transect line. ......................................................................... 14<br />

Figure 2.3. The cover of macrophytes is measured by <strong>the</strong> number of points intersecting each<br />

species on <strong>the</strong> quadr<strong>at</strong> grid. .................................................................................... 16<br />

Figure 3.1. Three-dimensional MDS plot of algal assemblage structure <strong>at</strong> Bunurong for each<br />

site: (a) MNP sites (b) reference sites. Kruskal stress value = 0.16 ......................... 33<br />

Figure 3.2. Control charts of algal assemblage structure inside and outside Bunurong Marine<br />

N<strong>at</strong>ional Park. ......................................................................................................... 34<br />

Figure 3.3. Three-dimensional MDS plot of invertebr<strong>at</strong>e assemblage structure <strong>at</strong> Bunurong<br />

for each site: (a) MNP sites; and (b) reference sites. Kruskal Stress value= 0.17 ... 35<br />

Figure 3.4. Control chart of invertebr<strong>at</strong>e assemblage structure inside and outside Bunurong<br />

Marine N<strong>at</strong>ional Park. ............................................................................................. 36<br />

Figure 3.5. Three-dimensional MDS plot of fish assemblage structure <strong>at</strong> Bunurong for each<br />

site: (a) MNP sites; and (b) reference sites. Kruskal Stress value = 0.20 ................ 37<br />

Figure 3.6. Control chart of fish assemblage structure inside and outside Bunurong Marine<br />

N<strong>at</strong>ional Park. ......................................................................................................... 38<br />

Figure 3.7. Algal species diversity indic<strong>at</strong>ors (± Standard Error) inside and outside Bunurong<br />

Marine N<strong>at</strong>ional Park. ............................................................................................. 40<br />

Figure 3.8. Invertebr<strong>at</strong>e species diversity indic<strong>at</strong>ors (± Standard Error) inside and outside<br />

Bunurong Marine N<strong>at</strong>ional Park. ............................................................................. 41<br />

Figure 3.9. Fish species diversity indic<strong>at</strong>ors (± Standard Error) inside and outside Bunurong<br />

Marine N<strong>at</strong>ional Park. ............................................................................................. 42<br />

Figure 3.10. Percent cover (± Standard Error) of dominant seagrass and algal species inside<br />

and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. .................................................... 45<br />

Figure 3.10. (continued) Percent cover (± Standard Error) of dominant seagrass and algal<br />

species inside and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. ........................... 456<br />

Figure 3.10. (continued) Percent cover (± Standard Error) of dominant seagrass and algal<br />

species inside and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. ........................... 457<br />

Figure 3.11. Mean abundance (± Standard Error) of dominant invertebr<strong>at</strong>e species inside<br />

and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. .................................................... 48<br />

Figure 3.11. (continued) Mean abundance (± Standard Error) of dominant invertebr<strong>at</strong>e<br />

species inside and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. ........................... 489<br />

Figure 3.12. Mean abundance (± Standard Error) of dominant fish species inside and outside<br />

<strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. ....................................................................... 50<br />

V


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Figure 3.12. (continued) Mean abundance (± Standard Error) of dominant fish species inside<br />

and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. .................................................. 501<br />

Figure 3.12. (continued) Mean abundance (± Standard Error) of dominant fish species inside<br />

and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. .................................................. 502<br />

Figure 3.13. Seaweed functional groups (± Standard Error) inside and outside <strong>the</strong> Bunurong<br />

Marine N<strong>at</strong>ional Park. ............................................................................................. 55<br />

Figure 3.13. (continued) Seaweed functional groups (± Standard Error) inside and outside<br />

<strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. ..................................................................... 556<br />

Figure 3.14. Mean abundance (± Standard Error) of invertebr<strong>at</strong>e functional groups inside and<br />

outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. ........................................................... 57<br />

Figure 3.14. (continued) Mean abundance (± Standard Error) of invertebr<strong>at</strong>e functional<br />

groups inside and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. ............................ 578<br />

Figure 3.15. Mean abundance (± Standard Error) of fish functional groups inside and outside<br />

<strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. ....................................................................... 59<br />

Figure 3.15. (continued) Mean abundance (± Standard Error) of fish functional groups inside<br />

and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. .................................................... 60<br />

Figure 3.16. Mean cover (± Standard Error) of sediment inside and outside <strong>the</strong> Bunurong<br />

Marine N<strong>at</strong>ional Park .............................................................................................. 60<br />

Figure 3.17. Abundance (± Standard Error) of Maugean algae species inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park. ............................................................................. 64<br />

Figure 3.18. Abundance (± Standard Error) of Maugean fish species inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park. ............................................................................. 65<br />

Figure 3.19. Abundance (± Standard Error) of western algae species inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park. ............................................................................. 66<br />

Figure 3.20. Abundance (± Standard Error) of western invertebr<strong>at</strong>e species inside and<br />

outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. ........................................................... 67<br />

Figure 3.21. Abundance (± Standard Error) of eastern fish species inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park. ............................................................................. 68<br />

Figure 3.22. Abundance (± Standard Error) of string kelp Macrocystis pyrifera inside and<br />

outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. ........................................................... 69<br />

Figure 3.23. Abundance (± Standard Error) of different size classes of <strong>the</strong> blacklip abalone<br />

Haliotis rubra <strong>at</strong> Bunurong Marine N<strong>at</strong>ional Park and reference sites. .................... 71<br />

Figure 3.24. Proportion of legal sized Blacklip Abalone, Haliotis rubra, inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park .............................................................................. 72<br />

Figure 3.25. Density (± Standard Error) of sou<strong>the</strong>rn rock lobster, Jasus edwardsii, inside and<br />

outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park. ........................................................... 72<br />

Figure 3.26. Fish size (± Standard Error) spectra inside and outside <strong>the</strong> Bunurong Marine<br />

N<strong>at</strong>ional Park. ......................................................................................................... 73<br />

Figure 3.27. Biomass (± Standard Error) of fished species inside and outside <strong>the</strong> Bunurong<br />

Marine N<strong>at</strong>ional Park. ............................................................................................. 74<br />

Figure 3.28. Density (± Standard Error) of larger, fished fish species inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park. ............................................................................. 75<br />

Figure 3.29. Abundance (± Standard Error) of different size classes of <strong>the</strong> blue thro<strong>at</strong> wrasse,<br />

Notolabrus tetricus, <strong>at</strong> Bunurong Marine N<strong>at</strong>ional Park and reference sites. ........... 76<br />

Figure 3.30. Abundance (± Standard Error) of different size classes of <strong>the</strong> sen<strong>at</strong>or wrasse,<br />

Pictilabrus l<strong>at</strong>iclavius, <strong>at</strong> Bunurong Marine N<strong>at</strong>ional Park and reference sites. ...... 777<br />

Figure 3.31. Abundance (± Standard Error) of different size classes of <strong>the</strong> magpie morwong,<br />

Cheilodactylus nigripes, <strong>at</strong> Bunurong Marine N<strong>at</strong>ional Park and reference sites. .. 788<br />

VI


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Figure 3.32. Abundance (± Standard Error) of different size classes of <strong>the</strong> purple wrasse,<br />

Notolabrus fucicola, <strong>at</strong> Bunurong Marine N<strong>at</strong>ional Park and reference sites. ........ 788<br />

VII


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

TABLES<br />

Table 2.1. Subtidal <strong>reef</strong> monitoring sites within zones of <strong>the</strong> Bunurong Marine and Coastal<br />

Park and Bunurong Marine N<strong>at</strong>ional Park. .............................................................. 11<br />

Table 2.2. Survey times for monitoring <strong>at</strong> Bunurong. ............................................................ 11<br />

Table 2.3. Mobile fish (Method 1) species censused <strong>at</strong> Bunurong. ....................................... 18<br />

Table 2.4. Invertebr<strong>at</strong>e and cryptic fish (Method 2) species censused <strong>at</strong> Bunurong. ............. 19<br />

Table 2.5. Macroalgae (Method 3) species censused <strong>at</strong> Bunurong....................................... 20<br />

VIII


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

1 INTRODUCTION<br />

1.1 Subtidal Reef Ecosystems on <strong>the</strong> <strong>Victoria</strong>n Coast<br />

Shallow <strong>reef</strong> habit<strong>at</strong>s cover extensive areas along <strong>the</strong> <strong>Victoria</strong>n coast. The majority of <strong>reef</strong>s<br />

in this area are exposed to strong winds, currents and large swell. A prominent biological<br />

component of <strong>Victoria</strong>n shallow <strong>reef</strong>s is kelp and o<strong>the</strong>r seaweeds (Figure 1.1). Large<br />

species, such as <strong>the</strong> common kelp Ecklonia radi<strong>at</strong>a and crayweed Phyllospora comosa, are<br />

usually present along <strong>the</strong> open coast in dense stands. The production r<strong>at</strong>es of dense<br />

seaweed beds are equivalent to <strong>the</strong> most productive habit<strong>at</strong>s in <strong>the</strong> world, including<br />

grasslands and seagrass beds, with approxim<strong>at</strong>ely 2 kg of plant m<strong>at</strong>erial produced per<br />

square metre of seafloor per year. These stands typically have 10-30 kg of plant m<strong>at</strong>erial per<br />

square metre. The biomass of seaweeds is substantially gre<strong>at</strong>er where giant species such as<br />

string kelp Macrocystis pyrifera and bull kelp Durvillaea pot<strong>at</strong>orum occur.<br />

Seaweeds provide important habit<strong>at</strong> structure for o<strong>the</strong>r organisms on <strong>the</strong> <strong>reef</strong>. This habit<strong>at</strong><br />

structure varies considerably, depending on <strong>the</strong> type of seaweed species present. Tall<br />

vertical structures in <strong>the</strong> w<strong>at</strong>er column are formed by M. pyrifera, which sometimes forms a<br />

dense layer of fronds flo<strong>at</strong>ing on <strong>the</strong> w<strong>at</strong>er surface. O<strong>the</strong>r species with large, stalk-like stipes,<br />

such as E. radi<strong>at</strong>a, P. comosa and D. pot<strong>at</strong>orum, form a canopy 0.5-2 m above <strong>the</strong> rocky<br />

substr<strong>at</strong>um. Lower layers of structure are formed by: foliose macroalgae typically 10-30 cm<br />

high, such as <strong>the</strong> green Caulerpa and <strong>the</strong> red Plocamium species; turfs (to 10 cm high) of<br />

red algae species, such as Pterocladia capillacea; and hard encrusting layers of pink<br />

coralline algae. The n<strong>at</strong>ure and composition of <strong>the</strong>se structural layers varies considerably<br />

within and between <strong>reef</strong>s, depending on <strong>the</strong> biogeographic region, depth, exposure to swell<br />

and waves, currents, temper<strong>at</strong>ure range, w<strong>at</strong>er clarity and <strong>the</strong> presence or absence of<br />

deposited sand.<br />

Grazing and pred<strong>at</strong>ory motile invertebr<strong>at</strong>es are prominent animal inhabitants of <strong>the</strong> <strong>reef</strong><br />

(Figure 1.2). Common grazers include blacklip and greenlip abalone Haliotis rubra and<br />

Haliotis laevig<strong>at</strong>a, warrener Turbo undul<strong>at</strong>us and sea urchins Heliocidaris erythrogramma,<br />

Holopneustes spp. and Amblypneustes spp.. These species can influence <strong>the</strong> growth and<br />

survival of habit<strong>at</strong> forming organisms. For example, sponges and foliose seaweeds are often<br />

prevented from growing on encrusting coralline algae surfaces through <strong>the</strong> grazing actions of<br />

abalone and sea urchins. Pred<strong>at</strong>ory invertebr<strong>at</strong>es include dogwhelks Dic<strong>at</strong>hais orbita,<br />

sou<strong>the</strong>rn rock lobster Jasus edwardsii, octopus Octopus maorum and a wide variety of sea<br />

star species. O<strong>the</strong>r large <strong>reef</strong> invertebr<strong>at</strong>es include motile filter feeding animals such as<br />

fea<strong>the</strong>r stars Comanthus trichoptera and sessile (<strong>at</strong>tached) species such as sponges, corals,<br />

bryozoans, hydroids and ascidians.<br />

1


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Fishes are also a prominent component of <strong>reef</strong> ecosystems, in terms of both biomass and<br />

ecological function (Figure 1.3). Reef fish assemblages include roaming pred<strong>at</strong>ors such as<br />

blue thro<strong>at</strong> wrasse Notolabrus tetricus, herbivores such as herring cale Odax cyanomelas,<br />

planktivores such as sea sweep Scorpis aequipinnis and picker-feeders such as six-spined<br />

lea<strong>the</strong>rjacket Meuschenia freycineti. The type and abundance of each fish species varies<br />

considerably depending on exposure to swell and waves, depth, currents, <strong>reef</strong> structure,<br />

seaweed habit<strong>at</strong> structure and many o<strong>the</strong>r ecological variables. Many fish species play a<br />

substantial ecological role in <strong>the</strong> functioning and shaping of <strong>the</strong> ecosystem. For example, <strong>the</strong><br />

feeding activities of fishes such as scalyfin Parma victoriae and magpie morwong<br />

Cheilodactylus nigripes promote <strong>the</strong> form<strong>at</strong>ion of open algal turf areas, free of larger canopyforming<br />

seaweeds.<br />

Although <strong>the</strong> biomass and <strong>the</strong> primary and secondary productivity of shallow <strong>reef</strong><br />

ecosystems in <strong>Victoria</strong> are domin<strong>at</strong>ed by seaweeds, motile invertebr<strong>at</strong>es and fishes, <strong>the</strong>re<br />

are many o<strong>the</strong>r important biological components to <strong>the</strong> <strong>reef</strong> ecosystem. These include small<br />

species of crustaceans and molluscs from 0.1 to 10 mm in size (mesoinvertebr<strong>at</strong>es),<br />

occupying various niches as grazers, pred<strong>at</strong>ors or foragers. At <strong>the</strong> microscopic level, films of<br />

microalgae and bacteria on <strong>the</strong> <strong>reef</strong> surface are also important.<br />

<strong>Victoria</strong>’s shallow <strong>reef</strong>s are a very important component of <strong>the</strong> <strong>marine</strong> environment because<br />

of <strong>the</strong>ir high biological complexity, species diversity and productivity. Subtidal <strong>reef</strong> habit<strong>at</strong>s<br />

also have important social and cultural values, which incorpor<strong>at</strong>e aes<strong>the</strong>tic, recre<strong>at</strong>ional,<br />

commercial and historical aspects. Shallow subtidal <strong>reef</strong>s also have significant economic<br />

value, through commercial fishing of <strong>reef</strong> species such as wrasses, morwong, rock lobster,<br />

abalone and sea urchins, as well as recre<strong>at</strong>ional fishing, diving and o<strong>the</strong>r tourism activities.<br />

2


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Crayweed Phyllospora comosa canopy<br />

Common kelp Ecklonia radi<strong>at</strong>a canopy<br />

Red coralline algae Haliptilon roseum<br />

Thallose red algae Ballia callitricha<br />

Green algae Caulerpa flexilis<br />

Encrusting coralline algae around<br />

crayweed P. comosa holdfast<br />

Figure 1.1. Examples of macroalgae found on subtidal <strong>reef</strong>s on <strong>the</strong> <strong>Victoria</strong>n coast.<br />

3


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Sou<strong>the</strong>rn rock-lobster Jasus edwardsii<br />

Red bait crab Plagusia chabrus<br />

Blacklip abalone Haliotis rubra<br />

Fea<strong>the</strong>r star Comanthus trichoptera<br />

Nectria ocell<strong>at</strong>a<br />

Common sea urchin<br />

Heliocidaris erythrogramma<br />

Fromia polypora<br />

Red velvet fish Gn<strong>at</strong>hanocanthus goetzeei<br />

Figure 1.2. Examples of species of invertebr<strong>at</strong>es and cryptic fish found on <strong>Victoria</strong>n subtidal <strong>reef</strong>s.<br />

4


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Sea sweep Scorpis aequipinnis and<br />

butterfly perch Caesioperca lepidoptera<br />

Scalyfin Parma victoriae<br />

Blue-thro<strong>at</strong>ed wrasse Notolabrus tetricus<br />

(male)<br />

Six-spined lea<strong>the</strong>rjacket Meuschenia<br />

freycineti (male)<br />

Magpie morwong Cheilodactylus nigripes<br />

Old-wife Enoplosus arm<strong>at</strong>us<br />

Figure 1.3. Examples of fish species found on <strong>Victoria</strong>n subtidal <strong>reef</strong>.<br />

5


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

1.2 Subtidal Reef Monitoring Program<br />

1.2.1 Objectives<br />

An important aspect of <strong>the</strong> management and conserv<strong>at</strong>ion of <strong>Victoria</strong>n <strong>marine</strong> n<strong>at</strong>ural<br />

resources and assets is assessing <strong>the</strong> condition of <strong>the</strong> ecosystem and how this changes over<br />

time. Combined with an understanding of ecosystem processes, this inform<strong>at</strong>ion can be used<br />

to manage any thre<strong>at</strong>s or pressures on <strong>the</strong> environment to ensure ecosystem sustainability.<br />

Consequently, <strong>the</strong> <strong>Victoria</strong>n Government has established a long-term Subtidal Reef<br />

Monitoring Program (SRMP). The primary objective of <strong>the</strong> SRMP is to provide inform<strong>at</strong>ion on<br />

<strong>the</strong> st<strong>at</strong>us of <strong>Victoria</strong>n <strong>reef</strong> flora and fauna (focussing on macroalgae, macroinvertebr<strong>at</strong>es<br />

and fish). This includes monitoring <strong>the</strong> n<strong>at</strong>ure and magnitude of trends in species<br />

abundances, species diversity and community structure. This is achieved through regular<br />

surveys <strong>at</strong> loc<strong>at</strong>ions throughout <strong>Victoria</strong>, encompassing both represent<strong>at</strong>ive and unique<br />

habit<strong>at</strong>s and communities.<br />

Inform<strong>at</strong>ion from <strong>the</strong> SRMP allows managers to better understand and interpret long-term<br />

changes in <strong>the</strong> popul<strong>at</strong>ion and community dynamics of <strong>Victoria</strong>’s <strong>reef</strong> flora and fauna. As a<br />

longer time series of d<strong>at</strong>a are collected, <strong>the</strong> SRMP will allow managers to:<br />

• compare changes in <strong>the</strong> st<strong>at</strong>us of species popul<strong>at</strong>ions and biological communities<br />

between highly protected <strong>marine</strong> n<strong>at</strong>ional <strong>park</strong>s and <strong>marine</strong> sanctuaries and o<strong>the</strong>r<br />

<strong>Victoria</strong>n <strong>reef</strong> areas (e.g. Edgar and Barrett 1997, 1999; Edmunds 2000);<br />

• determine associ<strong>at</strong>ions between species and between species and environmental<br />

parameters (e.g. depth, exposure, <strong>reef</strong> topography) and assess how <strong>the</strong>se<br />

associ<strong>at</strong>ions vary through space and time (e.g. Dayton et al. 1998; Edgar et al. 1997;<br />

Edmunds et al. 2000);<br />

• provide benchmarks for assessing <strong>the</strong> effectiveness of management actions, in<br />

accordance with intern<strong>at</strong>ional best practice for quality environmental management<br />

systems (e.g. Holling 1978; Meredith 1997); and<br />

• determine <strong>the</strong> responses of species and communities to unforeseen and<br />

unpredictable events such as <strong>marine</strong> pest invasions, mass mortality events, oil spills,<br />

severe storm events and clim<strong>at</strong>e change (e.g. Ebeling et al. 1985; Edgar 1998; Roob<br />

et al. 2000; Swe<strong>at</strong>man et al. 2008).<br />

A monitoring survey gives an estim<strong>at</strong>e of popul<strong>at</strong>ion abundance and community structure <strong>at</strong><br />

a small window in time. P<strong>at</strong>terns seen in d<strong>at</strong>a from periodic surveys are unlikely to exactly<br />

m<strong>at</strong>ch changes in <strong>the</strong> real popul<strong>at</strong>ions over time or definitively predict <strong>the</strong> size and n<strong>at</strong>ure of<br />

future vari<strong>at</strong>ion. Plots of changes over time are unlikely to m<strong>at</strong>ch <strong>the</strong> changes in real<br />

popul<strong>at</strong>ions because changes over shorter time periods and actual minima and maxima may<br />

6


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

not be adequ<strong>at</strong>ely sampled (e.g. Figure 1.4). Fur<strong>the</strong>rmore, because <strong>the</strong> n<strong>at</strong>ure and<br />

magnitude of environmental vari<strong>at</strong>ion is different over different time scales, vari<strong>at</strong>ion over<br />

long periods may not be adequ<strong>at</strong>ely predicted from shorter-term d<strong>at</strong>a. Sources of<br />

environmental vari<strong>at</strong>ion can oper<strong>at</strong>e <strong>at</strong> <strong>the</strong> scale of months (e.g. seasonal vari<strong>at</strong>ion,<br />

harvesting), years (e.g. El Niño), decades (e.g. pollution, extreme storm events) or even<br />

centuries (e.g. tsunamis, global warming). O<strong>the</strong>r studies indic<strong>at</strong>e this monitoring program will<br />

begin to adequ<strong>at</strong>ely reflect average trends and p<strong>at</strong>terns as <strong>the</strong> surveys continue over longer<br />

periods (multiple years to decades). Results of this monitoring need to be interpreted within<br />

<strong>the</strong> context of <strong>the</strong> monitoring frequency and dur<strong>at</strong>ion.<br />

Parameter<br />

Time<br />

Figure 1.4 An example plot depicting change in an environmental, popul<strong>at</strong>ion or community variable<br />

over time (days, months or years) and potential p<strong>at</strong>terns from isol<strong>at</strong>ed observ<strong>at</strong>ions.<br />

7


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

1.2.2 Monitoring Protocols and Loc<strong>at</strong>ions<br />

The SRMP uses standardised underw<strong>at</strong>er visual census methods based on an approach<br />

developed and applied in Tasmania by Edgar and Barrett (1997). Details of standard<br />

oper<strong>at</strong>ional procedures and quality control protocols for <strong>Victoria</strong>’s SRMP are described in<br />

Edmunds and Hart (2003).<br />

The SRMP was initi<strong>at</strong>ed in May 1998 with 15 sites established on subtidal <strong>reef</strong> habit<strong>at</strong>s in <strong>the</strong><br />

vicinity of Port Phillip Heads Marine N<strong>at</strong>ional Park. In 1999 <strong>the</strong> SRMP was expanded to <strong>reef</strong>s<br />

in <strong>the</strong> vicinity of <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park, Phillip Island and Wilsons Promontory<br />

Marine N<strong>at</strong>ional Park.<br />

In 2003 and 2004, <strong>the</strong> Subtidal Reef Monitoring Program was expanded to include Marine<br />

N<strong>at</strong>ional <strong>Parks</strong> and Marine Sanctuaries throughout <strong>Victoria</strong>.<br />

8


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

1.3 Subtidal Reef Monitoring <strong>at</strong> Bunurong<br />

This report describes <strong>the</strong> Subtidal Reef Monitoring Program in <strong>the</strong> Bunurong region and<br />

results from twelve surveys, incorpor<strong>at</strong>ing Bunurong Marine N<strong>at</strong>ional Park (Figure 1.5) and<br />

<strong>the</strong> adjacent conserv<strong>at</strong>ion areas of <strong>the</strong> Bunurong Marine and Coastal Park. The objectives of<br />

this report were to:<br />

1. provide an overview of <strong>the</strong> methods used for SRMP;<br />

2. provide general descriptions of <strong>the</strong> biological communities and species popul<strong>at</strong>ions <strong>at</strong><br />

each monitoring site up to May 2011;<br />

3. describe changes and trends th<strong>at</strong> have occurred over <strong>the</strong> monitoring period;<br />

4. identify any unusual biological phenomena such as interesting of unique communities<br />

or species; and<br />

5. identify any introduced species <strong>at</strong> <strong>the</strong> monitoring loc<strong>at</strong>ions.<br />

Figure 1.5. The Eagles Nest stack rising above intertidal pl<strong>at</strong>forms, eastern end of Shack Bay.<br />

9


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

2 METHODS<br />

2.1 Site Selection and Survey Times<br />

Eight long-term monitoring sites were established along <strong>the</strong> Bunurong coast in June 1999<br />

(Sites 1 to 8; Table 2.1, Figure 2.1) The sites were loc<strong>at</strong>ed in 4 - 7m depth in three zones:<br />

Western Zone (2 sites); <strong>the</strong> Central Zone (4 sites); and <strong>the</strong> Eastern Zone (2 sites). Three<br />

deep-w<strong>at</strong>er reconnaissance sites were surveyed in 16 m depth, with one site in each of <strong>the</strong><br />

Western, Central and Eastern zones (Sites 9 to 11; Table 2.1, Figure 1.1).<br />

A fur<strong>the</strong>r four sites were established <strong>at</strong> 4-7 m depth during <strong>the</strong> second survey in<br />

January/March 2000 (Sites 12 to 15; Figure 2.1). The second Bunurong survey was over<br />

three periods because of persistent poor visibility conditions throughout <strong>the</strong> summer period<br />

(Table 2.2).<br />

The third survey commenced in winter 2000. However, persistently bad wea<strong>the</strong>r and heavy<br />

rainfalls affected diving conditions and underw<strong>at</strong>er visibility for much of winter and spring.<br />

Only four sites could be surveyed: Sites 6, 12, 7 and 8.<br />

An analysis of wind and rainfall d<strong>at</strong>a indic<strong>at</strong>ed <strong>the</strong> best periods for monitoring <strong>at</strong> Bunurong<br />

were in January/February and in June.<br />

All sites were surveyed in summer 2000/2001 (Survey 4), winter 2001 (Survey 5), summer<br />

2001/2002 (Survey 6), winter 2002 (Survey 7), spring 2003 (Survey 8), summer 2004/2005<br />

(Survey 9), autumn 2006 (Survey 10), summer 2009/2010 (Survey 11) and autumn 2011<br />

(Survey 12; Table 2.2).<br />

10


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Table 2.1. Subtidal <strong>reef</strong> monitoring sites within zones of <strong>the</strong> Bunurong Marine and Coastal Park and<br />

Bunurong Marine N<strong>at</strong>ional Park.<br />

Region No. Description St<strong>at</strong>us Depth<br />

Western Zone 3001 Cape P<strong>at</strong>terson Reference 4<br />

3002 C. P<strong>at</strong>. Bo<strong>at</strong> Ramp Reference 6<br />

3015 Bo<strong>at</strong> Ramp East Reference 7<br />

3009 P<strong>at</strong>terson West Deep Reference 15<br />

Marine N<strong>at</strong>ional<br />

Park<br />

3014 The Oaks Beach MPA 7<br />

3003 Oaks East MPA 6<br />

3004 Twin Reefs MPA 6<br />

3005 Shack Bay West MPA 5<br />

3012 Shack Bay beach MPA 7<br />

3006 Shack Bay Middle MPA 6<br />

3010 Twin Reefs Deep MPA 16<br />

Eastern Zone 3007 The Caves Reference 6<br />

3013 Petrel Rock West Reference 6<br />

3008 Petrel Rock East Reference 5<br />

3011 The Caves Deep Reference 16<br />

Table 2.2. Survey times for monitoring <strong>at</strong> Bunurong.<br />

Survey Number Season Survey Period<br />

1 Winter 1999 8-26 June 1999<br />

2 Summer 1999/2000 9-14 Jan, 17 Feb, 27-28 Mar 2000<br />

3 Winter 2000 30-31 August 2000<br />

4 Summer 2000/2001 18 Dec 2000 to 3 Jan 2001<br />

5 Winter 2001 11-12 May, 4-6 June 2001<br />

6 Summer 2001/2002 14-16 February, 5-7 March 2002<br />

7 Winter 2002 1-3 August, 10-11 August 2002<br />

8 Autumn 2003 28-29 April, 13-15 May 2003<br />

9 Summer 2004/2005 29-30 Nov 2004, 31 Jan to 21 Feb 2005<br />

10 Autumn 2006 2-23 March 2006<br />

11 Summer 2009/2010 21 Dec 2009, 17-18 Feb and 12 Mar 2010<br />

12 Autumn 2011 10-31 May 2011<br />

11


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84 Bunurong Subtidal Reef Monitoring<br />

Figure 2.1. Loc<strong>at</strong>ion of survey sites associ<strong>at</strong>ed with <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park and Eastern and Western Conserv<strong>at</strong>ion Zones of <strong>the</strong> Bunurong<br />

Marine and Coastal Park.<br />

12


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

2.2 Census Method<br />

2.2.1 Underw<strong>at</strong>er Visual Census Approach<br />

The visual census methods of Edgar and Barrett (1997, 1999; Edgar et al. 1997) are used for<br />

this monitoring program. These are non-destructive and provide quantit<strong>at</strong>ive d<strong>at</strong>a on a large<br />

number of species and <strong>the</strong> structure of <strong>the</strong> <strong>reef</strong> communities. The Edgar-Barrett method is<br />

also used in Tasmania, New South Wales, South Australia and Western Australia. The<br />

adoption of this method in <strong>Victoria</strong> provides a system<strong>at</strong>ic and comparable approach to<br />

monitoring <strong>reef</strong>s in sou<strong>the</strong>rn Australia. The survey methods include practical and safety<br />

consider<strong>at</strong>ions for scientific divers and are designed to maximise <strong>the</strong> d<strong>at</strong>a returns per diver<br />

time underw<strong>at</strong>er. The surveys in <strong>Victoria</strong> are in accordance with a standard oper<strong>at</strong>ional<br />

procedure to ensure long-term integrity and quality of <strong>the</strong> d<strong>at</strong>a (Edmunds and Hart 2003).<br />

At most monitoring loc<strong>at</strong>ions in <strong>Victoria</strong>, surveying along <strong>the</strong> 5 m depth contour is considered<br />

optimal because diving times are not limited by decompression schedules and <strong>the</strong>se <strong>reef</strong>s<br />

are of interest to n<strong>at</strong>ural resource managers. However <strong>the</strong> actual area th<strong>at</strong> can be surveyed<br />

varies with <strong>reef</strong> extent, geomorphology and exposure. Monitoring sites along <strong>the</strong> central<br />

coast of <strong>Victoria</strong> are between 4 and 7 m deep.<br />

2.2.2 Survey Design<br />

Each site was loc<strong>at</strong>ed using differential GPS and marked with a buoy or <strong>the</strong> bo<strong>at</strong> anchor. A<br />

100 m numbered and weighted transect line was run along <strong>the</strong> appropri<strong>at</strong>e depth contour<br />

ei<strong>the</strong>r side of <strong>the</strong> central marker (Figure 2.2). The resulting 200 m of line was divided into<br />

four contiguous 50 m sections (T1 to T4). The orient<strong>at</strong>ion of transect was <strong>the</strong> same for each<br />

survey, with T1 generally toward <strong>the</strong> north or east (i.e. anticlockwise along <strong>the</strong> open coast).<br />

For each transect line, four different census methods were used to obtain adequ<strong>at</strong>e<br />

descriptive inform<strong>at</strong>ion on <strong>reef</strong> communities <strong>at</strong> different sp<strong>at</strong>ial scales. These involved <strong>the</strong><br />

census of: (1) <strong>the</strong> abundance and size structure of large fishes; (2) <strong>the</strong> abundance of cryptic<br />

fishes and benthic invertebr<strong>at</strong>es; (3) <strong>the</strong> percent cover of macroalgae and sessile<br />

invertebr<strong>at</strong>es; and (4) <strong>the</strong> density of string-kelp Macrocystis pynifera plants (where present).<br />

In 2010, a new diver-oper<strong>at</strong>ed stereo video method (Method 5) was implemented as a trial to<br />

assess its efficacy for monitoring fish diversity, abundances and sizes. The stereo video<br />

system enables precise measurements of fish lengths and sample volume or area for density<br />

estim<strong>at</strong>es (Harvey et al. 2001a, 2001b, 2002a, 2002b; Harmen et al. 2003; Westera et al.<br />

2003; W<strong>at</strong>son et al. 2010).<br />

13


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

The depth, horizontal visibility, sea st<strong>at</strong>e and cloud cover were recorded for each site.<br />

Horizontal visibility was gauged by <strong>the</strong> distance along <strong>the</strong> transect line to detect a 100 mm<br />

long fish. All field observ<strong>at</strong>ions were recorded on underw<strong>at</strong>er paper.<br />

Figure 2.2. Biologist-diver with transect line.<br />

2.2.3 Method 1 – Mobile Fishes and Cephalopods<br />

The densities of mobile large fishes and cephalopods were estim<strong>at</strong>ed by a diver swimming<br />

up one side of each of a 50 m section of <strong>the</strong> transect, and <strong>the</strong>n back along <strong>the</strong> o<strong>the</strong>r side.<br />

The dominant fish species observed are listed in Table 2.3. The diver recorded <strong>the</strong> number<br />

and estim<strong>at</strong>ed size-class of fish, within 5 m of each side of <strong>the</strong> line (50 x 10 m area). The<br />

following size-classes of fish were used: 25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 375,<br />

400, 500, 625, 750, 875 and 1000+ mm. Each diver had size-marks on an underw<strong>at</strong>er sl<strong>at</strong>e<br />

to enable calibr<strong>at</strong>ion of <strong>the</strong>ir size estim<strong>at</strong>es. Four 10 x 50 m sections of <strong>the</strong> 200 m transect<br />

were censused for mobile fish <strong>at</strong> each site. The d<strong>at</strong>a for easily sexed species were recorded<br />

separ<strong>at</strong>ely for males and female/juveniles. Such species include <strong>the</strong> blue-thro<strong>at</strong>ed wrasse<br />

Notolabrus tetricus, herring cale Odax cyanomelas, barber perch Caesioperca rasor, rosy<br />

wrasse Pseudolabrus rubicundus and some lea<strong>the</strong>rjackets.<br />

2.2.4 Method 2 – Invertebr<strong>at</strong>es and Cryptic Fishes<br />

Cryptic fishes and motile megafaunal invertebr<strong>at</strong>es (e.g. large molluscs, echinoderms,<br />

crustaceans) were counted along <strong>the</strong> transect lines used for <strong>the</strong> fish survey. A diver counted<br />

animals within 1 m of one side of <strong>the</strong> line (a total of four 1 x 50 m sections of <strong>the</strong> 200 m<br />

transect). A known arm span of <strong>the</strong> diver was used to standardise <strong>the</strong> 1 m distance. The<br />

14


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

dominant observed species are listed in Table 2.4. Where possible, <strong>the</strong> maximum length of<br />

abalone and <strong>the</strong> carapace length of rock lobsters were measured in situ using Vernier<br />

callipers and <strong>the</strong> sex of rock lobsters was recorded. Selected specimens were photographed<br />

or collected for identific<strong>at</strong>ion and preserv<strong>at</strong>ion in a reference collection.<br />

2.2.5 Method 3 – Macroalgae<br />

The area covered by macroalgal, seagrass and sessile invertebr<strong>at</strong>e species was quantified<br />

by placing a 0.25 m 2 quadr<strong>at</strong> <strong>at</strong> 10 m intervals along <strong>the</strong> transect line and determining <strong>the</strong><br />

percent cover of all sessile species (Figure 2.3). The quadr<strong>at</strong> was divided into a grid of 7 x 7<br />

perpendicular wires, with 49 wire intersections and one quadr<strong>at</strong> corner making up 50 points.<br />

Cover is estim<strong>at</strong>ed by counting <strong>the</strong> number of points covering a species (1.25 m 2 every 10 m<br />

along a 200 m transect line). The dominant observed seaweed species are listed in Table<br />

2.5. Selected specimens were photographed or collected for identific<strong>at</strong>ion and preserv<strong>at</strong>ion<br />

in a reference collection.<br />

2.2.6 Method 4 – Macrocystis<br />

Where present, <strong>the</strong> density of Macrocystis pyrifera was estim<strong>at</strong>ed. While swimming along <strong>the</strong><br />

transect line between quadr<strong>at</strong> positions for Method 3, a diver counted all observable M.<br />

pyrifera 5 m ei<strong>the</strong>r side of <strong>the</strong> transect. Counts are recorded for each 10 m section of <strong>the</strong><br />

transect (giving counts for 100 m 2 sections of <strong>the</strong> transect).<br />

15


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Figure 2.3. The cover of macrophytes is measured by <strong>the</strong> number of points intersecting each species<br />

on <strong>the</strong> quadr<strong>at</strong> grid.<br />

2.2.7 Method 5 – Fish Stereo Video<br />

A diver oper<strong>at</strong>ed stereo video system (DOVS; SeaGIS design) was used to supplement <strong>the</strong><br />

diver UVC fish surveys. The videos were Canon HG21 handycams recording to SD card in<br />

1080p form<strong>at</strong>. The cameras were calibr<strong>at</strong>ed in a pool before and after <strong>the</strong> excursion using a<br />

SeaGIS calibr<strong>at</strong>ion cube and SeaGIS CAL software for calibr<strong>at</strong>ion of internal and external<br />

camera parameters. The cameras were mounted permanently to a diver frame. A flashing<br />

LED mounted on a pole in front of both frames was used for synchronis<strong>at</strong>ion of paired<br />

images from each camera.<br />

The stereo camera system was used by a single diver who did <strong>the</strong> UVC fish survey <strong>at</strong> <strong>the</strong><br />

same time (Method 1). The camera system was pointed parallel with <strong>the</strong> transect line with<br />

<strong>the</strong> diver swimming 2.5 m to one side of <strong>the</strong> transect and <strong>the</strong>n returning on <strong>the</strong> o<strong>the</strong>r side of<br />

<strong>the</strong> transect, 2.5 m from <strong>the</strong> transect line. The camera unit was tilted vertically (up or down)<br />

according to <strong>the</strong> fish seen to ensure adequ<strong>at</strong>e footage for size measurements. L<strong>at</strong>eral<br />

movement of <strong>the</strong> unit was minimised. The survey speed was 10 m per minute (0.16 m s -1 ).<br />

In <strong>the</strong> labor<strong>at</strong>ory, <strong>the</strong> stereo video footage was converted from MTS to AVI form<strong>at</strong>. The<br />

SeaGIS EventMeasure and PhotoMeasure software were <strong>the</strong>n used for extracting and<br />

recording fish density and fish length estim<strong>at</strong>es from <strong>the</strong> stereo video footage. Measured fish<br />

16


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

were those without body flexure and orient<strong>at</strong>ed transverse to <strong>the</strong> camera, as well as with <strong>the</strong><br />

measurement points visible. Standard lengths (SL) were measured (tip of snout to end of<br />

caudal fin ray). The original video footage and frames used for fish length measurements<br />

were archived. The results of this method were archived for future analysis and were not<br />

reported here.<br />

17


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Table 2.3. Mobile Fishes (Method 1) species censused <strong>at</strong> Bunurong.<br />

Method 1 Method 1 Method 1 Method 1<br />

Sharks and Rays Fishes (cont.) Fishes (cont.) Fishes (cont.)<br />

Heterodontus<br />

portusjacksoni<br />

Parascyllium variol<strong>at</strong>um<br />

Arripis georgianus Dactylophora nigricans Meuschenia australis<br />

Parequula<br />

melbournensis<br />

Sphyraena<br />

novaehollandiae<br />

Meuschenia<br />

flavoline<strong>at</strong>a<br />

Cephaloscyllium l<strong>at</strong>iceps Pagrus aur<strong>at</strong>us Achoerodus gouldii Meuschenia freycineti<br />

Orectolobus halei<br />

Dasy<strong>at</strong>is brevicaud<strong>at</strong>a<br />

Myliob<strong>at</strong>is australis<br />

Urolophus<br />

paucimacul<strong>at</strong>us<br />

Upeneichthys<br />

vlaminghii<br />

Upeneichthys line<strong>at</strong>us<br />

Pempheris multiradi<strong>at</strong>a<br />

Ophthalmolepis<br />

lineol<strong>at</strong>a<br />

Dotalabrus<br />

aurantiacus<br />

Eupetrichthys<br />

angustipes<br />

Meuschenia galii<br />

Meuschenia<br />

hippocrepis<br />

Meuschenia venusta<br />

Pempheris klunzingeri Notolabrus tetricus Meuschenia scaber<br />

Urolophus gigas Kyphosus sydneyanus Notolabrus fucicola Eubalichthys gunnii<br />

Bony Fishes<br />

Girella tricuspid<strong>at</strong>a<br />

Pseudolabrus<br />

rubicundus<br />

Aracana aurita<br />

Pseudophycis barb<strong>at</strong>a Girella zebra Pictilabrus l<strong>at</strong>iclavius Aracana orn<strong>at</strong>a<br />

Siphamia cephalotes Scorpis aequipinnis Odax acroptilus<br />

Dinolestes lewini Scorpis lineol<strong>at</strong>a Odax cyanomelas<br />

Sillaginodes punct<strong>at</strong>a<br />

Pentaceropsis<br />

recurvirostris<br />

Atypichthys strig<strong>at</strong>us<br />

Tilodon sexfasci<strong>at</strong>us<br />

Siphonogn<strong>at</strong>hus<br />

<strong>at</strong>tenu<strong>at</strong>us<br />

Neoodax balte<strong>at</strong>us<br />

Paraplesiops meleagris Enoplosus arm<strong>at</strong>us Haletta semifasci<strong>at</strong>a<br />

Achoerodus gouldii Parma victoriae Aplodactylus arctidens<br />

Tetractenos glaber Parma microlepis Acanthaluteres vittiger<br />

Diodon nich<strong>the</strong>merus<br />

Siphamia cephalotes<br />

Cheilodactylus<br />

nigripes<br />

Cheilodactylus<br />

spectabilis<br />

Scobinichthys<br />

granul<strong>at</strong>us<br />

18


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Table 2.4. Invertebr<strong>at</strong>e and cryptic fishes (Method 2) species censused <strong>at</strong> Bunurong.<br />

Cnidaria<br />

Phlyctenactis<br />

tuberculosa<br />

Method 2 Method 2 Method 2 Method 2<br />

Mollusca (cont.)<br />

Echinoderm<strong>at</strong>a<br />

(cont.)<br />

Cryptic Fishes<br />

Turbo undul<strong>at</strong>us Nectria multispina Aetapcus macul<strong>at</strong>us<br />

Unidentified anemone Astralium tentoriformis Nectria saoria<br />

Notacypraea<br />

angust<strong>at</strong>a<br />

Petricia vernicina<br />

Gn<strong>at</strong>hanacanthus<br />

goetzeei<br />

Pempheris multiradi<strong>at</strong>a<br />

Crustacea Notacypraea comptoni Fromia polypora Parma victoriae (juv.)<br />

Jasus edwardsii Cabestana spengleri Plectaster decanus Parma microlepis (juv.)<br />

Paguristes frontalis Sassia subdistorta Echinaster arcyst<strong>at</strong>us Bovichtus angustifrons<br />

Strigopagurus<br />

strigimanus<br />

Pagurid unidentified<br />

Nectocarcinus<br />

tubercul<strong>at</strong>us<br />

Dic<strong>at</strong>hais orbita<br />

Pleuroploca<br />

australasia<br />

Penion mandarinus<br />

Pseudonepanthia<br />

troughtoni<br />

Meridiastra gunnii<br />

Coscinasterias<br />

muric<strong>at</strong>a<br />

Trinorfolkia clarkei<br />

Heteroclinus tristis<br />

Heteroclinus johnstoni<br />

Plagusia chabrus Cominella lineol<strong>at</strong>a Uniophora granifera Diodon nich<strong>the</strong>merus<br />

Mollusca<br />

Haliotis rubra<br />

Haliotis laevig<strong>at</strong>a<br />

Haliotis scalaris<br />

Conus anemone Amblypneustes spp. Dasy<strong>at</strong>is brevicaud<strong>at</strong>a<br />

Mitra glabra<br />

Sagaminopteron<br />

orn<strong>at</strong>um<br />

Cephalopoda<br />

Holopneustes<br />

porosissimus<br />

Holopneustes infl<strong>at</strong>us<br />

Holopneustes<br />

purpurascens<br />

Heliocidaris<br />

erythrogramma<br />

Scutus antipodes Sepia apama Pentagonaster dubeni<br />

Calliostoma armill<strong>at</strong>a<br />

Austrocochlea odontis Echinoderm<strong>at</strong>a Cryptic Fishes<br />

Phasianotrochus rutilus<br />

Phasianotrochus<br />

eximius<br />

Phasianella australis<br />

Phasianella ventricosa<br />

Comanthus tricoptera<br />

Comanthus tasmaniae<br />

Tosia australis<br />

Nectria ocell<strong>at</strong>a<br />

Nectria macrobrachia<br />

Parascyllium<br />

variol<strong>at</strong>um<br />

Scorpaena papillosa<br />

Glyptauchen<br />

pandur<strong>at</strong>us<br />

Neosebastes<br />

scorpaenoides<br />

Helicolenus percoides<br />

Neosebastes<br />

scorpaenoides<br />

Urolophus<br />

paucimacul<strong>at</strong>us<br />

Unidentified<br />

heteroclinid<br />

Unidentified fish<br />

19


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Table 2.5. Macroalgae (Method 3) species censused <strong>at</strong> Bunurong.<br />

Method 3 Method 3 Method 3 Method 3<br />

Chlorophyta (green<br />

algae)<br />

Phaeophyta (cont.) Rhodophyta (cont.) Rhodophyta (cont.)<br />

Ulva spp. Zonaria sp. Delisea hypneoides<br />

Thamnoclonium<br />

dichotomum<br />

Chaetomorpha sp. Lobophora varieg<strong>at</strong>a Delisea pulchra Plocamium angustum<br />

Abjohnia laetevirens Carpomitra cost<strong>at</strong>a Ptilonia australasiae Plocamium cost<strong>at</strong>um<br />

Cladophora spp. Perithalia caud<strong>at</strong>a Asparagopsis spp. Plocamium mertensii<br />

Cladophora subsimplex<br />

Dictyosphaeria serica<br />

Bellotia eriophorum<br />

Ecklonia radi<strong>at</strong>a<br />

Mastophoropsis<br />

canalicul<strong>at</strong>a<br />

Metamastophora<br />

flabell<strong>at</strong>e<br />

Caulerpa scalpelliformis Macrocystis pyrifera Amphiroa gracilis<br />

Caulerpa longifolia<br />

Xiphophora<br />

chondrophylla<br />

Amphiroa anceps<br />

Plocamium dil<strong>at</strong><strong>at</strong>um<br />

Plocamium preissianum<br />

Plocamium<br />

cartilagineum<br />

Plocamium leptophyllum<br />

Caulerpa brownii Seirococcus axillaris Jania spp. Champia viridis<br />

Caulerpa cf browni (v.<br />

fine ramuli)<br />

Caulerpa obscura<br />

Scaberia agardhii Corallina officinalis Champia zostericola<br />

Caulocystis<br />

cephalornithos<br />

Arthrocardia wardii<br />

Champia sp.<br />

Caulerpa flexilis Acrocarpia panicul<strong>at</strong>a Haliptilon roseum Botryocladia sonderi<br />

Caulerpa flexilis var.<br />

muelleri<br />

Caulerpa gemin<strong>at</strong>a<br />

Caulerpa hodgkinsoniae<br />

Cystophora<br />

pl<strong>at</strong>ylobium<br />

Cystophora<br />

moniliformis<br />

Cystophora pectin<strong>at</strong>a<br />

Cheilosporum<br />

sagitt<strong>at</strong>um<br />

Metagoniolithon<br />

radi<strong>at</strong>um<br />

Synarthrophyton<br />

p<strong>at</strong>ena<br />

Botryocladia obov<strong>at</strong>a<br />

Rhodymenia australis<br />

Rhodymenia obtusa<br />

Caulerpa cactoides Cystophora monilifera Spongites hyperellus Rhodymenia prolificans<br />

Caulerpa simpliciuscula Cystophora brownii Encrusting corallines Rhodymenia spp.<br />

Codium lucasi Cystophora retorta Erect corallines Cordylecladia furcell<strong>at</strong>a<br />

Codium pomoides Cystophora siliquosa Solieria robusta Griffithsia sp.<br />

Codium mamillosum Cystophora retroflexa Hypnea ramentacea Griffithsia monilis<br />

Codium duthieae<br />

Cystophora<br />

subfarcin<strong>at</strong>a<br />

Callophyllis rangiferina<br />

Ballia callitricha<br />

Codium spp. Cystophora tenuis Nizymenia australis Euptilota articul<strong>at</strong>a<br />

Codium gele<strong>at</strong>um<br />

Halimeda cune<strong>at</strong>a<br />

Carpoglossum<br />

confluens<br />

Myriodesma<br />

tuberosum<br />

Sonderopelta coriacea<br />

Peyssonelia<br />

novaehollandiae<br />

Hemineura frondosa<br />

Dictymenia harveyana<br />

Bryopsis vestita Myriodesma sp. Peyssonelia sp. Jeannerettia lob<strong>at</strong>a<br />

Bryopsis gemellipara<br />

Myriodesma<br />

quercifolium<br />

Sargassum<br />

heteromorphum<br />

Sargassum decipiens<br />

Sonderopelta/<br />

Peyssonelia<br />

Phacelocarpus al<strong>at</strong>us<br />

Phacelocarpus<br />

peperocarpus<br />

Lenormandia margin<strong>at</strong>a<br />

Protokuetzingia<br />

australasica<br />

Epiglossum smithiae<br />

20


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Phaeophyta (brown<br />

algae)<br />

Phaeophyta (cont.) Rhodophyta (cont.) Rhodophyta (cont.)<br />

Ectocarpus spp. Sargassum sonderi Phacelocarpus sessilis Laurencia filiformis<br />

Halopteris panicul<strong>at</strong>a<br />

Sargassum varians<br />

Phacelocarpus<br />

complan<strong>at</strong>us<br />

Laurencia el<strong>at</strong>a<br />

Halopteris spp. Sargassum fallax Rhodopeltis australis Laurencia spp.<br />

Cladostephus spongiosus<br />

Sargassum<br />

verruculosum<br />

Erythroclonium sonderi<br />

Echinothamnion sp.<br />

Dictyota (fine) Sargassum vestitum Erythroclonium spp. Echinothamnion hystrix<br />

Dictyota dichotoma<br />

Dictoyta ciliol<strong>at</strong>a<br />

Sargassum<br />

spinuligerum<br />

Sargassum spp.<br />

Callophycus<br />

harveyanus<br />

Callophycus<br />

oppositifolius<br />

Heterosiphonia<br />

gunniana<br />

Thuretia quercifolia<br />

Dilophus margin<strong>at</strong>us Sargassum decurrens Callophycus laxus Capreolia implexia<br />

Dilophus gunnianus<br />

Taonia australascia Areschougia congesta Ceramium flaccidum<br />

Dilophus sp. Kuetzingia canaicul<strong>at</strong>a Areschougia spp. Gracilaria preissiana<br />

Dilophus tener Kuetzingia angust<strong>at</strong>a Areschougia ligul<strong>at</strong>a Curdiea irvineae<br />

Pachydictyon<br />

panicul<strong>at</strong>um<br />

Exallosorus olsenii Areschougia stuartii Scinaia tsinglaniensis<br />

Lobospira bicuspid<strong>at</strong>a Sporochnus comosus Acrotylus australis<br />

Dictyopteris<br />

acrostichoides<br />

Brown algae<br />

unidentified<br />

Melanthalia obtus<strong>at</strong>a<br />

Filamentous red algae<br />

Dictyopteris muelleri Brown algal turf Melanthalia abscissa O<strong>the</strong>r thallose red alga<br />

Chlanydophora<br />

microphylla<br />

Distromium spp.<br />

Filamentous browns<br />

Rhodophyta (red<br />

algae)<br />

Martensia australis<br />

Erythrymenia minuta<br />

Magnoliophyta<br />

Homeostrichus sinclairii Gelidium asperum Epigossum smithiae Amphibolis antarctica<br />

Homeostrichus olsenii<br />

Gelidium australe<br />

Lenormandia<br />

spectabilis<br />

Zonaria angust<strong>at</strong>a Gelidium spp. Carpothamnion sp. O<strong>the</strong>r<br />

Zonaria cren<strong>at</strong>a Pterocladia lucida Polyopes constrictus Algal turf<br />

Zonaria spiralis Pterocladia capillacea Halymenia sp. nov.<br />

Zonaria turneriana Asparagopsis arm<strong>at</strong>a Halymenia sp.<br />

21


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

2.3 D<strong>at</strong>a Analysis - Condition indic<strong>at</strong>ors<br />

2.3.1 Approach<br />

Reef quality indic<strong>at</strong>ors were developed to encompass key fe<strong>at</strong>ures of MPA performance<br />

assessment and management interest. The selection of indic<strong>at</strong>ors for <strong>reef</strong> ecosystem<br />

management were reviewed by (Turner et al. 2006) and fur<strong>the</strong>r <strong>the</strong>oretical and field<br />

consider<strong>at</strong>ions are provided by Thrush et al. (2009). Both reviews suggest a variety of<br />

indic<strong>at</strong>ors, of both ecosystem structure and function, should be used. Rapport (1992) noted<br />

th<strong>at</strong> stressors causing adverse changes in an ecosystem stand out beyond <strong>the</strong> n<strong>at</strong>ural range<br />

of variability observed in a system in ‘good health’. Adverse changes to an ecosystem<br />

include:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

a shift to smaller organisms;<br />

reduced diversity with loss of sensitive species;<br />

increased dominance by weedy and exotic species;<br />

shortened food chain lengths;<br />

altered energy flows and nutrient cycling;<br />

increased disease prevalence; and<br />

reduced stability/increased variability.<br />

A suite of indic<strong>at</strong>ors was developed for <strong>the</strong> Tasmanian <strong>reef</strong> monitoring program, which uses<br />

<strong>the</strong> same Edgar-Barrett underw<strong>at</strong>er visual census methods (Stuart-Smith et al. 2008). The<br />

indic<strong>at</strong>ors are grouped into <strong>the</strong> general c<strong>at</strong>egories: biodiversity, ecosystem function,<br />

introduced pests, clim<strong>at</strong>e change and fishing. The Stuart-Smith indic<strong>at</strong>ors were followed and<br />

adapted for <strong>the</strong> <strong>Victoria</strong>n SRMP. These indices are consistent with <strong>the</strong> reviews mentioned<br />

above. Key adapt<strong>at</strong>ions were <strong>the</strong> use of absolute values ra<strong>the</strong>r than proportions, as <strong>the</strong><br />

<strong>Victoria</strong>n d<strong>at</strong>a had considerable concurrent vari<strong>at</strong>ion in <strong>the</strong> numer<strong>at</strong>or and denomin<strong>at</strong>or of<br />

many indices, making proportional indices difficult to interpret. The Stuart-Smith approach for<br />

examining community changes was extended by using <strong>the</strong> multivari<strong>at</strong>e control charting<br />

method of Anderson and Thompson (2004).<br />

The indic<strong>at</strong>ors were calcul<strong>at</strong>ed separ<strong>at</strong>ely for <strong>the</strong> three survey components, fishes,<br />

invertebr<strong>at</strong>es and algae.<br />

The indic<strong>at</strong>ors presented in this report provide a basis for assessment and fur<strong>the</strong>r refinement<br />

of indic<strong>at</strong>ors for <strong>marine</strong> protected area performance assessment and management.<br />

22


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

2.3.2 Biodiversity<br />

Community Structure<br />

Community structure is a multivari<strong>at</strong>e function of both <strong>the</strong> type of species present and <strong>the</strong><br />

abundance of each species. The community structure between pairs of samples was<br />

compared using <strong>the</strong> Bray-Curtis dissimilarity coefficient. This index compares <strong>the</strong> abundance<br />

of each species between two samples to give a single value of <strong>the</strong> difference between <strong>the</strong><br />

samples, expressed as a percentage (Faith et al. 1987; Clarke 1993).<br />

Following Swe<strong>at</strong>man (2008), <strong>the</strong> count d<strong>at</strong>a were log transformed and percent cover values<br />

were transformed using <strong>the</strong> empirical logit transform<strong>at</strong>ion (McCullagh and Nelder 1989).<br />

The hyper-dimensional inform<strong>at</strong>ion in <strong>the</strong> dissimilarity m<strong>at</strong>rix was simplified and depicted<br />

using non-metric multidimensional scaling (MDS; Clarke 1993). This ordin<strong>at</strong>ion method finds<br />

<strong>the</strong> represent<strong>at</strong>ion in fewer dimensions th<strong>at</strong> best depicts <strong>the</strong> actual p<strong>at</strong>terns in <strong>the</strong> hyperdimensional<br />

d<strong>at</strong>a (i.e. reduces <strong>the</strong> number of dimensions while depicting <strong>the</strong> salient<br />

rel<strong>at</strong>ionships between <strong>the</strong> samples). The MDS results were <strong>the</strong>n depicted graphically to show<br />

differences between <strong>the</strong> replic<strong>at</strong>es <strong>at</strong> each loc<strong>at</strong>ion. The distance between points on <strong>the</strong><br />

MDS plot is represent<strong>at</strong>ive of <strong>the</strong> rel<strong>at</strong>ive difference in community structure.<br />

Kruskal stress is an indic<strong>at</strong>or st<strong>at</strong>istic calcul<strong>at</strong>ed during <strong>the</strong> ordin<strong>at</strong>ion process and indic<strong>at</strong>es<br />

<strong>the</strong> degree of disparity between <strong>the</strong> reduced dimensional d<strong>at</strong>a set and <strong>the</strong> original hyperdimensional<br />

d<strong>at</strong>a set. A guide to interpreting <strong>the</strong> Kruskal stress indic<strong>at</strong>or is given by Clarke<br />

(1993): (< 0.1) a good ordin<strong>at</strong>ion with no real risk of drawing false inferences; (< 0.2) can<br />

lead to a usable picture, although for values <strong>at</strong> <strong>the</strong> upper end of this range <strong>the</strong>re is potential<br />

to mislead; and (> 0.2) likely to yield plots which can be dangerous to interpret. These<br />

guidelines are simplistic and increasing stress is correl<strong>at</strong>ed with increasing numbers of<br />

samples. Where high stress was encountered with a two-dimensional d<strong>at</strong>a set, threedimensional<br />

solutions were sought to ensure adequ<strong>at</strong>e represent<strong>at</strong>ion of <strong>the</strong> higherdimensional<br />

p<strong>at</strong>terns.<br />

23


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Trends in Community Structure<br />

Multivari<strong>at</strong>e control charting was used to examine <strong>the</strong> degree of changes in community<br />

structure over time. Two criteria were assessed, <strong>the</strong> first being <strong>the</strong> devi<strong>at</strong>ion in community<br />

structure <strong>at</strong> a time, t, from <strong>the</strong> centroid of baseline community structures. This criterion is<br />

more sensitive to <strong>the</strong> detection of gradual changes over time away from <strong>the</strong> baseline<br />

conditions. In this case, <strong>the</strong> first 5 surveys were used for <strong>the</strong> baseline centroid (recognising<br />

<strong>the</strong>re were 6 baseline surveys for 8 sites and 5 baseline surveys for 4 sites). The second<br />

criterion was <strong>the</strong> devi<strong>at</strong>ion in community structure <strong>at</strong> time, t, to <strong>the</strong> centroid of all previous<br />

times, (t-1). This criterion is more sensitive <strong>at</strong> detecting abrupt or pulse changes.<br />

Control charts were prepared for each site as well as on a regional basis for combined sites<br />

inside <strong>the</strong> <strong>marine</strong> protected area and for reference sites. The regional analysis used average<br />

species abundances across sites within each region. The analysis used <strong>the</strong> methods of<br />

Anderson and Thompson (2004) and calcul<strong>at</strong>ions were done using <strong>the</strong> software<br />

ControlChart.exe (Anderson 2008). The analysis used <strong>the</strong> Bray-Curtis dissimilarity coefficient<br />

and <strong>the</strong> same d<strong>at</strong>a transform<strong>at</strong>ions described above. Bootstrapping was used to provide<br />

control-chart limits for identifying changes th<strong>at</strong> are ‘out of <strong>the</strong> ordinary’. In this case, a 90th<br />

percentile st<strong>at</strong>istic was calcul<strong>at</strong>ed from 10 000 bootstrap samples as a provisional limit or<br />

trigger line. The 50th percentile was also presented to assist in interpreting <strong>the</strong> control charts.<br />

Species Diversity<br />

The total number of individuals, N, was calcul<strong>at</strong>ed as <strong>the</strong> sum of <strong>the</strong> abundance of all<br />

individuals across species. This index is used to show any simultaneous depression of<br />

abundances across all species.<br />

Species richness, S, is given as <strong>the</strong> number of species observed <strong>at</strong> each site. Cryptic,<br />

pelagic and non-resident <strong>reef</strong> fishes were not included.<br />

Species diversity, as a measure of <strong>the</strong> distribution of individuals among <strong>the</strong> species, was<br />

indic<strong>at</strong>ed using Hill’s N 2 st<strong>at</strong>istic (which is equivalent to <strong>the</strong> reciprocal of Simpson’s index).<br />

The value varies between 1 and S (i.e. <strong>the</strong> total number of species in <strong>the</strong> sample) with higher<br />

values indic<strong>at</strong>ing higher diversity. In general, Hills N 2 gives an indic<strong>at</strong>ion of <strong>the</strong> number of<br />

dominant species within a community. Hills N 2 provides more weighting for common species,<br />

in contrast to indices such as <strong>the</strong> Shannon-Weiner Index (Krebs 1999), which weights <strong>the</strong><br />

rarer species.<br />

The diversity st<strong>at</strong>istics were averaged across sites for <strong>the</strong> <strong>marine</strong> protected area and<br />

reference regions.<br />

24


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Abundances of Selected Species<br />

Mean abundance of selected species were plotted over time for <strong>the</strong> <strong>marine</strong> protected area<br />

and reference regions. The species presented included abundant or common species as well<br />

as any with unusual changes over time.<br />

2.3.3 Ecosystem Functional Components<br />

Plant Habit<strong>at</strong> and Production<br />

Biogenic habit<strong>at</strong> and standing stocks of primary producers was indic<strong>at</strong>ed by <strong>the</strong> pooled<br />

abundances of macrophyte groups:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

crustose coralline algae;<br />

canopy browns – defined here as Ecklonia radi<strong>at</strong>a, Undaria pinn<strong>at</strong>ifida, Lessonia<br />

corrug<strong>at</strong>a, Macrocystis pyrifera, Durvillaea pot<strong>at</strong>orum, Phyllospora comosa,<br />

Seirococcus axillaris, Acrocarpia panicul<strong>at</strong>a, Cystophora pl<strong>at</strong>ylobium, C. moniliformis,<br />

C. pectin<strong>at</strong>a, C. monilifera, C. retorta and C. retroflexa;<br />

smaller browns (all o<strong>the</strong>r brown species except Ectocarpales);<br />

erect coralline algae;<br />

thallose red algae (except filamentous species);<br />

green algae; and<br />

seagrass Amphibolis antarctica.<br />

The index of summed species points-cover does not equ<strong>at</strong>e to a total cover estim<strong>at</strong>e in some<br />

cases as using species cover can be overlapping with o<strong>the</strong>r species <strong>at</strong> different heights.<br />

Invertebr<strong>at</strong>e Groups<br />

The abundance of invertebr<strong>at</strong>es were pooled into <strong>the</strong> functional groups:<br />

<br />

<br />

<br />

<br />

grazers and habit<strong>at</strong> modifiers, including gastropods and sea urchins;<br />

filter feeders, including fanworms and fea<strong>the</strong>r stars;<br />

pred<strong>at</strong>ors, including gastropods, crabs and lobsters but excluding seastars; and<br />

seastars, which are mostly pred<strong>at</strong>ors, although Meridiastra gunnii may also be a<br />

detritus feeder.<br />

Fish Groups<br />

The abundance of fishes were also pooled into trophic groups:<br />

<br />

herbivores and omnivorous grazers;<br />

25


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

<br />

<br />

<br />

foraging pred<strong>at</strong>ors, including pickers and foragers of st<strong>at</strong>ionary, benthic prey such as<br />

amphipods, crabs and gastropods;<br />

hunter pred<strong>at</strong>ors, including fishes th<strong>at</strong> hunt mobile prey, particularly o<strong>the</strong>r fishes, as<br />

chasers and ambushers; and<br />

planktivores, including feeders of zooplankton and small fish in <strong>the</strong> w<strong>at</strong>er column.<br />

Sediment Cover<br />

The percentage cover of sand and sediment on <strong>the</strong> survey transect (using Method 3) is <strong>the</strong><br />

only relevant abiotic parameter measured for <strong>the</strong> SRMP. This index may indic<strong>at</strong>e changes in<br />

hydrodynamic or coastal processes.<br />

2.3.4 Introduced species<br />

The st<strong>at</strong>us of introduced species is initially reported as presence-absence of species. Where<br />

a species is established and <strong>the</strong> SRMP measures <strong>the</strong> abundance of th<strong>at</strong> species, indic<strong>at</strong>ors<br />

of st<strong>at</strong>us are:<br />

<br />

<br />

<br />

number of introduced species;<br />

total abundance of introduced species; and<br />

where <strong>the</strong> d<strong>at</strong>a are suitable, time series of abundance of selected introduced species<br />

– noting <strong>the</strong> timing of surveys may influence <strong>the</strong> time series.<br />

2.3.5 Clim<strong>at</strong>e change<br />

Species Composition<br />

Clim<strong>at</strong>e change is likely to cause changes to current strengths and circul<strong>at</strong>ion p<strong>at</strong>terns which<br />

affect both <strong>the</strong> ambient temper<strong>at</strong>ure regime and <strong>the</strong> dispersion and recruitment of propagules<br />

or larvae. In <strong>Victoria</strong>, <strong>the</strong>re may be increased incursions of <strong>the</strong> East Australia Current into<br />

eastern <strong>Victoria</strong> and <strong>the</strong> South Australia Current into western <strong>Victoria</strong> and Bass Strait.<br />

Biological responses to such changes are potentially indic<strong>at</strong>ed by biogeographical changes<br />

in <strong>the</strong> species composition, toward th<strong>at</strong> of adjacent, warmer bioregions. For this analysis,<br />

each species was assigned a nominal geographical range:<br />

• coldw<strong>at</strong>er species, reflecting <strong>the</strong> ‘Maugean’ province, from approxim<strong>at</strong>ely Kangaroo<br />

Island in South Australia, around Tasmania and into sou<strong>the</strong>rn New South Wales;<br />

• western species, reflecting <strong>the</strong> ‘Flindersian’ province, from sou<strong>the</strong>rn Western<br />

Australia, along <strong>the</strong> Gre<strong>at</strong> Australian Bight and South Australia to western <strong>Victoria</strong>;<br />

26


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

• eastern species, reflecting <strong>the</strong> ‘Peronian’ province, encompassing New South Wales<br />

and into eastern <strong>Victoria</strong>;<br />

• sou<strong>the</strong>rn species, including species ranging widely along <strong>the</strong> sou<strong>the</strong>rn Australian<br />

coast; and<br />

• nor<strong>the</strong>rn species, including warm temper<strong>at</strong>e and tropical species in Western Australia<br />

and New South Wales and northward.<br />

The number of species and total number of individuals was calcul<strong>at</strong>ed for <strong>the</strong> coldw<strong>at</strong>er,<br />

western and eastern groups.<br />

Macrocystis pyrifera<br />

The string kelp M. pyrifera, which includes <strong>the</strong> former species Macrocystis angustifolia<br />

(Macaya and Zuccarello 2010) is considered potentially vulnerable to clim<strong>at</strong>e change through<br />

reduced nutrient supply from drought and nutrient poor warm w<strong>at</strong>ers (Edyvane 2003). The<br />

mean abundance of M. pyrifera was plotted using densities from Method 4, or cover<br />

estim<strong>at</strong>es from Method 4 where density d<strong>at</strong>a were unavailable. M. pyrifera provides<br />

considerable vertical structure to <strong>reef</strong> habit<strong>at</strong>s and can also <strong>at</strong>tenu<strong>at</strong>e w<strong>at</strong>er currents and<br />

wave motion. The loss of M. pyrifera habit<strong>at</strong>s are likely to reflect ecosystem functional<br />

changes.<br />

Centrostephanus rodgersii<br />

The range of <strong>the</strong> long-spined sea urchin, Centrostephanus rodgersii, has increased<br />

conspicuously over <strong>the</strong> past decades (Johnson et al. 2005). This grazing species can cause<br />

considerable habit<strong>at</strong> modific<strong>at</strong>ion, decreasing seaweed canopy cover and increasing <strong>the</strong><br />

area of ‘urchin barrens’. Abundances are determined using Method 2 and average<br />

abundances are plotted through time. The abundance of C. rodgersii are also influenced by<br />

interactions with abalone as competitors for crevice space, Abalone divers may periodically<br />

‘cull’ urchins within a <strong>reef</strong> p<strong>at</strong>ch and <strong>the</strong> species is also of interest to urchin harvesters.<br />

Durvillaea pot<strong>at</strong>orum<br />

The bull kelp Durvillaea pot<strong>at</strong>orum is a coldw<strong>at</strong>er species th<strong>at</strong> is likely to be vulnerable to<br />

increased ambient temper<strong>at</strong>ures. There is anecdotal evidence of a decline in range down <strong>the</strong><br />

New South Wales coast by approxim<strong>at</strong>ely 80 km. Most of <strong>the</strong> SRMP sites specifically avoid<br />

D. pot<strong>at</strong>orum habit<strong>at</strong>s as <strong>the</strong>se occur on highly wave-affected and turbulent <strong>reef</strong>s. Some<br />

sites contain D. pot<strong>at</strong>orum stands, providing limited d<strong>at</strong>a on popul<strong>at</strong>ion st<strong>at</strong>us. Durvillaea<br />

27


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

pot<strong>at</strong>orum is potentially two species, having genetically and morphologically distinct eastern<br />

and western forms (Fraser et al. 2009).<br />

2.3.6 Fishing<br />

Abalone<br />

Indic<strong>at</strong>ors of altered popul<strong>at</strong>ion structure from harvesting pressure on abalone were mean<br />

density and <strong>the</strong> proportion of legal sized individuals. The size-frequency histograms were<br />

also examined. The indic<strong>at</strong>ors were calcul<strong>at</strong>ed for <strong>the</strong> blacklip abalone, Haliotis rubra, in<br />

most regions and for <strong>the</strong> greenlip abalone, H. laevig<strong>at</strong>a, where present in suitable densities<br />

(in central and western <strong>Victoria</strong>).<br />

Rock Lobster<br />

The sou<strong>the</strong>rn rock lobster, Jasus edwardsii, is present throughout <strong>Victoria</strong> and <strong>the</strong> eastern<br />

rock lobster, Jasus verreauxi, is present in <strong>the</strong> Twofold Shelf region. The SRMP transects<br />

generally did not traverse rock lobster microhabit<strong>at</strong>s, however abundances and sizes are<br />

reported for suitable d<strong>at</strong>a.<br />

Fishes<br />

Potential fishing impacts or recovery of fishing impacts within <strong>marine</strong> protected areas were<br />

indic<strong>at</strong>ed by:<br />

<br />

<br />

<br />

<br />

<br />

abundances of selected fished species;<br />

mean size and size-frequency histograms of selected fished species;<br />

total abundance of fishes > 200 mm length, this being <strong>the</strong> approxim<strong>at</strong>e legal minimum<br />

size for most fished species;<br />

biomass of fishes > 200 mm length, calcul<strong>at</strong>ed using length-weight rel<strong>at</strong>ionships; and<br />

parameters of <strong>the</strong> size-spectra of all fishes.<br />

The size spectrum of all fishes <strong>at</strong> a site was first centred and linearised. Size frequencies for<br />

each field size class were aggreg<strong>at</strong>ed into classes centred on 87.5 mm (classes 1-6), 200<br />

mm (class 7), 275 mm (classes 8-9), 356.25 mm (classes 10-11), 400 mm (class 12), 500<br />

mm (class 13), 625 mm (class 14) and 750+ mm (class 15). The frequencies and size<br />

classes were log e (x +1) and <strong>the</strong> size classes are centred by subtracting <strong>the</strong> mean. Linear<br />

regression was used to estim<strong>at</strong>e <strong>the</strong> slope and intercept (which is also <strong>the</strong> half-height of <strong>the</strong><br />

slope) of <strong>the</strong> log-transformed spectrum.<br />

28


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Biomass was calcul<strong>at</strong>ed for selected species ≥ 300 mm. Lengths were converted to weights<br />

using published conversion factors for <strong>the</strong> power rel<strong>at</strong>ionship: weight(g)=a x Length(cm)b.<br />

The weight estim<strong>at</strong>ions used <strong>the</strong> coefficients compiled by Lyle and Campbell (1999). The<br />

selected species were <strong>the</strong> most common species under heaviest fishing pressure (where<br />

present):<br />

banded morwong Cheilodactylus spectabilis (a = 0.0629, b = 2.881);<br />

bastard trumpeter L<strong>at</strong>ridopsis forsteri (a = 0.0487, b = 3.14);<br />

blue thro<strong>at</strong>ed wrasse Notolabrus tetricus (a = 0.0539, b = 2.17);<br />

purple wrasse Notolabrus fucicola (a = 0.0539, b = 2.17);<br />

<br />

crimson banded wrasse Notolabrus gymnogenis (a = 0.0539, b = 2.17); and<br />

eastern blue groper Achoerodus viridis (a = 0.0539, b = 2.17).<br />

29


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

3 RESULTS<br />

3.1 Biodiversity<br />

3.1.1 Community Structure<br />

Macroalgae<br />

The canopy algae assemblages <strong>at</strong> Bunurong were characterised by a diverse range of<br />

medium-sized brown algal species. The predominant brown algal species included S.<br />

axillaris, C. pl<strong>at</strong>ylobium, C. moniliformis, C. retorta, C. retroflexa, A. panicul<strong>at</strong>a and<br />

Sargassum fallax. O<strong>the</strong>r larger brown species such as E. radi<strong>at</strong>a and P. comosa were<br />

generally absent or in very low abundances. O<strong>the</strong>r dominant components of <strong>the</strong> algal<br />

assemblages included <strong>the</strong> seagrass A. antarctica, coralline algae such as Haliptilon roseum<br />

and Metagoniolithon radi<strong>at</strong>um, as well as <strong>the</strong> red algae Phacelocarpus peperocarpos,<br />

Areschougia congesta and Plocamium angustum. The dominant green algae were; Caulerpa<br />

brownii, Caulerpa scalpelliformis and Caulerpa flexilis, however were rel<strong>at</strong>ively low in<br />

abundance.<br />

The MDS plots indic<strong>at</strong>ed <strong>the</strong>re was an overall east-west gradient in changes in algal<br />

assemblage structure (Figure 3.1a - b). This change in site algal assemblage can be largely<br />

<strong>at</strong>tributed to an increasing predominance of <strong>the</strong> seagrass A. antarctica, as well as <strong>the</strong> brown<br />

algae S. axillaris and C. pectin<strong>at</strong>a in <strong>the</strong> far eastern sites. The eastern sites also had much<br />

lower abundances of A. panicul<strong>at</strong>a and P. peperocarpos than <strong>the</strong> western sites.<br />

The sites within <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park (MNP) were rel<strong>at</strong>ively similar in<br />

structure, however a distinction between Shack Bay sites (Sites 5, 6 and 12) and o<strong>the</strong>r sites<br />

was evident (Figure 3.1a). Amphibolis antarctica was absent or in very low percentage cover<br />

<strong>at</strong> Twin Reefs (Site 4), Oaks East (Site 3) and The Oaks Beach (Site 12), with prevalence<br />

much higher <strong>at</strong> Shack Bay sites.<br />

Amongst <strong>the</strong> western reference sites, Cape P<strong>at</strong>erson (site 1) was quite different in<br />

assemblage structure and was reasonably isol<strong>at</strong>ed <strong>at</strong> <strong>the</strong> top of <strong>the</strong> MDS plot (Figure 3.1b).<br />

This can be explained by a higher abundance of A. antarctica, C. retorta and C. retroflexa,<br />

lower abundance of P. peperocarpos and an absence of S. axillaris. This algal assemblage is<br />

more similar to <strong>the</strong> far eastern sites (Sites 7, 8 and 13) and this is reflected in its rel<strong>at</strong>ive<br />

position in <strong>the</strong> MDS plot. There was considerable overlap in assemblage structure for <strong>the</strong><br />

three eastern reference sites (Figure 3.1b).<br />

The algal assemblage control charts indic<strong>at</strong>ed an increase in devi<strong>at</strong>ion from both <strong>the</strong> prior<br />

times and baseline centriods for all sites except Bo<strong>at</strong> Ramp East (Site 15) and Petrel Rock<br />

West (Site 13; Figure 3.2a - d). Sites <strong>at</strong> Shack Bay (Site 5, 6 and 12) showed significant<br />

30


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

devi<strong>at</strong>ion from <strong>the</strong> centroids outside <strong>the</strong> 90 th percentile, <strong>at</strong>tributed to an increase in A.<br />

antartica cover <strong>at</strong> Shack Bay West (Site 5) and Shack Bay East (Site 6) and an increase in<br />

A. panicul<strong>at</strong>a and Shack Bay Beach (Site 12). A simular devi<strong>at</strong>ion was also evident in<br />

reference sites, Cape P<strong>at</strong>terson (Site 1) and Cape P<strong>at</strong>erson Bo<strong>at</strong> Ramp (Site 2; Figure 3.2a -<br />

d), also a result of increased A. antarctica cover. Region control charts reflected an increase<br />

in devi<strong>at</strong>ion within <strong>the</strong> MNP, however was below <strong>the</strong> 90 th percentile for both <strong>the</strong> baseline and<br />

prior times centroid, no change was evident in reference sites as a region (Figure 3.2e and f).<br />

Invertebr<strong>at</strong>es<br />

The invertebr<strong>at</strong>e fauna composed of <strong>the</strong> blacklip and greenlip abalone H. rubra and H.<br />

laevig<strong>at</strong>a, <strong>the</strong> gastropod T. undul<strong>at</strong>us and a variety of sea stars, particularly M. gunnii and<br />

Tosia australis. O<strong>the</strong>r commonly encountered species included <strong>the</strong> dogwhelk D. orbita and<br />

seastar Nectria ocell<strong>at</strong>a.<br />

The MDS analysis showed Twin Reefs (Site 4) varied <strong>the</strong> most from o<strong>the</strong>r MNP sites (Figure<br />

3.3). Invertebr<strong>at</strong>e assemblages <strong>at</strong> remaining MNP sites were divided into two groups<br />

consisting of sites <strong>at</strong> <strong>the</strong> Oaks (Sites 3 and 14) and Shack Bay (Sites 5, 6 and 12); this<br />

difference can be <strong>at</strong>tributed to <strong>the</strong> higher abundance of black lip abalone <strong>at</strong> Shack Bay sites.<br />

Vari<strong>at</strong>ion throughout time for most reference sites showed considerable overlap in structure<br />

between sites (Figure 3.3a and b). Petrel Rock East (Site 8) was <strong>the</strong> most different from<br />

o<strong>the</strong>r sites, having rel<strong>at</strong>ively low abundances of H. rubra and T. undul<strong>at</strong>us and rel<strong>at</strong>ively high<br />

abundances of <strong>the</strong> seastar M. gunnii and sea urchin H. erythrogramma.<br />

The control charts detected significant departures in invertebr<strong>at</strong>e assemblage structure from<br />

both <strong>the</strong> baseline centroid and prior times centroid. Within <strong>the</strong> MNP, <strong>the</strong>se occurred most<br />

notably in <strong>the</strong> 2006 and 2010 surveys, <strong>at</strong> Twin Reefs (Site 4) and Shack Bay West (Site 12;<br />

Figure 3.4a and b). The eastern reference sites, The Caves (Site 7), Petrel Rock East (Site<br />

8) and Petrel Rock West (Site 13) were outside <strong>the</strong> 90th percentile limit for <strong>the</strong> reference<br />

sites during 2011 for both <strong>the</strong> baseline and prior times centroid and have shown a major<br />

increase in devi<strong>at</strong>ion since <strong>the</strong> <strong>park</strong>s introduction in 2002. This change represents a major<br />

decline in <strong>the</strong> abundance of M. gunnii and T. undul<strong>at</strong>us <strong>at</strong> <strong>the</strong>se sites of (Figure 3.4c and d).<br />

This was reflected in <strong>the</strong> regional plot for <strong>the</strong> prior times centroid, with <strong>the</strong> reference region<br />

devi<strong>at</strong>ing outside <strong>the</strong> limit, and a decrease in devi<strong>at</strong>ion in MNP sites (Figure 3.4e and f).<br />

31


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Fishes<br />

The fish assemblages primarily consisted of blue thro<strong>at</strong>ed wrasse N. tetricus, purple wrasse<br />

N. fucicola, sen<strong>at</strong>or wrasse Pictilabrus l<strong>at</strong>iclavius and sea sweep S. aequipinnis. O<strong>the</strong>r<br />

common species included <strong>the</strong> scaly fin P. victoriae, magpie morwong C. nigripes, herring<br />

cale O. cyanomelas, zebra fish Girella zebra and a variety of monacanthids (lea<strong>the</strong>rjackets).<br />

The MDS analysis indic<strong>at</strong>ed considerable overlap of trajectories through time and limited<br />

differences between sites (Figure 3.5a and b). Shack Bay West (Site 5) varied somewh<strong>at</strong><br />

from <strong>the</strong> remaining MNP sites with comparably lower abundances of P. victoriae and<br />

C.nigripes. Similarly Cape P<strong>at</strong>terson (Site 1) showed some devi<strong>at</strong>ion from o<strong>the</strong>r references<br />

site assemblages, perhaps due to slightly lower abundances of N. tetricus and <strong>at</strong> infrequently<br />

high abundances of G. zebra. At many of <strong>the</strong> sites, <strong>the</strong> trajectories of shift in community<br />

structure oscill<strong>at</strong>ed in similarity between summer and winter surveys, indic<strong>at</strong>ing seasonal<br />

processes may be occurring (Figure 3.5).<br />

The control charts signal substantial departure from average conditions <strong>at</strong> Shack Bay Beach<br />

(Site 12) and The Oaks Beach (Site 14) from both baseline and prior times centroids in 2010.<br />

In 2011 Shack Bay beach devi<strong>at</strong>ion decreased, however was still above <strong>the</strong> 90th percentile,<br />

(Figure 3.6a and b). Regional control charts for both baseline and prior times centroids<br />

reflected <strong>the</strong> changes evident <strong>at</strong> Shack Bay Beach, with <strong>the</strong> MNP average increasing in 2010<br />

and decreasing in 2011 (Figure 3.6e and f). For <strong>the</strong> reference sites, Bo<strong>at</strong> Ramp East (Site<br />

15), Petrel Rock West (Site 13) and Cape P<strong>at</strong>terson Bo<strong>at</strong> Ramp (Site 2) were outside <strong>the</strong><br />

90th percentile distance from both baseline and prior times centroids (Figure 3.6c and d),<br />

which was also reflected with an increase within normal limits for <strong>the</strong> regional prior times<br />

centroid (Figure 3.6f).<br />

32


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

a. nMDS - Algae - MPA<br />

b. nMDS - Algae - Reference<br />

mpa - 14 The Oaks Beach<br />

mpa - 3 Oaks East<br />

mpa - 4 Twin Reefs<br />

mpa - 5 Shack Bay West<br />

mpa - 12 Shack Bay beach<br />

mpa - 6 Shack Bay East<br />

ref - 1 Cape P<strong>at</strong>terson<br />

ref - 2 C. P<strong>at</strong>t. Bo<strong>at</strong> Ramp<br />

ref - 15 Bo<strong>at</strong> Ramp East<br />

ref - 7 The Caves<br />

ref - 13 Petrel Rock West<br />

ref - 8 Petrel Rock East<br />

Figure 3.1. Three-dimensional MDS plot of algal assemblage structure <strong>at</strong> Bunurong for each site: (a)<br />

MNP sites (b) reference sites. Kruskal stress value = 0.16<br />

33


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Control Chart - Algae<br />

a. MPA Sites - Baseline Centroid<br />

b. MPA Sites - Prior Times Centroid<br />

Devi<strong>at</strong>ion<br />

15 20 25 30 35 40 45 50<br />

Devi<strong>at</strong>ion<br />

15 20 25 30 35 40 45 50<br />

2000 2002 2004 2006 2008 2010 2012<br />

2000 2002 2004 2006 2008 2010 2012<br />

c. Reference Sites - Baseline Centroid<br />

d. Reference Sites - Prior Times Centroid<br />

Devi<strong>at</strong>ion<br />

15 20 25 30 35 40 45 50<br />

Devi<strong>at</strong>ion<br />

15 20 25 30 35 40 45 50<br />

2000 2002 2004 2006 2008 2010 2012<br />

2000 2002 2004 2006 2008 2010 2012<br />

e. Regions - Baseline Centroid<br />

f. Regions - Prior Times Centroid<br />

Devi<strong>at</strong>ion<br />

10 20 30 40 50<br />

Devi<strong>at</strong>ion<br />

10 20 30 40 50<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

mpa - 14 The Oaks Beach<br />

mpa - 3 Oaks East<br />

mpa - 4 Tw in Reefs<br />

mpa - 5 Shack Bay West<br />

mpa - 12 Shack Bay beach<br />

mpa - 6 Shack Bay East<br />

ref - 1 Cape P<strong>at</strong>terson<br />

ref - 2 C. P<strong>at</strong>t. Bo<strong>at</strong> Ramp<br />

ref - 15 Bo<strong>at</strong> Ramp East<br />

ref - 7 The Caves<br />

ref - 13 Petrel Rock West<br />

ref - 8 Petrel Rock East<br />

region - MPA<br />

region - Reference<br />

Figure 3.2. Control charts of algal assemblage structure inside and outside Bunurong Marine N<strong>at</strong>ional<br />

Park.<br />

34


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

a. nMDS - Invertebr<strong>at</strong>es - MPA<br />

mpa - 14 The Oaks Beach<br />

mpa - 3 Oaks East<br />

mpa - 4 Twin Reefs<br />

mpa - 5 Shack Bay West<br />

mpa - 12 Shack Bay beach<br />

mpa - 6 Shack Bay East<br />

b. nMDS - Invertebr<strong>at</strong>es - Reference<br />

ref - 1 Cape P<strong>at</strong>terson<br />

ref - 2 C. P<strong>at</strong>t. Bo<strong>at</strong> Ramp<br />

ref - 15 Bo<strong>at</strong> Ramp East<br />

ref - 7 The Caves<br />

ref - 13 Petrel Rock West<br />

ref - 8 Petrel Rock East<br />

Figure 3.3. Three-dimensional MDS plot of invertebr<strong>at</strong>e assemblage structure <strong>at</strong> Bunurong for each<br />

site: (a) MNP sites; and (b) reference sites. Kruskal Stress value= 0.17<br />

35


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Control Chart - Invertebr<strong>at</strong>es<br />

a. MPA Sites - Baseline Centroid<br />

b. MPA Sites - Prior Times Centroid<br />

Devi<strong>at</strong>ion<br />

10 20 30 40 50 60<br />

Devi<strong>at</strong>ion<br />

10 20 30 40 50 60<br />

2000 2002 2004 2006 2008 2010 2012<br />

2000 2002 2004 2006 2008 2010 2012<br />

c. Reference Sites - Baseline Centroid<br />

d. Reference Sites - Prior Times Centroid<br />

Devi<strong>at</strong>ion<br />

10 20 30 40 50 60<br />

Devi<strong>at</strong>ion<br />

10 20 30 40 50 60<br />

2000 2002 2004 2006 2008 2010 2012<br />

2000 2002 2004 2006 2008 2010 2012<br />

e. Regions - Baseline Centroid<br />

f. Regions - Prior Times Centroid<br />

Devi<strong>at</strong>ion<br />

10 20 30 40 50<br />

Devi<strong>at</strong>ion<br />

10 20 30 40 50<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

mpa - 14 The Oaks Beach<br />

mpa - 3 Oaks East<br />

mpa - 4 Tw in Reefs<br />

mpa - 5 Shack Bay West<br />

mpa - 12 Shack Bay beach<br />

mpa - 6 Shack Bay East<br />

ref - 1 Cape P<strong>at</strong>terson<br />

ref - 2 C. P<strong>at</strong>t. Bo<strong>at</strong> Ramp<br />

ref - 15 Bo<strong>at</strong> Ramp East<br />

ref - 7 The Caves<br />

ref - 13 Petrel Rock West<br />

ref - 8 Petrel Rock East<br />

region - MPA<br />

region - Reference<br />

Figure 3.4. Control chart of invertebr<strong>at</strong>e assemblage structure inside and outside Bunurong Marine<br />

N<strong>at</strong>ional Park.<br />

36


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

a. nMDS - Fishes - MPA<br />

mpa - 14 The Oaks Beach<br />

mpa - 3 Oaks East<br />

mpa - 4 Twin Reefs<br />

mpa - 5 Shack Bay West<br />

mpa - 12 Shack Bay beach<br />

mpa - 6 Shack Bay East<br />

b. nMDS - Fishes - Reference<br />

ref - 1 Cape P<strong>at</strong>terson<br />

ref - 2 C. P<strong>at</strong>t. Bo<strong>at</strong> Ramp<br />

ref - 15 Bo<strong>at</strong> Ramp East<br />

ref - 7 The Caves<br />

ref - 13 Petrel Rock West<br />

ref - 8 Petrel Rock East<br />

Figure 3.5. Three-dimensional MDS plot of fish assemblage structure <strong>at</strong> Bunurong for each site: (a)<br />

MNP sites; and (b) reference sites. Kruskal Stress value = 0.20<br />

37


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Control Chart - Fishes<br />

a. MPA Sites - Baseline Centroid<br />

b. MPA Sites - Prior Times Centroid<br />

Devi<strong>at</strong>ion<br />

20 30 40 50 60 70<br />

Devi<strong>at</strong>ion<br />

20 30 40 50 60 70<br />

2000 2002 2004 2006 2008 2010 2012<br />

2000 2002 2004 2006 2008 2010 2012<br />

c. Reference Sites - Baseline Centroid<br />

d. Reference Sites - Prior Times Centroid<br />

Devi<strong>at</strong>ion<br />

20 30 40 50 60 70<br />

Devi<strong>at</strong>ion<br />

20 30 40 50 60 70<br />

2000 2002 2004 2006 2008 2010 2012<br />

2000 2002 2004 2006 2008 2010 2012<br />

e. Regions - Baseline Centroid<br />

f. Regions - Prior Times Centroid<br />

Devi<strong>at</strong>ion<br />

10 15 20 25 30 35 40 45<br />

Devi<strong>at</strong>ion<br />

10 15 20 25 30 35 40 45<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

mpa - 14 The Oaks Beach<br />

mpa - 3 Oaks East<br />

mpa - 4 Tw in Reefs<br />

mpa - 5 Shack Bay West<br />

mpa - 12 Shack Bay beach<br />

mpa - 6 Shack Bay East<br />

ref - 1 Cape P<strong>at</strong>terson<br />

ref - 2 C. P<strong>at</strong>t. Bo<strong>at</strong> Ramp<br />

ref - 15 Bo<strong>at</strong> Ramp East<br />

ref - 7 The Caves<br />

ref - 13 Petrel Rock West<br />

ref - 8 Petrel Rock East<br />

region - MPA<br />

region - Reference<br />

Figure 3.6. Control chart of fish assemblage structure inside and outside Bunurong Marine N<strong>at</strong>ional<br />

Park.<br />

38


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

3.1.2 Species richness and Diversity<br />

Macroalgae<br />

The total algal abundance remained <strong>at</strong> complete substr<strong>at</strong>um coverage throughout <strong>the</strong> survey<br />

period (Figure 3.7a). Macrophyte species richness was rel<strong>at</strong>ively high (30-40 species per<br />

site) and stable <strong>at</strong> most sites over time (Figure 3.7b). Algal species diversity was consistently<br />

gre<strong>at</strong>er within <strong>the</strong> MNP than in <strong>the</strong> reference areas (Figure 3.7c). In 2011, species diversity<br />

inside and outside <strong>the</strong> MNP was <strong>the</strong> lowest since <strong>the</strong> MNP was established in 2002 (Figure<br />

3.7c).<br />

Invertebr<strong>at</strong>es<br />

Total invertebr<strong>at</strong>e abundance peaked in 2001, both inside and outside <strong>the</strong> MNP area, before<br />

decreasing to below baseline surveys in 2005 and 2006, with little subsequent change to<br />

2011 (Figure 3.8a). Invertebr<strong>at</strong>e species richness had a similar decline between 2002 and<br />

2005 surveys, and remained <strong>at</strong> a similar level in following surveys (Figure 3.8b).<br />

Species diversity in terms of Hill’s N 2 , was generally confined to between 2 and 3 in both<br />

regions, with no discernable trends over time (Figure 3.8c).<br />

Fishes<br />

Total fish abundance fluctu<strong>at</strong>ed over time both inside and outside <strong>the</strong> Bunurong MNP (Figure<br />

3.9). Total abundances inside <strong>the</strong> MNP largely followed <strong>the</strong> reference area vari<strong>at</strong>ions, except<br />

for low total abundances in 2006 (Figure 3.9a).<br />

Both species richness and species diversity in <strong>the</strong> MNP and reference areas were <strong>at</strong> similar<br />

levels and showed similar temporal p<strong>at</strong>terns prior to <strong>the</strong> establishment of <strong>the</strong> <strong>park</strong>. This<br />

p<strong>at</strong>tern has generally continued except for significantly higher species richness and diversity<br />

in reference sites in <strong>the</strong> 2006 survey (Figure 3.9b and c).<br />

39


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Algal Abundance Index<br />

Cover Index<br />

0 500 1000 1500<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Algal Species Richness<br />

No. Species<br />

0 10 20 30 40<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Algal Diversity<br />

Hills N 2<br />

0 5 10 15<br />

MPA<br />

ref<br />

c.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.7. Algal species diversity indic<strong>at</strong>ors (± standard error) inside and outside Bunurong Marine<br />

N<strong>at</strong>ional Park.<br />

40


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Invertebr<strong>at</strong>e Total Individuals<br />

Count<br />

0 50 150 250 350<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Invertebr<strong>at</strong>e Species Richness<br />

No. Species<br />

0 5 10 15<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Invertebr<strong>at</strong>e Diversity<br />

Hills N 2<br />

0 1 2 3 4<br />

MPA<br />

ref<br />

c.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.8. Invertebr<strong>at</strong>e species diversity indic<strong>at</strong>ors (± standard error) inside and outside Bunurong<br />

Marine N<strong>at</strong>ional Park.<br />

41


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Fish Total Individuals<br />

Count<br />

0 50 100 150<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Fish Species Richness<br />

No. Species<br />

0 5 10 15<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Fish Diversity<br />

Hills N 2<br />

0 1 2 3 4<br />

MPA<br />

ref<br />

c.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.9. Fish species diversity indic<strong>at</strong>ors (± standard error) inside and outside Bunurong Marine<br />

N<strong>at</strong>ional Park.<br />

42


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

3.1.3 Abundances of Selected Species<br />

Macroalgae<br />

The seagrass A. antarctica was found in high percent cover <strong>at</strong> Cape P<strong>at</strong>terson (Site 1) and in<br />

<strong>the</strong> eastern zone reference sites, Petrel Rock West (Site 13), Petrel Rock East (Site 8) and<br />

The Caves (Site 7) in all surveys. Eastern reference sites has shown increases in 2006, 2010<br />

and 2011 surveys, which is reflected in <strong>the</strong> reference area average (Figure 3.10a). Although<br />

average cover was much lower inside <strong>the</strong> MNP, <strong>the</strong>re was a concurrent increase in A.<br />

antarctica coverage to 2011.<br />

Average cover of <strong>the</strong> dominant brown algae A. panicul<strong>at</strong>a was consistently higher within <strong>the</strong><br />

MNP sites compared to reference sites (Figure 3.10b). There was an increase in A.<br />

panicul<strong>at</strong>a cover in 2011 <strong>at</strong> MNP sites, Twin Reefs (Site 4), Shack Bay East (Site 6) and The<br />

Oaks Beach (Site 14). Similarly <strong>the</strong>re was an increase in cover <strong>at</strong> western reference sites,<br />

Cape P<strong>at</strong>terson (Site 1), Cape P<strong>at</strong>terson Bo<strong>at</strong> Ramp (Site 2) and Bo<strong>at</strong> Ramp East (Site 15).<br />

Cystophora pl<strong>at</strong>ylobium abundance has remained rel<strong>at</strong>ively constant throughout <strong>the</strong><br />

monitoring period, with a slight decrease evident in <strong>the</strong> l<strong>at</strong>est survey in MNP sites (Figure<br />

3.10c). There were no marked changes in abundances of <strong>the</strong> o<strong>the</strong>r dominant brown algae, S.<br />

axillaris and C. retorta over <strong>the</strong> monitoring period inside or outside <strong>the</strong> MNP (Figure 3.10d<br />

and e). Similarly, <strong>the</strong>re were no major changes in abundances of <strong>the</strong> red algae Plocamium<br />

angustum and P. peperocarpos and <strong>the</strong> red corraline alga H. roseum inside or outside <strong>the</strong><br />

MNP (Figure 3.10f - h). No discernable trends in average regional abundances were obvious,<br />

though moder<strong>at</strong>e fluctu<strong>at</strong>ions in abundance within sites occurred.<br />

Invertebr<strong>at</strong>es<br />

The average abundance of blacklip abalone, H. rubra, increased considerably from 1999 to<br />

peak abundances in 2001, both inside and outside <strong>the</strong> MNP (Figure 3.11a). There was a<br />

subsequent, gradual decline to 2005 for <strong>the</strong> reference area and 2006 for <strong>the</strong> MNP, with no<br />

appreciable increase by 2011 (Figure 3.11a). A similar p<strong>at</strong>tern was observed for <strong>the</strong><br />

warrener, T. undul<strong>at</strong>us, with peak abundances in 2001 and minima in 2006, (Figure 3.11b).<br />

The dogwhelk, D. orbita, also had a distinct peak in abundance in 2002, with low<br />

abundances in 2003 to 2011 in MNP sites and a gradual decline in abundance in reference<br />

sites since 2005 (Figure 3.11c).<br />

Average abundances of <strong>the</strong> common sea urchin, H. erythrogramma, were rel<strong>at</strong>ively high<br />

during <strong>the</strong> baseline period compared to <strong>the</strong> recent survey periods, although low abundances<br />

were observed during 2000 (Figure 3.11d). Abundances in 2010 and 2011 were among <strong>the</strong><br />

lowest observed levels in MPA and reference areas.<br />

43


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Fishes<br />

The frequent baseline surveys detected considerable intra- and interannual fluctu<strong>at</strong>ions in<br />

blue thro<strong>at</strong>ed wrasse, N. tetricus, with subsequent surveys having abundances within <strong>the</strong><br />

range of baseline vari<strong>at</strong>ions. The abundances of N. tetricus were very similar inside and<br />

outside <strong>the</strong> MNP over time (Figure 3.12a).<br />

The abundances of purple wrasse, N. fucicola, fluctu<strong>at</strong>ed considerably during <strong>the</strong> baseline<br />

monitoring, with abundances higher inside <strong>the</strong> MNP area. Post establishment of <strong>the</strong> MNP,<br />

abundances inside <strong>the</strong> MNP were lower than baseline levels, with densities similar to <strong>the</strong><br />

reference areas (Figure 3.12b). No N. fucicola were observed in MNP sites in <strong>the</strong> 2011<br />

survey (Figure 3.12b).<br />

A weaker decline in abundances inside <strong>the</strong> MNP was apparent for sen<strong>at</strong>or wrasse, P.<br />

l<strong>at</strong>iclavius, but popul<strong>at</strong>ions increased slightly during <strong>the</strong> 2011 survey (Figure 3.12c).<br />

Zebrafish G. zebra were largely absent from both inside and outside <strong>the</strong> MNP in 2005, 2006<br />

and 2010, which is inconsistent with baseline observ<strong>at</strong>ions (Figure 3.12d). Higher<br />

abundances in reference sites in 2011, can largely be <strong>at</strong>tributed to large abundances <strong>at</strong><br />

Cape P<strong>at</strong>terson (Site 1).<br />

Density of sea sweep S. aequipinnis varied over <strong>the</strong> monitoring period, but with no obvious<br />

trend (Figure 3.12e).<br />

The densities of magpie morwong C. nigripes were similar inside and outside <strong>the</strong> MNP <strong>at</strong> all<br />

times and similar temporal fluctu<strong>at</strong>ions occurred in both areas. The densities in 2010 and<br />

2011 were rel<strong>at</strong>ively low, Low densities were also observed in 1999 and early 2000 (Figure<br />

3.12f).<br />

The density of herring cale O. cyanomelas was consistently higher inside <strong>the</strong> MNP during <strong>the</strong><br />

baseline period, to 2002, after which average densities were slightly lower and similar to <strong>the</strong><br />

reference areas (Figure 3.12g). In 2011 O. cyanomelas was observed in low abundances in<br />

MPA and reference sites (Figure 3.12g).<br />

The densities of scalyfin P. victoriae were similar inside and outside <strong>the</strong> MNP, with similar<br />

fluctu<strong>at</strong>ions up to 2005. Densities were notably higher than previously observed in <strong>the</strong><br />

reference areas in 2006, and remained high compar<strong>at</strong>ive to <strong>the</strong> MNP sites in 2010, however<br />

were much lower and equivalent with MNP sites in <strong>the</strong> 2011 survey (Figure 3.12h).<br />

44


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Amphibolis antarctica Cover<br />

Cover (%)<br />

0 10 20 30 40<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Acrocarpia panicul<strong>at</strong>a Cover<br />

Cover (%)<br />

0 10 20 30 40<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Cystophora pl<strong>at</strong>ylobium Cover<br />

Cover (%)<br />

0 2 4 6 8 10 14<br />

MPA<br />

ref<br />

c.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.10. Percent cover (± standard error) of dominant seagrass and algal species inside and<br />

outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

45


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Seirococcus axillaris Cover<br />

Cover (%)<br />

0 5 10 15 20 25<br />

MPA<br />

ref<br />

d.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Cystophora retorta Cover<br />

Cover (%)<br />

0 5 10 20 30<br />

MPA<br />

ref<br />

e.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Plocamium angustum Cover<br />

Cover (%)<br />

0 1 2 3 4<br />

MPA<br />

ref<br />

f.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.10 (continued). Percent cover (± standard error) of dominant seagrass and algal species<br />

inside and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

46


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Phacelocarpus peperocarpos Cover<br />

Cover (%)<br />

0 2 4 6<br />

MPA<br />

ref<br />

g.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Haliptilon roseum Cover<br />

Cover (%)<br />

0 2 4 6 8 10 14<br />

MPA<br />

ref<br />

h.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.10 (continued). Percent cover (± standard error) of dominant seagrass and algal species<br />

inside and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

47


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Haliotis rubra<br />

Density (per 200 m 2 )<br />

0 50 100 150 200<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Turbo undul<strong>at</strong>us<br />

Density (per 200 m 2 )<br />

0 50 100 150<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Dic<strong>at</strong>hais orbita<br />

Density (per 200 m 2 )<br />

0 2 4 6 8<br />

MPA<br />

ref<br />

c.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.11. Mean abundance (± standard error) of dominant invertebr<strong>at</strong>e species inside and outside<br />

<strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

48


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Heliocidaris erythrogramma<br />

Density (per 200 m 2 )<br />

0 2 4 6 8<br />

MPA<br />

ref<br />

d.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.11. (continued). Mean abundance (± standard error) of dominant invertebr<strong>at</strong>e species inside<br />

and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

49


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Notolabrus tetricus<br />

Density (per 2000 m 2 )<br />

0 20 40 60 80<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Notolabrus fucicola<br />

Density (per 2000 m 2 )<br />

0 2 4 6 8 10 14<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Pictilabrus l<strong>at</strong>iclavius<br />

Density (per 2000 m 2 )<br />

0 2 4 6 8 10<br />

MPA<br />

ref<br />

c.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.12. Mean abundance (± standard error) of dominant fish species inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park.<br />

50


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Girella zebra<br />

Density (per 2000 m 2 )<br />

0 10 20 30 40<br />

MPA<br />

ref<br />

d.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Scorpis aequipinnis<br />

Density (per 2000 m 2 )<br />

0 5 10 20 30<br />

MPA<br />

ref<br />

e.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Cheilodactylus nigripes<br />

Density (per 2000 m 2 )<br />

0 1 2 3 4 5 6<br />

MPA<br />

ref<br />

f.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.12 (continued). Mean abundance (± standard error) of dominant fish species inside and<br />

outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

51


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Odax cyanomelas<br />

Density (per 2000 m 2 )<br />

0 1 2 3 4<br />

MPA<br />

ref<br />

g.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Parma victoriae<br />

Density (per 2000 m 2 )<br />

0 2 4 6 8 10<br />

MPA<br />

ref<br />

h.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.12 (continued). Mean abundance (± standard error) of dominant fish species inside and<br />

outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

52


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

3.2 Ecosystem Components<br />

Habit<strong>at</strong> and Production<br />

Canopy browns are <strong>the</strong> dominant functional algae group in <strong>the</strong> Bunurong area, with average<br />

percent cover of between 40 and 80 percent (Figure 3.13a). Since <strong>the</strong> previous survey in<br />

2010 a slight increase in <strong>the</strong> cover of crustose coralline algae cover in both MNP and<br />

reference areas (Figure 3.13b), a decrease in erect coralline algae in MNP sites, and a<br />

decrease in smaller browns in reference sites were recorded (Figure 3.13c and d). Over a<br />

larger time scale, percent cover of canopy browns, smaller browns and green algae have<br />

remained rel<strong>at</strong>ively similar throughout <strong>the</strong> monitoring period (Figure 3.13a, d and e).<br />

Crustose coralline algae has varied considerably between surveys with a significant<br />

decrease in both MPA and reference sites in 2006 and subsequent increases in 2010 and<br />

2011 (Figure 3.13b). Since declar<strong>at</strong>ion of <strong>the</strong> <strong>park</strong> in 2002 <strong>the</strong>re has been a steady increase<br />

in <strong>the</strong> cover of thallose red algae and a corresponding decrease in erect coralline algae<br />

cover in MNP sites (Figure 3.13f and c).<br />

Invertebr<strong>at</strong>e Groups<br />

Grazers were <strong>the</strong> most abundant of <strong>the</strong> invertebr<strong>at</strong>e functional groups in all surveys (Figure<br />

3.14a). Peaks in <strong>the</strong> densities of invertebr<strong>at</strong>e grazers and pred<strong>at</strong>ors occurred prior to <strong>the</strong><br />

MNP introduction. Densities have since declined and remained rel<strong>at</strong>ively constant through<br />

several surveys in both reference and MNP sites (Figure 3.14a and b). No trends were<br />

detected in <strong>the</strong> density of invertebr<strong>at</strong>e filter feeders, with low abundances in most surveys<br />

(Figure 3.14c). Abundances did increase in <strong>the</strong> first survey after <strong>the</strong> MNP declar<strong>at</strong>ion,<br />

however this was a single occurrence and does not represent an overall trend (Figure 3.14c).<br />

Seastar densities in <strong>the</strong> MNP have been in decline since <strong>the</strong> 2002 surveys. Seastar densities<br />

<strong>at</strong> reference sites have shown considerably more variability, but an overall decline is evident<br />

(Figure 3.14d).<br />

Fish Groups<br />

Fish hunter and fish forager functional groups showed similar interannual variability, being<br />

consistent inside and outside <strong>the</strong> MNP, (Figure 3.15a and b). Fish grazer abundance inside<br />

<strong>the</strong> MNP was consistently lower densities than references sites in surveys after 2005 (Figure<br />

3.15a). Fish planktivores occurred in low abundances in both <strong>the</strong> MNP and reference sites,<br />

spikes in abundance were <strong>at</strong>tributed to large numbers of bullseyes, Pempheris multiradi<strong>at</strong>a,<br />

<strong>at</strong> a small number of sites (Figure 3.15d).<br />

53


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Sediment Cover<br />

Sediment cover was not a survey parameter during <strong>the</strong> first two surveys. No marked<br />

changes from baseline surveys occurred until a peak in 2005. In subsequent surveys<br />

sediment cover has been similar to those prior to 2005 (Figure 3.16).<br />

54


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Canopy Browns<br />

Cover (%)<br />

0 20 40 60 80<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Crustose Coralline Algae<br />

Cover (%)<br />

0 5 10 15 20<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Erect Coralline Algae<br />

Cover (%)<br />

0 5 10 15 20<br />

MPA<br />

ref<br />

c.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.13. Seaweed functional groups (± standard error) inside and outside <strong>the</strong> Bunurong Marine<br />

N<strong>at</strong>ional Park.<br />

55


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Smaller Browns<br />

Cover (%)<br />

0 5 10 15 20 25 30<br />

MPA<br />

ref<br />

d.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Thallose Red Algae<br />

Cover (%)<br />

0 5 10 15 20 25<br />

MPA<br />

ref<br />

e.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Green Algae<br />

Cover (%)<br />

0 1 2 3 4<br />

MPA<br />

ref<br />

f.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.13 (continued). Seaweed functional groups (± standard error) inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park.<br />

56


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Invertebr<strong>at</strong>e Grazers<br />

Density (per 200 m 2 )<br />

0 50 150 250<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Invertebr<strong>at</strong>e Pred<strong>at</strong>ors<br />

Density (per 200 m 2 )<br />

0 2 4 6 8 10<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Invertebr<strong>at</strong>e Filter Feeders<br />

Density (per 200 m 2 )<br />

0 1 2 3 4 5 6<br />

MPA<br />

ref<br />

c.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.14. Mean abundance (± standard error) of invertebr<strong>at</strong>e functional groups inside and outside<br />

<strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

57


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Seastars<br />

Density (per 200 m 2 )<br />

0 10 20 30 40 50<br />

MPA<br />

ref<br />

d.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.14 (continued). Mean abundance (± standard error) of invertebr<strong>at</strong>e functional groups inside<br />

and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

58


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Fish Grazers<br />

Density (per 2000 m 2 )<br />

0 10 20 30 40<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Fish Foragers<br />

Density (per 2000 m 2 )<br />

0 50 100 150<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Fish Hunters<br />

Density (per 2000 m 2 )<br />

0 1 2 3 4 5<br />

MPA<br />

ref<br />

c.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.15. Mean abundance (± standard error) of fish functional groups inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park.<br />

59


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Fish Planktivores<br />

Density (per 2000 m 2 )<br />

0 10 20 30 40 50<br />

MPA<br />

ref<br />

d.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.15 (continued). Mean abundance (± standard error) of fish functional groups inside and<br />

outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

Sediment Cover<br />

Cover (%)<br />

0 5 10 15<br />

MPA<br />

ref<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.16. Mean cover (± standard error) of sediment inside and outside <strong>the</strong> Bunurong Marine<br />

N<strong>at</strong>ional Park<br />

3.3 Introduced Species<br />

No introduced species were observed <strong>at</strong> <strong>the</strong> Bunurong monitoring sites during any of <strong>the</strong> 12<br />

surveys to d<strong>at</strong>e.<br />

60


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

3.4 Clim<strong>at</strong>e Change<br />

Species composition<br />

Cold w<strong>at</strong>er, Maugean algal species richness and total abundance is consistently higher in <strong>the</strong><br />

MNP sites throughout <strong>the</strong> monitoring period. In <strong>the</strong> 2011 survey Maugean algal species<br />

richness <strong>at</strong> reference sites was <strong>the</strong> lowest of <strong>the</strong> entire monitoring period (Figure 3.17). The<br />

Maugean fish species richness and total abundance also decreased in <strong>the</strong> 2011 survey<br />

(Figure 3.18). The occurrence of Maugean invertebr<strong>at</strong>e species was low or absent in all<br />

surveys.<br />

The western algal species richness was rel<strong>at</strong>ively low, with abundance only varying<br />

occasionally throughout <strong>the</strong> monitoring period, (Figure 3.19). Western invertebr<strong>at</strong>e species<br />

richness increased slightly over <strong>the</strong> previous three surveys, following a decline in <strong>the</strong> 2003<br />

survey. Abundance of western invertebr<strong>at</strong>es has been consistently low, with <strong>the</strong> exception of<br />

reference sites in 2000 and 2002. Species richness of western invertebr<strong>at</strong>es has been similar<br />

in MPA and reference sites following a similar p<strong>at</strong>tern (Figure 3.20). Western fish species<br />

richness and abundance were low on all survey occasions, with no discernible trends<br />

evident.<br />

The eastern algal species in <strong>the</strong> Bunurong region were not well represented <strong>at</strong> any time.<br />

Eastern invertebr<strong>at</strong>e species were recorded intermittently in very low densities over <strong>the</strong><br />

monitoring period. Eastern fish species were observed in low to medium abundances in<br />

surveys prior to <strong>the</strong> <strong>park</strong> declar<strong>at</strong>ion, however have been absent or in very low abundances<br />

in subsequent surveys (Figure 3.21).<br />

Macrocystis pyrifera<br />

The string kelp M. pyrifera can grow up to 10 m in height and form dense forests with a thick<br />

canopy flo<strong>at</strong>ing on <strong>the</strong> surface. Consequently, M. pyrifera is a significant habit<strong>at</strong> forming<br />

species. Anecdotal evidence suggests M. pyrifera was once present in rel<strong>at</strong>ively high<br />

abundance along <strong>the</strong> <strong>Victoria</strong>n coast, forming large forests in some loc<strong>at</strong>ions. Abundances of<br />

M. pyrifera were reduced for much of this decade. Possible causes of this decline include a<br />

rapid succession of El Niño events in <strong>the</strong> l<strong>at</strong>e 1980s and early 1990s (affecting w<strong>at</strong>er<br />

temper<strong>at</strong>ure and nutrient levels), a long-term increase in average sea temper<strong>at</strong>ure (1 ºC over<br />

<strong>the</strong> last 40 years) and changes to coastal nutrient inputs.<br />

The quadr<strong>at</strong>-cover measurements detected substantial changes in M. pyrifera cover between<br />

<strong>the</strong> first two surveys. During June 1999, coverage was gre<strong>at</strong>est <strong>at</strong> Cape P<strong>at</strong>terson (Site 1),<br />

Oaks East (Site 3), Twin Reefs (Site 4) and Shack Bay West (Site 5) with coverage of 2.5,<br />

1.6, 0.8 and 1.5 percent respectively. By January 2000, this had increased to 15 % <strong>at</strong> sites<br />

Oaks East and Twin Reefs, with minor increases or decreases detected <strong>at</strong> o<strong>the</strong>r sites. A<br />

61


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

general decline in abundance marked <strong>the</strong> fourth survey, December 2000, with quadr<strong>at</strong><br />

coverage of 2.2 and 0.5 % detected only <strong>at</strong> Cape P<strong>at</strong>terson (Site 1) and Shack Bay Beach<br />

(Site 12). Macrocystis pyrifera cover has remained low <strong>at</strong> most sites during subsequent<br />

surveys. Exceptions include Oaks East (Site 3), where cover increased to 5.4% <strong>at</strong> Survey 6<br />

before decreasing to 0.7 % in Survey 7. No M. pyrifera was recorded in <strong>the</strong> quadr<strong>at</strong>-cover<br />

measurements during Surveys 8 and 9. Low percentage cover was recorded during Survey<br />

11 in 2010 <strong>at</strong> Cape P<strong>at</strong>terson (Site 1), Shack Bay Beach (Site 12), The Oaks Beach (Site 14)<br />

and Bo<strong>at</strong> Ramp East (Site 15), with 0.9, 0.2, 0.3 and 1.4 % cover respectively (Figure 3.23a).<br />

Low percentage cover was also recorded during Survey 12 in 2011 <strong>at</strong> Twin Reefs (Site 4)<br />

and Shack Bay Beach (Site 12) with 0.3 and 0.2% cover respectively (Figure 3.22a).<br />

The quadr<strong>at</strong>-cover method is generally insensitive in detecting small changes in abundances<br />

of sparsely distributed species, such as M. Pyrifera plants. Therefore, given <strong>the</strong> importance<br />

of this species, a new census technique was introduced during <strong>the</strong> second survey, summer<br />

2000. As described in Section 2.2.6, this method quantified <strong>the</strong> number of plants within 10 x<br />

10 m sections of <strong>the</strong> transects.<br />

The quadr<strong>at</strong> results were also reflected in <strong>the</strong> plant density measurements. Densities were<br />

highest during <strong>the</strong> first survey using this method, January 2000 (Figure 3.22b). Abundances<br />

have tended to decline or remain low during all subsequent surveys (Figure 3.22b). During<br />

Survey 7, only 25 plants were observed, all being <strong>at</strong> The Oaks Beach (Site 14). This decline<br />

continued with few plants observed during <strong>the</strong> eighth survey (Autumn 2003) and no plants<br />

observed during <strong>the</strong> ninth survey (Summer 2004/2005). During <strong>the</strong> tenth survey (Autumn<br />

2006), four to five plants were observed <strong>at</strong> Cape P<strong>at</strong>terson (Site 1), Cape P<strong>at</strong>terson Bo<strong>at</strong><br />

Ramp (Site 2), Twin Reefs (Site 4) and Shack Bay West (Site 5) during quadr<strong>at</strong>-cover<br />

measurements, however <strong>the</strong>se plants were juveniles and undetectable during plant density<br />

measurements. During <strong>the</strong> eleventh survey plants were recorded <strong>at</strong> only three sites. One<br />

plant was recorded <strong>at</strong> Oaks East (Site 3) and eleven <strong>at</strong> both Cape P<strong>at</strong>terson (Site 1) and The<br />

Oaks Beach (Site 14). In <strong>the</strong> twelfth survey, juvenile plants were also recorded <strong>at</strong> three sites.<br />

Fourteen plants were recorded <strong>at</strong> Twin Reefs (Site 4), eight plants <strong>at</strong> Shack Bay Beach (Site<br />

12), and nine plants <strong>at</strong> The Oaks Beach (Site 14). Over <strong>the</strong> twelve years surveyed, this<br />

represents a major decrease in M. pyrifera <strong>at</strong> <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park and<br />

surrounding area, a trend reflected in many o<strong>the</strong>r subtidal <strong>reef</strong>s along <strong>the</strong> south east<br />

Australian coast (Figure 3.22b).<br />

Centrostephanus rodgersii<br />

Centrostephanus rodgersii was not recorded in any of <strong>the</strong> 12 Bunurong surveys.<br />

62


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Durvillaea pot<strong>at</strong>orum<br />

Durvillaea pot<strong>at</strong>orum was not recorded in any of <strong>the</strong> 12 Bunurong surveys.<br />

63


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Maugean Algal Species<br />

No. Species<br />

0 2 4 6 8 10<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Maugean Algal Abundance<br />

Points Index<br />

0 50 150 250<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.17. Abundance (± standard error) of Maugean algae species inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park.<br />

64


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Maugean Fish Species<br />

No. Species<br />

0 2 4 6 8 10 12<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Maugean Fish Abundance<br />

Density (per 2000 m 2 )<br />

0 20 40 60 80<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.18. Abundance (± standard error) of Maugean fish species inside and outside <strong>the</strong> Bunurong<br />

Marine N<strong>at</strong>ional Park.<br />

65


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Western Algal Species<br />

No. Species<br />

0.0 0.4 0.8 1.2<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Western Algal Abundance<br />

Points Index<br />

0 2 4 6 8 10<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.19. Abundance (± standard error) of western algae species inside and outside <strong>the</strong> Bunurong<br />

Marine N<strong>at</strong>ional Park.<br />

66


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Western Invertebr<strong>at</strong>e Species<br />

No. Species<br />

0.0 1.0 2.0 3.0<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Western Invertebr<strong>at</strong>e Abundance<br />

Density (per 200 m 2 )<br />

0 10 20 30 40<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.20. Abundance (± standard error) of western invertebr<strong>at</strong>e species inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park.<br />

67


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Eastern Fish Species<br />

No. Species<br />

0.0 0.5 1.0 1.5 2.0<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Eastern Fish Abundance<br />

Density (per 2000 m 2 )<br />

0 10 30 50 70<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.21. Abundance (± standard error) of eastern fish species inside and outside <strong>the</strong> Bunurong<br />

Marine N<strong>at</strong>ional Park.<br />

68


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Macrocystis pyrifera Cover<br />

Cover (%)<br />

0 2 4 6 8<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Macrocystis pyrifera Density<br />

Density (per 2000 m 2 )<br />

0 50 150 250<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.22. Abundance (± standard error) of string kelp Macrocystis pyrifera inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park.<br />

69


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

3.5 Fishing<br />

Abalone<br />

The average size of blacklip abalone, H. rubra, was similar between <strong>the</strong> Bunurong MNP and<br />

<strong>the</strong> reference areas during most surveys prior to 2006, with vari<strong>at</strong>ions in mean size generally<br />

less than 5 mm length (Figure 3.23a). A marked decrease in mean size of H. rubra was<br />

measured both inside and outside <strong>the</strong> MNP between 2006 and 2011, with mean size falling<br />

to well below previously observed sizes (Figure 3.23a). The proportion of legal sized abalone<br />

has also declined during this period to lowest observed levels, both inside and outside <strong>the</strong><br />

MNP (Figure 3.24). Although a decline was also evident in MNP sites <strong>the</strong> scale of decline,<br />

and low abundances (Figure 3.23b), suggests an increased in fishing pressure in Western<br />

reference sites, which may extend into <strong>the</strong> MNP, to a lesser extent.<br />

Rock Lobster<br />

The sou<strong>the</strong>rn rock lobster J. edwardsii is common inside <strong>the</strong> MNP, however <strong>the</strong> survey sites<br />

do not encompass <strong>the</strong>ir preferred microhabit<strong>at</strong> and do <strong>the</strong>refore do not adequ<strong>at</strong>ely survey<br />

<strong>the</strong>ir abundances (Figure 3.25).<br />

Fishes<br />

The size spectrum analysis indic<strong>at</strong>es th<strong>at</strong> in reference sites <strong>the</strong> abundance of larger fishes in<br />

2006 and 2010 were amongst <strong>the</strong> lowest of all surveys, 2010 was also <strong>the</strong> lowest for sites<br />

within <strong>the</strong> MNP (Figure 3.26). The biomass and density of fishes above 200 mm length in<br />

2006, 2010 and 2011 is also <strong>the</strong> lowest of recorded observ<strong>at</strong>ions inside <strong>the</strong> MNP. Similarly<br />

observ<strong>at</strong>ions of biomass and density of fishes above 200 mm length <strong>at</strong> reference sites were<br />

low in 2010 and 2011 (Figure 3.27 and Figure 3.28). A decline in size of <strong>the</strong> larger, fished<br />

species, including blue thro<strong>at</strong>ed wrasse N. tetricus, sen<strong>at</strong>or wrasse P. l<strong>at</strong>iclavius and magpie<br />

morwong C. nigripes was apparent (Figure 3.29 to Figure 3.31). Mean size of purple wrasse<br />

N. fucicola was rel<strong>at</strong>ively consistent across all surveys, however no N.fucicola were observed<br />

within MNP sites in 2011 (Figure 3.32).<br />

70


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Haliotis rubra Mean Size<br />

Length (mm)<br />

60 70 80 90 100<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

MPA<br />

Reference<br />

Frequency<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Frequency<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

b.<br />

60 80 100 120 140<br />

Length (mm)<br />

60 80 100 120 140<br />

Length (mm)<br />

Figure 3.23. Abundance (± standard error) of different size classes of <strong>the</strong> blacklip abalone Haliotis<br />

rubra <strong>at</strong> Bunurong Marine N<strong>at</strong>ional Park and reference sites.<br />

71


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Proportion of Legal Sized Abalone<br />

Proportion (%)<br />

0 10 20 30<br />

MPA<br />

ref<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.24. Proportion of legal sized blacklip abalone, Haliotis rubra, inside and outside <strong>the</strong><br />

Bunurong Marine N<strong>at</strong>ional Park<br />

Jasus edwardsii<br />

Density (per 200 m 2 )<br />

0 1 2 3 4<br />

MPA<br />

ref<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.25.Density (± standard error) of sou<strong>the</strong>rn rock lobster, Jasus edwardsii, inside and outside<br />

<strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

72


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Fish Size Spectrum Slope<br />

Spectrum slope<br />

-2.5 -1.5 -0.5 0.5<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Fish Size Spectrum Intercept<br />

b.<br />

Spectrum intercept<br />

0 1 2 3<br />

MPA<br />

ref<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.26. Fish size spectra inside and outside <strong>the</strong> Bunurong Marine N<strong>at</strong>ional Park.<br />

73


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Biomass of Fished Species - Total<br />

Biomass (kg)<br />

0 5 10 15 20<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Biomass of Fished Species - over 200 mm<br />

Biomass (kg)<br />

0 5 10 15<br />

MPA<br />

ref<br />

b.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.27. Biomass (± standard error) of fished species inside and outside <strong>the</strong> Bunurong Marine<br />

N<strong>at</strong>ional Park.<br />

74


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Density of Fished Species - over 200 mm<br />

Density (per 2000 m 2 )<br />

0 5 10 15 20 25<br />

MPA<br />

ref<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.28. Density (± standard error) of larger, fished fish species inside and outside <strong>the</strong> Bunurong<br />

Marine N<strong>at</strong>ional Park.<br />

75


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Notolabrus tetricus Mean Size<br />

Length (mm)<br />

0 50 100 150 200<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

MPA<br />

Reference<br />

0.008<br />

b.<br />

0.006<br />

0.006<br />

Density<br />

0.004<br />

0.002<br />

Density<br />

0.004<br />

0.002<br />

0.000<br />

0.000<br />

100 200 300 400 500<br />

Length (mm)<br />

100 200 300 400 500<br />

Length (mm)<br />

Figure 3.29. Abundance (± standard error) of different size classes of <strong>the</strong> blue thro<strong>at</strong> wrasse,<br />

Notolabrus tetricus, <strong>at</strong> Bunurong Marine N<strong>at</strong>ional Park and reference sites.<br />

76


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Pictilabrus l<strong>at</strong>iclavius Mean Size<br />

Length (mm)<br />

0 50 100 200<br />

MPA<br />

ref<br />

a.<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

MPA<br />

Reference<br />

Density<br />

0.012<br />

0.010<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0.000<br />

Density<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0.000<br />

b.<br />

100 200 300 400 500<br />

Length (mm)<br />

100 200 300 400 500<br />

Length (mm)<br />

Figure 3.30. Abundance (± standard error) of different size classes of <strong>the</strong> sen<strong>at</strong>or wrasse, Pictilabrus<br />

l<strong>at</strong>iclavius, <strong>at</strong> Bunurong Marine N<strong>at</strong>ional Park and reference sites.<br />

77


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Cheilodactylus nigripes Mean Size<br />

Length (mm)<br />

0 50 150 250 350<br />

MPA<br />

ref<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

Figure 3.31. Abundance (± standard error) of different size classes of <strong>the</strong> magpie morwong,<br />

Cheilodactylus nigripes, <strong>at</strong> Bunurong Marine N<strong>at</strong>ional Park and reference sites.<br />

Figure 3.32. Abundance (± standard error) of different size classes of <strong>the</strong> purple wrasse, Notolabrus<br />

fucicola, <strong>at</strong> Bunurong Marine N<strong>at</strong>ional Park and reference sites. No N. fucicola were found within <strong>the</strong><br />

MPA in 2011.<br />

78


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

4 REFERENCES<br />

Anderson M. J. (2008) ControlChart: a FORTRAN computer program for calcul<strong>at</strong>ing control<br />

charts for multivari<strong>at</strong>e response d<strong>at</strong>a through time, based on a chosen resemblance<br />

measure. Department of St<strong>at</strong>istics, University of Auckland, New Zealand.<br />

Anderson M. J. and Thompson A. A. (2004) Multivari<strong>at</strong>e control charts for ecological and<br />

environmental monitoring. Ecological Applic<strong>at</strong>ions 14, 1921-1935.<br />

Clarke K. R. (1993) Non-parametric multivari<strong>at</strong>e analyses of changes in community structure.<br />

Australian Journal of Ecology 18, 117-143.<br />

Dayton P. K., Tegner M. J., Edwards P. B. and Riser K. L. (1998) Sliding baselines, ghosts,<br />

and reduced expect<strong>at</strong>ions in kelp forest communities. Ecological Applic<strong>at</strong>ions 8, 309-322.<br />

Ebeling A. W., Laur D. R. and Rowley R. J. (1985) Severe storm disturbances and reversal<br />

of community structure in a sou<strong>the</strong>rn California kelp forest. Marine Biology 84, 287-294.<br />

Edgar G. J. (1998) Impact on and recovery of subtidal <strong>reef</strong>s. In: Iron Barron Oil Spill, July<br />

1995: Long Term Environmental Impact and Recovery (pp273-293). Tasmanian Department<br />

of Primary Industries and Environment, Hobart.<br />

Edgar G. J. and Barrett N. S. (1997) Short term monitoring of biotic change in Tasmanian<br />

<strong>marine</strong> reserves. Journal of Experimental Marine Biology and Ecology 213, 261-279.<br />

Edgar G. J. and Barrett N. S. (1999) Effects of <strong>the</strong> declar<strong>at</strong>ion of <strong>marine</strong> reserves on<br />

Tasmanian <strong>reef</strong> fishes, invertebr<strong>at</strong>es and plants. Journal of Experimental Marine Biology and<br />

Ecology 242, 107-144.<br />

Edgar G. J., Moverly J., Barrett N. S., Peters D. and Reed C. (1997). The conserv<strong>at</strong>ionrel<strong>at</strong>ed<br />

benefits of a system<strong>at</strong>ic <strong>marine</strong> biological sampling program: <strong>the</strong> Tasmanian <strong>reef</strong><br />

bioregionalis<strong>at</strong>ion as a case study. Biological Conserv<strong>at</strong>ion 79, 227-240.<br />

Edmunds M. (2000) Ecological st<strong>at</strong>us of <strong>the</strong> central <strong>Victoria</strong>n bioregion, 2000: macroalgae,<br />

invertebr<strong>at</strong>e and fish popul<strong>at</strong>ions in <strong>the</strong> Bunurong Marine Protected Area. Report to <strong>Victoria</strong>n<br />

Department of N<strong>at</strong>ural Resources and Environment, Australian Marine Ecology Report No.<br />

106, Melbourne.<br />

Edmunds M. and Hart S. (2003) <strong>Parks</strong> <strong>Victoria</strong> Standard Oper<strong>at</strong>ing Procedure: biological<br />

monitoring of subtidal <strong>reef</strong>s. <strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 9. <strong>Parks</strong> <strong>Victoria</strong>,<br />

Melbourne.<br />

Edmunds E., Roob R. and Ferns L. (2000) “Marine biogeography of <strong>the</strong> central <strong>Victoria</strong> and<br />

Flinders Bioregions – a preliminary analysis of <strong>reef</strong> flora and fauna”, in L. W. Ferns and D.<br />

Hough (eds), Environmental Inventory of <strong>Victoria</strong>’s Marine Ecosystems Stage 3 (Volume 2).<br />

<strong>Parks</strong>, Flora and Fauna Division, Department of N<strong>at</strong>ural Resources and Environment, East<br />

Melbourne. Australia.<br />

Edyvane K. (2003) Conserv<strong>at</strong>ion, monitoring and recovery of thre<strong>at</strong>ened giant kelp<br />

(Macrocystis pyrifera) beds in Tasmania – final report. Report to Environment Australia<br />

(Marine Species Protection Program), Tasmanian Department of Primary Industries, W<strong>at</strong>er<br />

and Environment, Hobart.<br />

Faith D., Minchin P. and Belbin L. (1987) Compositional dissimilarity as a robust measure of<br />

ecological distance. Veget<strong>at</strong>io 69, 57-68.<br />

Fraser C. I., Spencer H. G. and W<strong>at</strong>ers J. M. (2009) Glacial oceanographic contrasts explain<br />

phylogeography of Australian bull kelp. Molecular Ecology 18, 2287-2296.<br />

Harmen N., Harvey E. and Kendrick G. (2003). Differences in fish assemblages from<br />

different <strong>reef</strong> habit<strong>at</strong>s in Hamelin Bay, south-western Australia. Marine and Freshw<strong>at</strong>er<br />

Research 54, 177-184.<br />

79


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

Harvey E. S., Fletcher D. and Shortis M. R. (2001a). A comparison of <strong>the</strong> precision and<br />

accuracy of estim<strong>at</strong>es of <strong>reef</strong>-fish lengths made by divers and a stereo-video system.<br />

Fisheries Bulletin 99, 63-71.<br />

Harvey E. S., Fletcher D. and Shortis M. R. (2001b). Improving <strong>the</strong> st<strong>at</strong>istical power of visual<br />

length estim<strong>at</strong>es of <strong>reef</strong> fish: a comparison of estim<strong>at</strong>es determined visually by divers with<br />

estim<strong>at</strong>es produced by a stereo-video system. Fisheries Bulletin 99, 72-80.<br />

Harvey E. S., Fletcher D. and Shortis M. R. (2002a). Estim<strong>at</strong>ion of <strong>reef</strong> fish length by divers<br />

and by stereo-video. A first comparison of <strong>the</strong> accuracy and precision in <strong>the</strong> field on living<br />

fish under oper<strong>at</strong>ional conditions. Fisheries Research 57, 257-267.<br />

Harvey E. S., Shortis M. R., Stadler M. and Cappo M. (2002b). A comparison of <strong>the</strong> accuracy<br />

and precision of digital and analogue stereo-video systems. Marine Technology Society<br />

Journal 36, 38-49.<br />

Holling C. S. (1978) Adaptive Environmental Assessment and Management. Wiley,<br />

Chichester.<br />

Johnson C., Ling S., Ross J., Shepherd S. and Miller K. (2005) Establishment of <strong>the</strong> longspined<br />

sea urchin (Centrostephanus rodgersii) in Tasmania: first assessment of potential<br />

thre<strong>at</strong>s to fisheries. FRDC Project No 2001/044. Tasmanian Aquaculture and Fisheries<br />

Institute, Hobart.<br />

Krebs C. J. (1999) Ecological Methodology, Second Edition. Benjamin/Cummings, Menlo<br />

Park.<br />

Lyle J. M. and Campbell D. A. (1999). Species and size composition of recre<strong>at</strong>ional c<strong>at</strong>ches,<br />

with particular reference to licensed fishing methods. Final Report to <strong>the</strong> Marine Recre<strong>at</strong>ional<br />

Fishery Advisory Committee. Tasmania Aquaculture and Fisheries Institute, Hobart.<br />

Macaya E. C. and Zuccarello G. C. (2010) DNA barcoding and genetic divergence in <strong>the</strong><br />

giant kelp Macrocystis (Laminariales). Journal of Phycology, 46, 736-742.<br />

McCullagh P. and Nelder J. A. (1989) Generalized Linear Models, Second Edition.<br />

Monographs on St<strong>at</strong>istics and Applied Probability 37. Chapman and Hall, London.<br />

Meredith C. (1997) Best Practice in Performance Reporting in N<strong>at</strong>ural Resource<br />

Management. Department of N<strong>at</strong>ural Resources and Environment, Melbourne.<br />

Rapport D. J. (1992) Evalu<strong>at</strong>ing ecosystem health. Journal of Aqu<strong>at</strong>ic Ecosystem Health 1,<br />

15-24.<br />

Roob R., Edmunds M. and Ball D. (2000) <strong>Victoria</strong>n Oil Spill Response Atlas: Biological<br />

resources. Macroalgal Communities in Central <strong>Victoria</strong>. Report to Australian Marine Safety<br />

Authority, Australian Marine Ecology Report No. 109, Melbourne.<br />

Stuart-Smith R., Barrett N., Crawford C., Edgar G. and Frusher S. (2008) Condition of Rocky<br />

Reef Communities: A Key Marine Habit<strong>at</strong> around Tasmania. NRM/NHT Final Report.<br />

Tasmanian Aquaculture and Fisheries Institute, Hobart.<br />

Swe<strong>at</strong>man H., Cheal A., Coleman G., Emslie M., Johns K., Jonker M., Miller I. and Osborne<br />

K. (2008). Long-term monitoring of <strong>the</strong> Gre<strong>at</strong> Barrier Reef. Australian Institute of Marine<br />

Science St<strong>at</strong>us Report No. 8, Brisbane.<br />

Thrush S. F., Hewitt J. E., Dayton P. K., Coco G., Lohrer A. M., Norkko A., Norkko J. and<br />

Chiantore M. (2009). Forecasting <strong>the</strong> limits of resilience: integr<strong>at</strong>ing empirical research with<br />

<strong>the</strong>ory. Proceedings of <strong>the</strong> Royal Society B 276, 3209-3217.<br />

Turner D. J., Kildea T. N., Murray-Jones S. (2006) Examining <strong>the</strong> health of subtidal <strong>reef</strong><br />

environments in South Australia, Part 1: Background review and r<strong>at</strong>ionale for <strong>the</strong><br />

development of <strong>the</strong> monitoring program. South Australian Research and Development<br />

Institute (Aqu<strong>at</strong>ic Sciences), Adelaide. 62pp. SARDI Public<strong>at</strong>ion Number RD03/0252-3.<br />

80


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

W<strong>at</strong>son D. L., Harvey E. S., Fitzp<strong>at</strong>rick B. M., Langlois T. J. and Shedrawi G. (2010)<br />

Assessing <strong>reef</strong> fish assemblage structure: how do different stereo-video techniques<br />

compare? Marine Biology 157, 1237-1250.<br />

Westera M., Lavery P. and Hyndes P. (2003) Differences in recre<strong>at</strong>ionally targeted fishes<br />

between protected and fished areas of a coral <strong>reef</strong> <strong>marine</strong> <strong>park</strong>. Journal of Experimental<br />

Marine Biology and Ecology 294, 145-168.<br />

81


<strong>Parks</strong> <strong>Victoria</strong> Technical Series No. 84<br />

Bunurong Subtidal Reef Monitoring<br />

5 ACKNOWLEDGEMENTS<br />

This project was initially funded by <strong>the</strong> Department of Sustainability and Environment and<br />

subsequently by <strong>Parks</strong> <strong>Victoria</strong>. Supervision was by Dr Steffan Howe. Scientific divers for <strong>the</strong><br />

last survey included Mr David Donnelly, Mr Shaun Davis, Mr Alistair Smith and Mr Hugh<br />

Brown. Field support for <strong>the</strong> last survey was kindly provided by Mr Pete Walton of T-C<strong>at</strong><br />

charters.<br />

82


<strong>Parks</strong> <strong>Victoria</strong> is responsible for managing <strong>the</strong> <strong>Victoria</strong>n protected<br />

area network, which ranges from wilderness areas to metropolitan<br />

<strong>park</strong>s and includes both <strong>marine</strong> and terrestrial components.<br />

Our role is to protect <strong>the</strong> n<strong>at</strong>ural and cultural values of <strong>the</strong> <strong>park</strong>s<br />

and o<strong>the</strong>r assets we manage, while providing a gre<strong>at</strong> range of<br />

outdoor opportunities for all <strong>Victoria</strong>ns and visitors.<br />

A broad range of environmental research and monitoring activities<br />

supported by <strong>Parks</strong> <strong>Victoria</strong> provides inform<strong>at</strong>ion to enhance <strong>park</strong><br />

management decisions. This Technical Series highlights some of<br />

<strong>the</strong> environmental research and monitoring activities done within<br />

<strong>Victoria</strong>’s protected area network.<br />

Healthy <strong>Parks</strong> Healthy People<br />

For more inform<strong>at</strong>ion contact <strong>the</strong> <strong>Parks</strong> <strong>Victoria</strong> Inform<strong>at</strong>ion Centre<br />

on 13 1963, or visit www.<strong>park</strong>web.vic.gov.au

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!