01.11.2014 Views

Ozonation and PAC addition schemes, results - EU Project Neptune

Ozonation and PAC addition schemes, results - EU Project Neptune

Ozonation and PAC addition schemes, results - EU Project Neptune

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Ozonation</strong> <strong>and</strong> <strong>PAC</strong> <strong>addition</strong> <strong>schemes</strong>,<br />

<strong>results</strong> of pilot <strong>and</strong> full-scale operations<br />

Hansruedi Siegrist, Saskia Zimmermann, Ben Zwickenpflug, Marc Boehler,<br />

Falk Dorusch, Juliane Hollender und U. von Gunten (Eawag)<br />

Guido Fink, Thomas Ternes (BFG, Germany<br />

A. Magdeburg, D. Stalter <strong>and</strong> J. Oehlmann (Uni Frankfurt, Germany)<br />

<strong>Neptune</strong> workshop: Technical Solutions for Nutrient <strong>and</strong> Micropollutants Removal in WWTPs<br />

Eawag: Swiss Federal Institute of Aquatic Science <strong>and</strong> Technology<br />

Université Laval, Québec, March 25-26, 2010


Full scale ozonation at WWTP Regensdorf<br />

Primary<br />

effluent<br />

activated sludge treatment<br />

Secondary<br />

effluent<br />

<strong>Ozonation</strong><br />

effluent<br />

Upstream<br />

WWTP<br />

S<strong>and</strong>filtration<br />

sedimentation<br />

O 3<br />

Primary<br />

sedimentation<br />

S<strong>and</strong><br />

filtration<br />

effluent<br />

36 m 3 Downstream<br />

sampling points<br />

• population equivalent: 25.000<br />

• water flow under dry weather conditions:<br />

30-120 L/sec ~ 50 % water flow of creek<br />

WWTP


<strong>Ozonation</strong><br />

7<br />

1.7m3 effluent<br />

FS<br />

0<br />

1.3m 3<br />

6<br />

s<strong>and</strong> filter<br />

8<br />

V tot =36.1m 3<br />

5<br />

4.3m 3<br />

9.6m 3<br />

2.0m 3<br />

3<br />

1<br />

8.6m 3<br />

4.3m 3 6.0m 3<br />

4<br />

2<br />

<br />

0.7 m 0.6 m 0.6 m 1.0 m 0.6 m 1.0 m<br />

3.15 m<br />

width 2.55 m<br />

4.50 m


Ozone dosage<br />

Full-scale ozonation<br />

Online measurement of ozone <strong>and</strong> DOC (as UV absorption)<br />

Control of ozone concentration by DOC measurements<br />

Ozone concentration: 0 – 1200 g /kg DOC ≈ 0 – 6 mg/L Ozone<br />

Sampling<br />

10 sampling compaigns<br />

24h- or 48h-volume proportional composite samples<br />

Fitration on-site (0.7 µm glassfiber filters)<br />

Analysis<br />

Micropollutants<br />

Ecotoxicity<br />

Pathogens


Effect of ozone concentration on<br />

elimination efficiency<br />

Calculation: 100 – 100 *c after ozonation / c secondary effluent<br />

Diclofenac<br />

Trimethoprim<br />

Sulfapyridin<br />

Carbamazepin<br />

Ozone in<br />

g/kg DOC<br />

966 +/- 271<br />

617 +/- 47<br />

396 +/- 63<br />

Clarithromycin<br />

H 3 C<br />

O<br />

Sulfamethoxazol<br />

CH 3<br />

CH 3<br />

HO<br />

H 3 C<br />

O<br />

O<br />

OH<br />

CH 3<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

O<br />

OH<br />

N<br />

CH 3<br />

O<br />

Metoprolol<br />

Methylbenzotriazol<br />

Benzotriazol<br />

Atenolol<br />

O<br />

Mecoprop<br />

H 2 N<br />

S<br />

O<br />

N<br />

H<br />

N<br />

O<br />

Atrazin<br />

0 20 40 60 80 100<br />

Eliminiation (%)


Elimination efficiency – micropollutants<br />

Number<br />

Secondary<br />

Effluent<br />

<strong>Ozonation</strong> effluent<br />

(634 g O3/kg DOC) ><br />

<strong>Ozonation</strong> effluent<br />

(634 g O3/kg DOC)<br />

>15 ng/L<br />

15 ng/L<br />

> 100 ng/L<br />

Pharmaceuticals 14 12 3 Atenolol<br />

Antibiotics 10 8 0<br />

X-Ray contrast media 6 6 not determined<br />

Biocides/Pesticides 12 8 3 Mecoprop<br />

Corrosion inhibitor 2 2 2 (Methyl)-Benzotriazol<br />

Endorine disruptors 4 1 1 Bisphenol A<br />

Metabolites 5 1 1


Elimination efficiency of toxic effects<br />

Testbattery (in vitro)<br />

Bioluminescence test<br />

Algae test<br />

Acetylcholinesterase test<br />

Yeast estrogen screen (YES)<br />

non-specific toxicity<br />

inhibition of photosynthesis<br />

neurotoxicity<br />

endocrine disruption<br />

HO<br />

OH<br />

H<br />

H H<br />

estrogen<br />

gene product :<br />

enzyme ß-galactosidase<br />

orange<br />

ERE<br />

reporter gene red<br />

Plasmid<br />

human estrogen receptor<br />

yeast cell


Elimination efficiency of toxic effects<br />

non-specific toxicity<br />

specific toxicity<br />

8<br />

7<br />

6<br />

72 301<br />

bioluminescence<br />

algae growth<br />

8<br />

6<br />

78<br />

DEQ (µg/L)<br />

PTEQ (µg/L)<br />

EEQ (ng/L)<br />

5<br />

4<br />

4<br />

3<br />

2<br />

2<br />

1<br />

0<br />

0<br />

<strong>Ozonation</strong> leads to a significant reduction<br />

of non-specific <strong>and</strong> specific toxicity<br />

Ozone dose<br />

600 g O 3 / kg DOC


Cancerogenic nitrosamines<br />

- byproducts of ozonation?<br />

C<br />

H 3<br />

C<br />

Mean values of 9 -11 sampling campaigns<br />

N<br />

N<br />

O<br />

Concentration (ng/L)<br />

30<br />

20<br />

10<br />

NDBA<br />

NDEA<br />

NDMA<br />

NMOR<br />

NPIP<br />

C<br />

H 3<br />

C<br />

H 3<br />

H 3<br />

C<br />

H 3<br />

C<br />

O<br />

N<br />

H 3<br />

N N<br />

O<br />

N<br />

O<br />

N N<br />

O<br />

0<br />

Primary<br />

effluent<br />

Secondary<br />

effluent<br />

<strong>Ozonation</strong><br />

effluent<br />

S<strong>and</strong> filtration<br />

effluent<br />

N<br />

N<br />

O


Bromate formation in ozone reactor<br />

740 g O3/kg DOC<br />

15.0<br />

12.5<br />

35<br />

30<br />

810 g O3/kg DOC<br />

900 g O3/kg DOC<br />

1240 g O3/kg DOC<br />

Bromate [µg/L]<br />

10.0<br />

7.5<br />

5.0<br />

2.5<br />

Drinking water st<strong>and</strong>ard for Bromate<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Bromide [µg/L]<br />

0.0<br />

Reactor ZU Second P3 Reactor AB Effluent SF<br />

influent Compartment effluent s<strong>and</strong>filtration<br />

0<br />

• Bromate formation only for very high ozone dose (LOQ = 2 µg L -1 )<br />

• Concentration remains even below the drinking water st<strong>and</strong>ard!


AOC formation in the ozonation reactor<br />

assimilable organic carbon [µg L -1 ]<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

AOC formation for different ozone doses<br />

200 g O3/kg DOC<br />

600 g O3/kg DOC<br />

810 g O3/kg DOC<br />

900 g O3/kg DOC<br />

0<br />

Influent Reactor Point 1<br />

in Reactor<br />

Point 3<br />

in Reactor<br />

Effluent<br />

Reactor<br />

Effluent S<strong>and</strong><br />

Filtration<br />

sampling position<br />

• ozonation increases the assimilable organic carbon up to a factor of 3.5<br />

• s<strong>and</strong> filtration decreases it subsequently to twice the influent concentration


Desinfection efficiency of ozonation<br />

Intakte Zellen [Anzahl/ml]<br />

Säulen<br />

Intact cells [No/ml]<br />

1.E+07<br />

1.E+06<br />

1.E+05<br />

1.E+04<br />

1.E+03<br />

1.E+02<br />

1.E+01<br />

1.E+05<br />

1.E+04<br />

1.E+03<br />

1.E+02<br />

1.E+01<br />

200 g O3/kg DOC<br />

210 g O3/kg DOC<br />

410 g O3/kg DOC<br />

600 g O3/kg DOC<br />

740 g O3/kg DOC<br />

810 g O3/kg DOC<br />

900 g O3/kg DOC<br />

1240 g O3/kg DOC<br />

E. coli [cfu/100ml]<br />

E.coli [cfu/100ml]<br />

Punkte<br />

500 cfu E.coli/100 ml<br />

<strong>EU</strong>-Bath water<br />

directive<br />

1.E+00<br />

1.E+00<br />

Influent ZU Comp.1 P1 Comp. P3 2 Effluent AB Effluent SF<br />

<strong>Ozonation</strong> S<strong>and</strong>filter


Electrical energy for ozon from air oxygen<br />

Energy consumption (15m 3 process gas h -1 )<br />

Energy consumption [kWh kg<br />

-1 O3]<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Total: O 3 process + O 2 production + transport<br />

O 3 process: Container + online probes + computers<br />

Container: O 3 production + thermal ozone distructor + cooling aggregate<br />

O 3 production: dielectric barrier discharge, control system<br />

0<br />

30 50 70 90 110 130 150 170<br />

Process gas concentration [gO 3 m -3 process gas]


Short-circuiting in ozonation reactor<br />

14<br />

Three-dimensional CFD-simulation for Q = 0.15 m 3 sec -1 , <strong>and</strong> O 3 -dosage = 5 g m -3<br />

Markus Gresch, Process Engineering, Eawag


Behavior during stormwater<br />

2007-12-06 08:00:00 bis 2007-12-07 08:00:00<br />

Q [l/s]<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Q Zulauf Reaktor (14079m^3)<br />

DOC Zulauf Reakor (4.7mg/L)<br />

O3 gelöst Ablauf K2 (0.1mg/l)<br />

O3 gelöst Ablauf K6 (0mg/l)<br />

7h<br />

8<br />

7<br />

6<br />

5<br />

4<br />

DOC [mg/l]<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

O3 gelöst K2+6[mg/l]<br />

50<br />

3<br />

0 2<br />

0.4<br />

0.2<br />

0<br />

Dosis DOC [gO3/kgDOC]<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Solldosis DOC (600 gO3/kgDOC)<br />

Solldosis minus Eintragseinbusse (588 gO3/kgDOC)<br />

Aus Daten berechnete effektive Dosis DOC (357 gO3/kgDOC)<br />

Resultierende effektive Dosis Rohw asser (1.59 mg/L)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Dosis Rohw. [mgO3/l]<br />

0<br />

0<br />

2007-12-06 08:00:00 2007-12-07 08:00:00<br />

15<br />

8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00 2:00 4:00 6:00 8:00


Conclusions <strong>Ozonation</strong><br />

Full scale reactor in Regensdorf proves ozonation to be an efficient<br />

technique for the elimination of micropollutants <strong>and</strong> disinfection<br />

0.6-0.8 g Ozone/g DOC is sufficient to significantly reduce (80-100%)<br />

the selected micropollutants<br />

<strong>Ozonation</strong> reduces both specific <strong>and</strong> non-specific in vitro ecotoxicity<br />

S<strong>and</strong>filtration seems appropriate as an <strong>addition</strong>al barrier for the elimination<br />

of products formed during ozonation e.g. NDMA but especially AOC<br />

Bromate formation is not of concern in wastewater with such low<br />

bromide concentrations<br />

E.coli is reduced significantly <strong>and</strong> bathing water quality reached with 0.6<br />

g O3 /g DOC , 0.9 g O3 /g DOC reaches the requested CT-value of 10 min⋅mg O3 /l<br />

HRT should be 15-20 minutes during dry weather to prevent ozone loss<br />

during stormwater (HRT about 5 minutes)<br />

Short circuiting in the ozonation chamber should be avoided<br />

Energy consumption for 1 kg ozone incl. pure oxygen production <strong>and</strong><br />

transport to WWTP is about 15-17 kWh<br />

For 0.8 gO 3 /gDOC <strong>and</strong> 5-10 gDOC m -3 wastewater electrical energy<br />

consumption 16 is 0.06 - 0.13 kWh m -3 (20-40% of nutrient removal WWTP


<strong>PAC</strong> <strong>addition</strong> - Overview<br />

• Introduction: potential flow <strong>schemes</strong><br />

• Effect of Background DOC on <strong>PAC</strong> dosage<br />

• <strong>PAC</strong>-Application: Pilot- <strong>and</strong> full scale experiments<br />

• Contact SBR: Single- <strong>and</strong> two stage application<br />

• Flocculation/s<strong>and</strong>filtration: Single stage application<br />

• Modelling <strong>PAC</strong> <strong>addition</strong> with <strong>and</strong> without <strong>PAC</strong> recycling<br />

• Conclusions


Introduction – potential flow <strong>schemes</strong><br />

<strong>PAC</strong>/flocculant <strong>addition</strong> to a contact/flocculation tank with <strong>addition</strong>al<br />

sedimentation or membrane separation for <strong>PAC</strong> recycling<br />

After the sedimentation a filter is needed to reduce <strong>PAC</strong> loss<br />

<strong>PAC</strong><br />

Al or Fe<br />

Sedimentation followed<br />

by filtration or<br />

membrane separation<br />

Alternatives:<br />

• <strong>PAC</strong> <strong>addition</strong> to filtration<br />

• <strong>PAC</strong> additon directly to activated sludge system<br />

Al or Fe<br />

<strong>PAC</strong><br />

Al or Fe<br />

<strong>PAC</strong>


Effect of background DOC<br />

Iopamidol<br />

100<br />

80<br />

10 mg <strong>PAC</strong>/l<br />

20 mg <strong>PAC</strong>/l<br />

Elimination [%]<br />

60<br />

40<br />

20<br />

Sulfamethoxazole<br />

0<br />

100<br />

80<br />

0 2 4 6 8 10 12<br />

DOC [mg/l]<br />

10 mg<strong>PAC</strong>/l<br />

20 mg<strong>PAC</strong>/<br />

Elimination [%]<br />

60<br />

40<br />

20<br />

0<br />

0 2 4 6 8 10 12<br />

DOC [mg/l]


<strong>PAC</strong> <strong>addition</strong> to secondary effluent<br />

(SBR, with <strong>and</strong> without <strong>PAC</strong> recycling)<br />

Pilot plant Eawag<br />

SRT ~ 13 d SRT ~ 15 d<br />

<strong>PAC</strong><br />

+Fe(III)<br />

SRT ~ 4 d<br />

Lane A<br />

Denitrification<br />

Nitrification<br />

Secondary clarifier<br />

Storage Buffer tank 11 Ads-SBR Storage Buffer tank 2<br />

Cloth filter<br />

Flow<br />

direction<br />

Effluent<br />

Influent<br />

(mechanical pretreated<br />

wastewater)<br />

Return sludge<br />

Flushing water (optional)<br />

Flushing water<br />

<strong>PAC</strong> excess sludge (optional)<br />

<strong>PAC</strong> excess sludge<br />

Excess<br />

sludge<br />

<strong>PAC</strong> excess<br />

sludge<br />

Flushing water<br />

Nitrification<br />

Lane B<br />

SRT ~ 13 d<br />

Denitrification Nitrification<br />

<strong>PAC</strong>-<br />

Suspension<br />

Secondary<br />

Clarifier<br />

Secondary clarifier<br />

Cloth Filter<br />

<strong>PAC</strong>-SBR<br />

Effluent<br />

Denitrification<br />

Return sludge<br />

Excess<br />

sludge<br />

Storage Tank<br />

sampling point<br />

Storage Tank


<strong>PAC</strong> <strong>addition</strong> to secondary effluent (SBR)<br />

Pilot plant Eawag<br />

100%<br />

10 mg<strong>PAC</strong>/l without <strong>PAC</strong>-recycling to biology (Pilot: 8.8 mgDOC/l; ref: 8.4 mgDOC/l)<br />

10 mg<strong>PAC</strong>/l with <strong>PAC</strong>-recycling to biology (Pilot: 7.4 mgDOC/l; ref: 8.9 mgDOC/l)<br />

15 mg<strong>PAC</strong>/l with <strong>PAC</strong>-recycling to biology (Pilot: 5.5 mgDOC/l; ref: 6.7 mgDOC/l)<br />

80%<br />

60%<br />

40%<br />

<strong>PAC</strong> recycling into the biology (counter<br />

flow) improves efficiency<br />

Elimination<br />

20%<br />

0%<br />

Atenolol Atenolol<br />

Benzotriazol<br />

Benzotriazol<br />

Sulfamethoxazol<br />

Sulfamethoxazol<br />

Bezafibrat Bezafibrat<br />

Naproxen Naproxen<br />

Ibuprofen Ibuprofen<br />

Iohexol Iohexol<br />

Iopromid Iopromid<br />

Oxazepam Oxazepam<br />

Codein Codein<br />

Primidon Primidon<br />

DHH DHH<br />

Venlafaxin Venlafaxin<br />

Ranitidin Ranitidin<br />

5-Methyl-Benzotriazol<br />

5-Methyl-Benzotriazol<br />

Mefenaminsäure<br />

Mefenaminsäure<br />

Clarithromyzin<br />

Clarithromyzin<br />

Carbamazepin<br />

Carbamazepin<br />

Diclofenac Diclofenac<br />

All elimination rates referring to primary effluent


<strong>PAC</strong> <strong>addition</strong> to secondary effluent (SBR)<br />

Effluent primary clarifier (3.measuring campaign) Effluent reference (3. measuring campaign)<br />

100000<br />

Effluent Pilot, 15 mg<strong>PAC</strong> with recycling Effluent contact reactor, 15mg<strong>PAC</strong>/l with recycl.<br />

DOC: Reference 6.7 mg/l, Pilot: 5.5mg/l, contact reactor: 3.4mg/l<br />

10000<br />

1000<br />

100<br />

10<br />

mean concentration [ng/l]<br />

1<br />

Atenolol<br />

Benzotriazol<br />

Sulfamethoxazol<br />

Iohexol<br />

Iopromid<br />

Bezafibrat<br />

Naproxen<br />

Ibuprofen<br />

Oxazepam<br />

Codein<br />

Primidon<br />

DHH<br />

Venlafaxin<br />

Ranitidin<br />

5-Methyl-Benzotriazol<br />

Mefenaminsäure<br />

Clarithromyzin<br />

Carbamazepin<br />

Diclophenac<br />

Concentrations of micropullants


Impossible<br />

d'afficher l'image.<br />

Votre ordinateur<br />

manque peut-être<br />

de mémoire pour<br />

ouvrir l'image ou<br />

l'image est<br />

endommagée.<br />

Redémarrez<br />

l'ordinateur, puis<br />

ouvrez à nouveau<br />

le fichier. Si le x<br />

Impossible d'afficher l'image.<br />

Votre ordinateur manque<br />

peut-être de mémoire pour …<br />

Impossible d'afficher l'image.<br />

Votre ordinateur manque<br />

peut-être de mémoire pour<br />

ouvrir l'image ou l'image est<br />

endommagée. Redémarrez<br />

l'ordinateur, puis ouvrez à<br />

nouveau le fichier. Si le x<br />

rouge est toujours affiché,<br />

vous devrez peut-être<br />

supprimer l'image avant de<br />

la réinsérer.<br />

Impossible d'afficher l'image. Votre ordinateur manque peutêtre<br />

de mémoire pour ouvrir l'image ou l'image est<br />

endommagée. Redémarrez l'ordinateur, puis ouvrez à<br />

nouveau le fichier. Si le x rouge est toujours affiché, vous<br />

devrez peut-être supprimer l'image avant de la réinsérer.<br />

Impossible d'afficher l'image. Votre ordinateur manque peutêtre<br />

de mémoire pour ouvrir l'image ou l'image est<br />

endommagée. Redémarrez l'ordinateur, puis ouvrez à nouveau<br />

le fichier. Si le x rouge est toujours affiché, vous devrez peutêtre<br />

supprimer l'image avant de la réinsérer.<br />

Impossible d'afficher l'image. Votre ordinateur manque peutêtre<br />

de mémoire pour ouvrir l'image ou l'image est<br />

endommagée. Redémarrez l'ordinateur, puis ouvrez à nouveau<br />

le fichier. Si le x rouge est toujours affiché, vous devrez peutêtre<br />

supprimer l'image avant de la réinsérer.<br />

<strong>PAC</strong> <strong>addition</strong> to s<strong>and</strong> filtration (single stage)<br />

Turbulence tank<br />

Pilot plant Eawag<br />

4.5 m<br />

Spill over<br />

Fe 3+<br />

Secondary<br />

clarifier effluent<br />

<strong>PAC</strong><br />

HRT 30 – 80min<br />

Filtration<br />

rate 4.5 –<br />

12.5 m/h<br />

SRT <strong>PAC</strong> = 12 h<br />

Effluent<br />

Water head<br />

0.5 – 1 m<br />

Backwash<br />

water<br />

Pressure head<br />

+ 0.5 mbar<br />

Exp<strong>and</strong>ed slate<br />

(120cm)<br />

Backflush interval 1 d<br />

Silica s<strong>and</strong><br />

(40cm)<br />

Water + compressed air for<br />

flushing (1x/d)<br />

Flushing<br />

nozzles<br />

Outlet


<strong>PAC</strong> <strong>addition</strong> to s<strong>and</strong> filtration<br />

Pilot plant Eawag<br />

Behä lter 3 u. 4<br />

Flocculation tanks<br />

Spillover<br />

Influent Zulauf<br />

Back flush by<br />

air <strong>and</strong> process<br />

water<br />

black colored water is<br />

flushed out by clean<br />

backwash water<br />

Exp<strong>and</strong>ed schiefer slade<br />

Silicia Quarz s<strong>and</strong><br />

Outlet


Full-scale experiments at WWTP Opfikon<br />

Activated sludge system with two lanes for nitrification <strong>and</strong> denitrification for<br />

60‘000 PE, each lane has two biology tanks with two secondary clarifiers<br />

Each lane has one flocculation reactor followed by four two layer filters<br />

Fe <strong>and</strong> <strong>PAC</strong> were only added to the flocculation tank (HRT = 0.9 h) of<br />

lane south with one filter in operation (hydraulic load 4.3 m/h, SRT of <strong>PAC</strong><br />

in the Filter was 12 hours, backflush intervall 1x/d)<br />

Filtration


<strong>PAC</strong> <strong>addition</strong> to s<strong>and</strong> filtration<br />

100%<br />

S<strong>and</strong>filter Kloten/Opfikon (15mg<strong>PAC</strong>/l; DOC: effluent biology: 4 - 6mgDOC/l)<br />

S<strong>and</strong>filter Experimental Hall (15mg<strong>PAC</strong>/l DOC: effluent biology: 6.4mg/l; effluent s<strong>and</strong>filter: 4mg/l)<br />

80%<br />

60%<br />

40%<br />

20%<br />

High potential of <strong>PAC</strong> <strong>addition</strong> to s<strong>and</strong>filtration<br />

If <strong>PAC</strong> loss to the effluent can be prevented<br />

Elimination efficiency<br />

Full scale 2008, filtration rate 4.5m/h: TSS loss up to 9 mg/l<br />

0%<br />

Pilot Eawag 2009, filtration rate 6.5 m/h: TSS loss 2-3 mg/l<br />

All trials without <strong>PAC</strong> recycling via back flush water into biology<br />

N-AC-Sulfamethoxa.<br />

N-AC-Sulfamethoxa.<br />

Atenololsäure<br />

Atenololsäure<br />

Metroprolol Metroprolol<br />

Venlafaxin Venlafaxin<br />

Ranitidin Ranitidin<br />

5-Methyl-Benzotriazol<br />

5-Methyl-Benzotriazol<br />

Mefenaminsäure<br />

Mefenaminsäure<br />

Atenolol Atenolol<br />

Terbutryn Terbutryn<br />

Carbendazim<br />

Carbendazim<br />

Triclosan Triclosan<br />

Codein Codein<br />

Ibuprofen Ibuprofen<br />

Iohexol Iohexol<br />

Iopromid Iopromid<br />

Fenoprofen Fenoprofen<br />

Bezafibrat Bezafibrat<br />

Naproxen Naproxen<br />

Diclofenac Diclofenac<br />

BTSA BTSA<br />

Mecoprop Mecoprop<br />

Diuron Diuron<br />

Tramadol Tramadol<br />

Benzoylegconine<br />

Benzoylegconine<br />

Carbamazepin<br />

Carbamazepin<br />

Methadon Methadon<br />

Oxazepam Oxazepam<br />

Primidon Primidon<br />

Dihy.-dihy.-carbama.<br />

Dihy.-dihy.-carbama.<br />

Benzotriazole<br />

Benzotriazole<br />

Carbamazepin<br />

Carbamazepin<br />

Sulfamethoxazol<br />

Sulfamethoxazol<br />

Clarithromycin<br />

Clarithromycin<br />

SRT <strong>PAC</strong> = 12h<br />

All Elimination rates referring to secondary effluent


Elimination of background DOC<br />

Dosage Treatment System<br />

effluent secondary<br />

clarifier<br />

Reference Pilot<br />

effluent<br />

contact reactor /<br />

s<strong>and</strong>filter<br />

Elimination<br />

efficiency<br />

mg<strong>PAC</strong> l-1 mgDOC l-1<br />

%<br />

10 single stage SBR without recycle 8.4 8.8 7.5 14.8 15<br />

10 two stage SBR with recycle 8.9 7.4 5.5 25.7 38<br />

15 two stage SBR with recycle 6.6 5.5 3.4 38.2 48<br />

15 single stage S<strong>and</strong>filtration pilot 6.4 4 37.5


<strong>PAC</strong> <strong>addition</strong> to activated sludge system<br />

100<br />

Reference 20 mg<strong>PAC</strong>/l 40 mg<strong>PAC</strong>/l 80 mg<strong>PAC</strong>/l<br />

80<br />

60<br />

40<br />

Elimination [%]<br />

20<br />

0<br />

DHC<br />

Carbamazepine<br />

Methadon<br />

Oxazepam<br />

Codein<br />

Dihydrocodein<br />

Temazepam<br />

Primidon<br />

DHH<br />

Bezafibrat<br />

Naproxen<br />

Clofibrinsäure<br />

Diclofenac<br />

Ibuprofen<br />

Roxithromycin<br />

N-AC-Sulfamethox.<br />

Sulfamethoxazole<br />

Erythromycin<br />

Clarithromycin<br />

Diatrizoat<br />

Iohexol<br />

Iopromid<br />

Iomeprol<br />

Iopamidol<br />

All Elimination rates referring to primary effluent


In-vivo Tests in a flow-through system<br />

Organism Endpoints OZ SF AC<br />

Chironomus<br />

riparius<br />

Lumbriculus<br />

variegatus<br />

Potamopyrgus<br />

antipodarum<br />

Dreissena<br />

polymorpha<br />

Daphnia magna<br />

Oncorhynchus<br />

mykiss (FELST)<br />

Lemna minor<br />

Mortality<br />

Emergence time<br />

Reproduction<br />

Biomass<br />

Reproduction<br />

DNA damage<br />

Reproduction<br />

Mortality<br />

Development<br />

Biomass<br />

Vitellogenin<br />

Frond area<br />

Biomass<br />

Significant effects compared to sec. effluent: negative; positive; no effect<br />

29


Energy <strong>and</strong> cost for Ozon <strong>and</strong> <strong>PAC</strong><br />

Treatment<br />

Dosage<br />

[mg L -1 ]<br />

Electrical<br />

energy<br />

[kWh m -3 ww]<br />

Primary<br />

energy<br />

[kWh m -3 ww]<br />

Annual Costs c<br />

30'000 p.e.<br />

[€ m -3 ww]<br />

500'000 p.e.<br />

[€ m -3 ww]<br />

O 3 3 a - 10 0.05 b - 0.15 0.15 - 0.45 0.07 d - 0.1 0.02 d - 0.03<br />

O 3 incl. s<strong>and</strong><br />

filter<br />

3 a - 10 0.1 - 0.2 e 0.3 - 0.6 0.15 d - 0.2 0.05 d - 0.07<br />

<strong>PAC</strong> 10 - 20 0.005 f 0.35 - 0.7 g 0.15 - 0.2 0.06 - 0.08<br />

<strong>PAC</strong> incl.<br />

s<strong>and</strong> filter<br />

10 - 20 0.05 e,f 0.5 - 0.8 g 0.25 - 0.3 0.09 - 0.11<br />

a<br />

Ø Operating conditions @ WWTP Regensdorf (5mg DOC L -1 ≅ 600g O 3 kg -1 DOC)<br />

b<br />

Measured @ WWTP Regensdorf (production of O 3 (incl. O 2 ), thermal residual-O 3 destructor,<br />

control system, cooling aggregate ≅ 15kWh kg -1 O 3 )<br />

c<br />

Detailed, realistic cost study by Hunziker Ltd. (~300L c -1 d -1 ⇒ 100m 3 c -1 y -1 )<br />

d<br />

extrapolated from O 3 5-10mg L -1<br />

e<br />

S<strong>and</strong> filter (experience from conventional treatment)<br />

f<br />

Mixing (experience from conventional treatment)<br />

g<br />

Primary energy consumption of <strong>PAC</strong> (no regeneration) 3.5 kg carbon needed for 1 kg<strong>PAC</strong>:<br />

3.5kgC/kg<strong>PAC</strong> x 2.6kgCOD/kgC x 14MJ/kgCOD / 3.6MJ/kWh = 35kWh/kg<strong>PAC</strong>


Conclusions for <strong>PAC</strong> <strong>addition</strong><br />

Sorption efficiency of <strong>PAC</strong> reduced with increasing DOC<br />

Adequate treatment of sec. effluent requires 10 - 20 g<strong>PAC</strong>/m 3 depending<br />

on DOC background concentration (5 – 10 gDOC/m 3 )<br />

<strong>PAC</strong> dosage <strong>results</strong> in an increase of sludge production of<br />

approximately 5-10% (10-20 g<strong>PAC</strong>/m 3 )<br />

Due to the low sorption kinetics <strong>PAC</strong> sludge age in the sludge treatment<br />

system should be above 1 day, this requires a system with <strong>PAC</strong><br />

retention (e.g. filter, sedimentation or membrane)<br />

<strong>PAC</strong> recycling into the biology clearly increases elimination<br />

efficiency due to counter flow (conc. step <strong>and</strong> DOC pre-sorption)<br />

The embryo test with rainbow trouts shows a considerable<br />

developmental retardation after ozonation but not after filtration<br />

(formation of by-products that are again degraded in filtration?)<br />

Primary energy consumption is higher for <strong>PAC</strong> than ozon, but electrical<br />

energy for ozonation increases consumption of WWTP about 20-40%<br />

Investment <strong>and</strong> operation costs incl. filtration amount to 0.05-0.2 € m -3<br />

for ozonation <strong>and</strong> 0.1-0.3 € m -3 for <strong>PAC</strong> (5-30€/p/y for 100m 3 /p/y)


Thank you for your attention<br />

Acknowledgement:<br />

BAFU, Switzerl<strong>and</strong><br />

AWEL, Zürich<br />

WEDECO, WABAG, BMG Engineering<br />

Staff of WWTP Regensdorf <strong>and</strong> Opfikon<br />

This study was part of the <strong>EU</strong> <strong>Neptune</strong> project (Contract No<br />

036845, SUSTDEV-2005-3.II.3.2), which was financially<br />

supported by grants obtained from the <strong>EU</strong> Commission within<br />

the Energy, Global Change <strong>and</strong> Ecosystems Program of the<br />

32 Sixth Framework (FP6-2005-Global-4)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!