02.11.2014 Views

NEW FLUE GAS TREATMENT SYSTEM FOR 1,050 MWe COAL ...

NEW FLUE GAS TREATMENT SYSTEM FOR 1,050 MWe COAL ...

NEW FLUE GAS TREATMENT SYSTEM FOR 1,050 MWe COAL ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>NEW</strong> <strong>FLUE</strong> <strong>GAS</strong> <strong>TREATMENT</strong> <strong>SYSTEM</strong><br />

<strong>FOR</strong><br />

1,<strong>050</strong> <strong>MWe</strong> <strong>COAL</strong> FIRED PLANT<br />

Babcock – Hitachi K.K.<br />

Babcock-Hitachi K.K.


CONTENTS<br />

1. Plant Condition<br />

2. New Technologies and Features<br />

3. Plant Operating Results<br />

4. Conclusion<br />

Babcock-Hitachi K.K.


CONTENTS<br />

1. Plant Condition<br />

2. New Technologies and Features<br />

2. New Technologies and Features<br />

3. Plant Operating Results<br />

3. Plant Operating Results<br />

4. Conclusion<br />

4. Conclusion<br />

Babcock-Hitachi K.K.


1. Plant Condition<br />

Table Major Conditions of New Flue Gas Treatment System<br />

for Tachibanawan Thermal Power Plant unit 2<br />

Items<br />

Specifications<br />

Capacity (MW) 1,<strong>050</strong><br />

FGD<br />

GGH<br />

ESP<br />

Wet Limestone-Gypsum Process<br />

Non Leak Type Heat Medium Forced Recirculated<br />

Low Temperature Type<br />

Air Preheater Outlet<br />

FGD Outlet<br />

Flue Gas Flowrate (m 3 N/h)<br />

3,330,000 3,470,000<br />

Dust Conc. (mg/m 3 N) 20,000 10<br />

SO2 Conc. (ppm) 809 50<br />

Gas Temp. (deg.C) 130 90<br />

Babcock-Hitachi K.K.


1-11 Photo of Plant<br />

STACK<br />

GGH<br />

Reheating<br />

Absorber<br />

ESP GGH<br />

Heat Recovery<br />

BOILER<br />

Site View of EPDC/TACHIBANAWAN No.2 UNIT<br />

Babcock-Hitachi K.K.


1-22 Flow Diagram of New Flue Gas Treatment System<br />

Mist Eliminator<br />

GGH<br />

Stack<br />

(Reheater)<br />

From Air<br />

Preheater<br />

GGH<br />

(Heat Recovery)<br />

ESP<br />

IDF<br />

Absorber<br />

Propeller<br />

Atomizer<br />

Air<br />

Recirc.<br />

Pump<br />

CaCO3 Monitor<br />

Limestone<br />

powder<br />

From Air<br />

Preheater<br />

GGH<br />

(Heat Recovery)<br />

ESP<br />

IDF<br />

GGH<br />

Heat Medium<br />

Circulation Pump<br />

To Waste<br />

water<br />

Treatment<br />

Belt Filter<br />

Gypsum<br />

Filtrate Pit<br />

Waste water Pit<br />

Absorbent<br />

Pit<br />

Babcock-Hitachi K.K.


CONTENTS<br />

1. Plant Conditions<br />

1. Plant Conditions<br />

2. New Technologies and Features<br />

3. Plant Operating Results<br />

3. Plant Operating Results<br />

4. Conclusion<br />

4. Conclusion<br />

Babcock-Hitachi K.K.


2. New Technologies and Features<br />

(1) New Flue Gas Treatment System<br />

(2) Compact Spray Absorber<br />

(3) Heat Medium Forced Circulated Type GGH<br />

Babcock-Hitachi K.K.


2. New Technologies and Features<br />

(1) New Flue Gas Treatment System<br />

(2) Compact Spray Absorber<br />

(2) Compact Spray Absorber<br />

(3) Heat Medium Forced Circulated Type GGH<br />

(3) Heat Medium Forced Circulated Type GGH<br />

Babcock-Hitachi K.K.


2-1-11 Comparison of Flue Gas Treatment System<br />

CONVENTIONAL SYSMTEM<br />

Boiler SCR AH ESP GGH FGD GGH<br />

IDF BUF Stack<br />

Gas Temp. (deg.C) 130 130 90 50 90<br />

Dust Conc. (mg/m 3 N) 20,000<br />

100<br />

100 20<br />

20<br />

<strong>NEW</strong> <strong>FLUE</strong> <strong>GAS</strong> <strong>TREATMENT</strong> <strong>SYSTEM</strong><br />

Boiler SCR AH GGH ESP FGD GGH<br />

IDF BUF Stack<br />

Gas Temp. (deg.C) 130 90 90 50 90<br />

Dust Conc. (mg/m 3 N) 20,000 20,000 50 10 10<br />

Babcock-Hitachi K.K.


2-1-22 Feature of New Flue Gas Treatment System<br />

1. Stable high dust removal performance in ESP<br />

(Low gas temperature in ESP)<br />

2. No plugging and corrosion caused by SO3 condensation in<br />

GGH heat recovery section<br />

(Higher dust concentration circumstance)<br />

3. Higher Gypsum purity due to lower inlet dust concentration.<br />

Boiler SCR AH GGH ESP FGD<br />

Babcock-Hitachi K.K.<br />

GGH<br />

IDF BUF Stack<br />

Gas Temp (deg.C) 130 90 90 50 90<br />

Dust Conc. (mg/m 3 N) 20,000 50 10 10<br />

20,000


2-1-33 Gas Temperature Effect for ESP Performance<br />

Decrease of ESP<br />

Inlet Gas Temp.<br />

Decrease of Dust<br />

Electric Resistant<br />

Improve of<br />

ESP Performance<br />

New Flue Gas System<br />

Conventional System<br />

Dust Electric Resistant<br />

(ohm cm)<br />

Low S Coal<br />

High S Coal<br />

50 100 150 200<br />

Temperature (deg.C)<br />

Babcock-Hitachi K.K.


2-1-22 Feature of New Flue Gas Treatment System<br />

1. Stable high dust removal performance in ESP<br />

(Low gas temperature in ESP)<br />

2. No plugging and corrosion caused by SO3 condensation in<br />

GGH heat recovery section<br />

(Higher dust concentration circumstance)<br />

3. Higher Gypsum purity due to lower inlet dust concentration.<br />

Boiler SCR AH GGH ESP FGD<br />

Babcock-Hitachi K.K.<br />

GGH<br />

IDF BUF Stack<br />

Gas Temp (deg.C) 130 90 90 50 90<br />

Dust Conc. (mg/m 3 N) 20,000 50 10 10<br />

20,000


2-1-44 Circumstance of Heat Recovery Section<br />

100000<br />

Expected operation range<br />

Dust Concentration (mg/m 3 N)<br />

Dust Conc. (mg/m 3 N)<br />

10000<br />

1000<br />

100<br />

10<br />

DRY Area<br />

WET Area<br />

DRY - WET Boundary Line<br />

1<br />

0. 1 1 10 100 1000<br />

SO3 Concentration SO 3 (ppm)<br />

Babcock-Hitachi K.K.


2-1-22 Feature of New Flue Gas Treatment System<br />

1. Stable high dust removal performance in ESP<br />

(Low gas temperature in ESP)<br />

2. No plugging and corrosion caused by SO3 condensation in<br />

GGH heat recovery section<br />

(Higher dust concentration circumstance)<br />

3. Higher Gypsum purity due to lower inlet dust concentration.<br />

Boiler SCR AH GGH ESP FGD<br />

Babcock-Hitachi K.K.<br />

GGH<br />

IDF BUF Stack<br />

Gas Temp (deg.C) 130 90 90 50 90<br />

Dust Conc. (mg/m 3 N) 20,000 50 10 10<br />

20,000


2-1-55 Pilot Plant Test Facility<br />

Boiler<br />

EP<br />

IDF<br />

SCR A/H FGD<br />

SCR<br />

BUF<br />

Gas Cooler<br />

GGH<br />

ESP<br />

IDF<br />

FGD<br />

GGH<br />

Pilot Plant<br />

Actual Flue Gas 2,000m 3 N/h Pilot Test Facility<br />

(at Matsuura P.S / E.P.D.C.)<br />

Babcock-Hitachi K.K.


2. New Technologies and Features<br />

(1) New Flue Gas Treatment System<br />

(1) New Flue Gas Treatment System<br />

(2) Compact Spray Absorber<br />

(3) Heat Medium Forced Circulated Type GGH<br />

(3) Heat Medium Forced Circulated Type GGH<br />

Babcock-Hitachi K.K.


2-2-11 Feature of Compact Spray Absorber<br />

Technology<br />

Effect<br />

Gas<br />

Outlet<br />

High Gas<br />

Velocity<br />

High Eff.<br />

Compact<br />

Horizontal Flow<br />

Mist Eliminator<br />

Slimmer<br />

Gas<br />

Inlet<br />

Φ16,400<br />

27,700<br />

High Density<br />

Spray<br />

High Slurry<br />

Concentration<br />

Lower<br />

Height<br />

One Absorber for<br />

1,<strong>050</strong>MW Boiler Flue Gas<br />

Babcock-Hitachi K.K.


2-2-22 SO2 Removal Performance Results in Pilot Plant<br />

Removal Eff. (%)<br />

SO2 Removal Eff. (%)<br />

SO<br />

V=7m/s<br />

5m/s<br />

3m/s<br />

5 10 15 20<br />

L/G (L/m 3 N)<br />

Babcock-Hitachi K.K.


2-2-33 Two-Film Theory for SO2 Absorption<br />

Gas Film<br />

SO 2<br />

K G :Overall Mass Transfer Coefficient<br />

(kgmol/m 2 hatm)<br />

k G : Gas Side Mass Transfer Coefficient<br />

(kgmol/m 2 hatm)<br />

k L :Liquid Side Mass Transfer Coefficient<br />

(m/h)<br />

k G<br />

1 1 H<br />

= +<br />

K G k G k L<br />

Liquid Film<br />

Droplet<br />

k L<br />

2<br />

(kgmol/mh atm, m/h)<br />

Mass Transfer Coefficient<br />

10 3 K G<br />

K L<br />

10 2<br />

10<br />

1 10 100<br />

Gas Velocity (m/s)<br />

Babcock-Hitachi K.K.


2-2-44 Particle’s s Behavior in Spray Droplet<br />

Ar Laser<br />

Spectra Scope<br />

Laser<br />

Droplet<br />

Phase Doppler<br />

Tachometer<br />

Glass Stick<br />

Gas<br />

Drople<br />

t<br />

Detector<br />

Particle 液 滴 Velocity 内 部 粒 in 子 Droplet 速 度 (m/ (m/s)<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

石 膏<br />

Gypsum<br />

Improved<br />

Mixing<br />

混 合 促 進<br />

0 5 10 15<br />

Gas ガス 流 Velocity 速 (m/ (m/s)<br />

Babcock-Hitachi K.K.


2-2-55 Effect of High Gas Velocity for SO2 Removal<br />

Droplet<br />

Lower Gas<br />

Velocity<br />

Covered by<br />

SO2 Phase<br />

Liquid<br />

Improved<br />

internal mixing<br />

Higher Gas<br />

Velocity<br />

Increase of SO2 removal<br />

performance due to droplet<br />

surface mixing enhancement.<br />

2<br />

(kgmol/m h atm, m/h)<br />

Mass Transfer Coefficient<br />

10 2<br />

10<br />

Gas Velocity<br />

K G<br />

K L<br />

(m/s)<br />

10 3 1 10 100<br />

Babcock-Hitachi K.K.


2. New Technologies and Features<br />

(1) New Flue Gas Treatment System<br />

(1) New Flue Gas Treatment System<br />

(2) Compact Spray Absorber<br />

(2) Compact Spray Absorber<br />

(3) Heat Medium Forced Circulated Type GGH<br />

Babcock-Hitachi K.K.


2-3-11 Feature and Special Consideration for GGH<br />

Heat Medium Heater<br />

Steam<br />

From AH<br />

GGH Heat Recovery<br />

Section<br />

From Absorber<br />

To ESP<br />

GGH Reheater Section<br />

<br />

High Dust Condition<br />

SO3 Concentration<br />

Vapor Condensation<br />

<br />

Low pH & High Cl<br />

mist from Absorber<br />

Abrasion<br />

Plugging<br />

Corrosion<br />

Corrosion<br />

SCC<br />

Heat Medium Circulation Pump<br />

Optimization of Fin Pitch, Gas Velocity<br />

Evaluation of Dust / SO 3<br />

ratio<br />

Control of Temperature (Heat medium)<br />

Optimum Material Selection<br />

Babcock-Hitachi K.K.


2-3-22 Transportation of GGH Module<br />

GGH Module (Reheater Section)<br />

GGH Module (Heat Recovery Section)<br />

Babcock-Hitachi K.K.


CONTENTS<br />

1. Plant Conditions<br />

1. Plant Conditions<br />

2. New Technologies and Features<br />

2. New Technologies and Features<br />

3. Plant Operating Results<br />

4. Conclusion<br />

4. Conclusion<br />

Babcock-Hitachi K.K.


3-11 Performance Test Results (Emission Parameter)<br />

Item<br />

Design<br />

Actual<br />

ESP Inlet Dust Conc. (mg/m 3 N)<br />

Stack Inlet Dust Conc. (mg/m 3 N)<br />

Absorber Inlet SO2 Conc. (ppm)<br />

Stack Inlet SO2 Conc. (ppm)<br />

Inlet Gas Temp. (deg.C)<br />

Stack Inlet Gas Temp. (deg.C)<br />

20,000 17,600<br />


3-22 The State of the Heating Tubes after Operation<br />

Pressure Loss of GGH (kPa)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Heat Recovery Side<br />

Reheating Side<br />

2000/3 2001/3 2002/3 2003/3 2004/3<br />

Time<br />

after 2 years operations<br />

(Heating Tube of GGH)<br />

Babcock-Hitachi K.K.


3-33 By-Product Gypsum Composition<br />

Item<br />

Design Actual<br />

Purity (%) ≧ 90 99<br />

Surface Moisture (%) ≦ 10 8<br />

CaCO3 (%) ≦ 1.1 0.1<br />

CaSO3 ・1/2H2O (%) ≦ 0.2 0.1<br />

50μm<br />

Babcock-Hitachi K.K.


CONTENTS<br />

1. Plant Conditions<br />

1. Plant Conditions<br />

2. New Technologies and Features<br />

2. New Technologies and Features<br />

3. Plant Operating Results<br />

3. Plant Operating Results<br />

4. Conclusion<br />

Babcock-Hitachi K.K.


4 Conclusion<br />

We, Babcock-Hitachi, adopted various new technologies to<br />

Tachibanawan Thermal Power Plant unit 2 and confirmed<br />

all values are satisfied with the design values.<br />

- New Flue Gas Treatment System<br />

- Compact Spray Absorber<br />

- Heat Medium Forced Circulated Type GGH<br />

- On-line CaCO3 Analyzer<br />

We continue further studies in rationalization with a view to<br />

higher efficiency and a more assured environmental<br />

conservation program.<br />

Babcock-Hitachi K.K.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!