03.11.2014 Views

XII Iberian Meeting of Electrochemistry XVI Meeting of the ...

XII Iberian Meeting of Electrochemistry XVI Meeting of the ...

XII Iberian Meeting of Electrochemistry XVI Meeting of the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SPECIAL ISSUE 2010 ABSTRACTS BOOK<br />

<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong><br />

<strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese<br />

Electrochemical Society


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Organizing and Scientific Committee<br />

Luísa Martins, Chairperson, Treasurer <strong>of</strong> SPE<br />

Armando Pombeiro, President <strong>of</strong> <strong>the</strong> Portuguese Society <strong>of</strong> <strong>Electrochemistry</strong> (SPE)<br />

Manuel Blázquez, President <strong>of</strong> <strong>the</strong> Electrochemical Group <strong>of</strong> RSEQ<br />

Victor Lobo, Past-­‐president <strong>of</strong> SPE<br />

Isabel Ferra, Vice-­‐president <strong>of</strong> SPE<br />

Alda Simões, Secretary <strong>of</strong> SPE<br />

Aquiles de Barros, Faculty <strong>of</strong> Sciences, University <strong>of</strong> Porto<br />

Enrique Brillas Coso, University <strong>of</strong> Barcelona<br />

Inês Fonseca, Faculty <strong>of</strong> Sciences, University <strong>of</strong> Lisbon<br />

João Rodrigues, University <strong>of</strong> Madeira<br />

José Costa Lima, Faculty <strong>of</strong> Pharmacy, University <strong>of</strong> Porto<br />

José Paulo Pinheiro, Faculty <strong>of</strong> Sciences and Technology, University <strong>of</strong> Algarve<br />

Luísa Abrantes, Faculty <strong>of</strong> Sciences, University <strong>of</strong> Lisbon<br />

Manuel Domínguez Pérez, University <strong>of</strong> Seville<br />

Manuel Matos, ISEL, Polytechnic Institute <strong>of</strong> Lisbon<br />

Maria de Fátima Bento, Department <strong>of</strong> Chemistry, University <strong>of</strong> Minho<br />

Maria Paula Robalo, ISEL, Polytechnic Institute <strong>of</strong> Lisbon<br />

Mário Ferreira, University <strong>of</strong> Aveiro<br />

Ruben Leitão, ISEL, Polytechnic Institute <strong>of</strong> Lisbon<br />

Vicente Montiel Leguey, University <strong>of</strong> Alicante<br />

Local Organizing Committee<br />

Bruno Rocha,<br />

Elisabete Alegria, ISEL, Polytechnic Institute <strong>of</strong> Lisbon<br />

Konstantin Luzyanin, IST, Technical University <strong>of</strong> Lisbon<br />

Luísa Martins, ISEL, Polytechnicl Institute <strong>of</strong> Lisbon<br />

Nelson Silva, ISEL, Polytechnic Institute <strong>of</strong> Lisbon<br />

Manuel Matos, ISEL, Polytechnic Institute <strong>of</strong> Lisbon<br />

Maria Paula Robalo, ISEL, Polytechnic Institute <strong>of</strong> Lisbon<br />

Pedro Galego, ISEL, Polytechnic Institute <strong>of</strong> Lisbon<br />

Ricardo Fernandes, IST, Technical University <strong>of</strong> Lisbon<br />

Rogério Chay, IST, Technical University <strong>of</strong> Lisbon<br />

Ruben Leitão, ISEL, Polytechnic Institute <strong>of</strong> Lisbon<br />

Telma Silva, ISEL, Polytechnic Institute <strong>of</strong> Lisbon<br />

September, 811, 2010. ISEL - Lisbon<br />

ii


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Welcome Message<br />

Dear Colleagues,<br />

The Instituto Superior de Engenharia de Lisboa (ISEL) has <strong>the</strong> honor to host <strong>the</strong><br />

<strong>XII</strong> IME -­‐ <strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> and <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong><br />

Portuguese Electrochemical Society.<br />

Following <strong>the</strong> highly successful previous editions <strong>of</strong> <strong>Iberian</strong> Conferences,<br />

namely, just to mention <strong>the</strong> closest ones, those held in Tenerife (2009),<br />

Coimbra (2007) and La Corunha (2006), <strong>the</strong> <strong>XII</strong> IME provides, once again, a<br />

meeting point for scientific and technological exchange <strong>of</strong> ideas among<br />

delegates from academia, research institutes and industry, in all fields <strong>of</strong><br />

<strong>Electrochemistry</strong>.<br />

The Scientific Program (as revealed by this Book <strong>of</strong> Abstracts) reflects <strong>the</strong><br />

current vitality <strong>of</strong> research and diversity <strong>of</strong> <strong>Electrochemistry</strong>.<br />

The Organizing Committee warmly welcomes all participants, gratefully<br />

acknowledges <strong>the</strong>ir presence and wishes <strong>the</strong>m a pr<strong>of</strong>itable and pleasant time<br />

along all <strong>the</strong> Conference, from both scientific and social points <strong>of</strong> view.<br />

All best wishes,<br />

Luísa Martins<br />

Chair <strong>of</strong> <strong>XII</strong> IME<br />

September, 811, 2010. ISEL - Lisbon<br />

iii


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Index<br />

Program ............................................................................................................................... 1<br />

Oral Communications List ............................................................................................. 4<br />

Posters List ......................................................................................................................... 7<br />

Plenary Lectures ............................................................................................................... 11<br />

Key Notes ............................................................................................................................ 17<br />

Oral Communications ..................................................................................................... 25<br />

Poster Communications ................................................................................................ 55<br />

Authors Index .................................................................................................................... 109<br />

September, 811, 2010. ISEL - Lisbon<br />

iv


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Thursday, September 9 th , 2010<br />

Program<br />

Time Ref Room C<br />

08:45 Opening Session<br />

09:00 PL1<br />

10:00 OE 1<br />

10:20 OE 2<br />

10:40 OE 3<br />

11:00 OE 4<br />

11:20 C<strong>of</strong>fee Break<br />

12:00 KN 1<br />

12:30 KN 2<br />

13:00 Lunch<br />

14:30 PL 2<br />

Electron Reservoir Activity <strong>of</strong> High-­‐Nuclearity Transition Metal Carbonyl Clusters<br />

Piero Zanello, University <strong>of</strong> Siena, Italy<br />

<strong>Electrochemistry</strong> <strong>of</strong> Push-­‐Pull Compounds based on Quinoline-­‐N-­‐Oxide<br />

Cristina Ferron, University <strong>of</strong> Malaga, Spain<br />

Electrochemical, Thermodynamic and Kinetic Studies <strong>of</strong> <strong>the</strong> Acylated Cyanoimido-­‐Complexes<br />

trans-­‐ [Mo(NCN){NCNC(O)R}(dppe)2]Cl<br />

Elisabete Alegria, Polytechnic Institute <strong>of</strong> Lisbon, Portugal<br />

Potentiometric Determination <strong>of</strong> Copper with a New Selective Electrode<br />

Kamran Mahmudov, Technical University <strong>of</strong> Lisbon, Portugal<br />

Redox Properties <strong>of</strong> Cu(I) Camphor Hydrazone Complexes<br />

Tiago Fernandes, Technical University <strong>of</strong> Lisbon, Portugal<br />

Novel Layer-­‐by-­‐layer Interfacial [Ni(salen)]-­‐polyelectrolyte Hybrid Films<br />

Cristina Freire, University <strong>of</strong> Porto, Portugal<br />

Tratamentos de Superfície em Ligas de Alumínio de Aplicação Aeronáutica<br />

Mário Freitas, OGMA -­‐ Indústria Aeronáutica de Portugal S.A., Portugal<br />

Electron Transfer in Nanostructures <strong>of</strong> Gold Substrates Modified with SAM and Gold<br />

Nanoparticles<br />

Manuel Blàzquez, University <strong>of</strong> Cordoba, Spain<br />

Time Ref Oral Session C - Room C Ref Oral Session B - Room A<br />

15:30 OC 1<br />

15:50 OC 2<br />

16:10 OC 3<br />

16:30 C<strong>of</strong>fee Break<br />

Electrosyn<strong>the</strong>sis and Redox Conversion<br />

<strong>of</strong> Poly (3,4-­‐ethilenedioxythiophene)<br />

Films An Ellipsometric and Probe Beam<br />

Deflection Study<br />

Ana Melato<br />

University <strong>of</strong> Lisbon, Portugal<br />

Convolutive Modelling with<br />

Ma<strong>the</strong>matica® using Oldham-­‐Mahon-­‐<br />

Myland Hi(t) Functions. CrEq Mechanism<br />

in CV<br />

Manuel Barrera-­‐Niebla<br />

University <strong>of</strong> La Laguna, Spain<br />

Electro-­‐oxidation <strong>of</strong> Alcohols on Pd-­‐Ag<br />

Alloys in Alkaline Medium<br />

Cristina Oliveira<br />

Univ. <strong>of</strong> Trás-­‐os-­‐Montes, Portugal<br />

17:00 Young Research Prize SPE 2010 Communication<br />

17:30 General Assembly <strong>of</strong> SPE<br />

OB 1<br />

OB 2<br />

OB 3<br />

Application <strong>of</strong> a Membraneless<br />

Extraction Module in <strong>the</strong> Voltammetric<br />

Determination <strong>of</strong> Sulphites in Wine<br />

Luís M. Gonçalves<br />

University <strong>of</strong> Porto, Portugal<br />

<br />

Wines and its Antioxidant Activity. Gallic<br />

Acid Interference<br />

Maria José Rebelo<br />

University <strong>of</strong> Lisbon, Portugal<br />

An Electrochemical Biosensor for Toxic<br />

Amides Determination: Merits and<br />

Limitations<br />

Nelson Silva<br />

Polytechnic Institute <strong>of</strong> Lisbon, Portugal<br />

September, 811, 2010. ISEL - Lisbon 1


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Friday, September 10 th , 2010<br />

Time Ref Room C<br />

09:00 PL 3<br />

Espectroscopia de Impedância Electroquímica aplicada a Estudos de Corrosão<br />

João Fernandes, Technical University <strong>of</strong> Lisbon, Portugal<br />

10:00 OA 1<br />

Solvay -­‐ Ready for tomorrow<br />

Rui Rocha, Solvay Portugal, Portugal<br />

10:20 OA 2<br />

Modern QSPR Methodology to Address Non-­‐solved Solution <strong>Electrochemistry</strong> Old Issues<br />

Luís Moreira, University <strong>of</strong> Lisbon, Portugal<br />

10:40 OA 3<br />

Investigations into <strong>the</strong> Electrochemical Syn<strong>the</strong>sis <strong>of</strong> Hydrogen Peroxide<br />

Maria Campos, Johnson Mat<strong>the</strong>y Technology Centre, United Kingdom<br />

11:00 OA 4<br />

Acidity Constants <strong>of</strong> Diprotic Acids from Potentiometric Titrations: Principles <strong>of</strong> <strong>the</strong> Calculation<br />

Illustrated Through <strong>the</strong> Construction <strong>of</strong> a Simple Algorithm<br />

Elsa Gonçalves, Polytechnic Institute <strong>of</strong> Setúbal, Portugal<br />

11:20 C<strong>of</strong>fee Break<br />

12:00 KN 3<br />

12:30 KN 4<br />

13:00 Lunch<br />

14:30 PL 4<br />

"Smart" Self-­‐healing Coatings for Active Corrosion Protection<br />

Mikhail Zheludkevich, University <strong>of</strong> Aveiro, Portugal<br />

Evaluation <strong>of</strong> Antioxidant Activity: A Reagentless Electrochemical Approach<br />

Dulce Geraldo, University <strong>of</strong> Minho, Portugal<br />

Dynamic Electrochemical Studies <strong>of</strong> Redox Proteins<br />

Margarida Correia dos Santos, Technical University <strong>of</strong> Lisbon, Portugal<br />

Time Ref Oral Session C - Room C Ref Oral Session B - Room A<br />

15:30 OD 1<br />

15:50 OD 2<br />

16:10 OD 3<br />

16:30 C<strong>of</strong>fee Break<br />

17:00 Poster Session<br />

20:30 Conference Diner<br />

Quasi-­‐simultaneous Localised<br />

Measurements <strong>of</strong> Current Density and<br />

Ion Distribution (pH, Cl -­‐ , Na + )<br />

Svetlana Lamaka<br />

Technical University <strong>of</strong> Lisbon, Portugal<br />

Water Uptake Estimation in Organic<br />

Coatings using Electrochemical<br />

Impedance Spectroscopy<br />

Raquel Duarte<br />

Technical University <strong>of</strong> Lisbon, Portugal<br />

Novel Electrochemical Techniques for<br />

Classical Corrosion Problems: <strong>the</strong><br />

Scanning Vibrating Electrode Applied to<br />

Galvanized Steel Cut Edges<br />

Alda Simões<br />

Technical University <strong>of</strong> Lisbon, Portugal<br />

OB 4<br />

OB 5<br />

OB 6<br />

Construction <strong>of</strong> a Nitrite Biosensor based<br />

on <strong>the</strong> Direct <strong>Electrochemistry</strong> <strong>of</strong> a<br />

Multihemic Nitrite Reductase on Carbon<br />

Nanotube Modified Electrodes<br />

Célia Silveira<br />

New University <strong>of</strong> Lisbon, Portugal<br />

Polymeric Chemiresistive Sensors for<br />

Wood Classification<br />

Renata Lippi<br />

University <strong>of</strong> São Paulo, Brasil<br />

Water Soluble Phthalate Determination<br />

from Bottled and Coolers Water by using<br />

Square Wave Voltammetric(SWV)<br />

Technique<br />

Munawar Qureshi<br />

University <strong>of</strong> Sindh, Pakistan<br />

September, 811, 2010. ISEL - Lisbon 2


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Saturday, September 11 th , 2010<br />

Time Ref Room C<br />

09:00 PL 5<br />

<strong>Electrochemistry</strong> <strong>of</strong> Molecules with Two (or More) Redox Centers<br />

, J. Heyrovský Institute <strong>of</strong> Physical Chemistry, Czech Republic<br />

Time Ref Oral Session A - Room A Ref Oral Session C - Room C<br />

10:00 OA 5<br />

10:20 OA 6<br />

10:40 OA 7<br />

11:00 OA 8<br />

11:20 C<strong>of</strong>fee Break<br />

12:00 KN 5<br />

12:30 KN 6<br />

12:50 Closing Session<br />

13:00 Lunch<br />

15:00 Excursion<br />

Functionalized Carbon Supported Pt-­‐Ru<br />

Electrocatalysts for Alcohols Oxidation<br />

José Salgado<br />

Technical University <strong>of</strong> Lisbon, Portugal<br />

Chemical Microscopy: The Study <strong>of</strong><br />

Reduction-­‐oxidation Reactions under a<br />

Stereomicroscope<br />

Clementina Teixeira<br />

Technical University <strong>of</strong> Lisbon, Portugal<br />

The Capacitive Behaviors <strong>of</strong> Self-­assembled<br />

Manganese Dioxide Thin<br />

Films<br />

Suh Pang<br />

University <strong>of</strong> Malaysia, Malaysia<br />

Síntesis Electroquímica Selectiva de a y/o<br />

b Hidroxido de Niquel con Aditivos de Co<br />

y su Caracterización como Material de<br />

Electrodo para Baterías Recargables<br />

Felipe Nieto<br />

National University <strong>of</strong> La Plata, Argentina<br />

OC 4<br />

OC 5<br />

OC 6<br />

OC 7<br />

Versatile Surface Functionalization <strong>of</strong><br />

Gold Surfaces based on CS 2 -­‐amine<br />

Reaction<br />

Inês Almeida<br />

University <strong>of</strong> Lisbon, Portugal<br />

Convolutive modelling with Universal<br />

Master Equation <strong>of</strong> Oldham-­‐Mahon-­‐<br />

Myland by using Ma<strong>the</strong>matica ® S<strong>of</strong>tware.<br />

E q C i Mechanism in CV at Spherical<br />

Electrodes<br />

Manuel Barrera-­‐Niebla<br />

University <strong>of</strong> La Laguna, Spain<br />

Electrocrystallisation <strong>of</strong> (Perylene) 2<br />

[M(mnt) 2 ] salts<br />

Mónica Afonso<br />

Instituto Tecnológico Nuclear, Portugal<br />

Application <strong>of</strong> <strong>the</strong> Scanning<br />

Electrochemical Microscope to Study <strong>the</strong><br />

Corrosion Mechanism in Thin Organic<br />

Coatings with Defects<br />

Andreia Marques<br />

Technical University <strong>of</strong> Lisbon, Portugal<br />

Electrochemical Degradation <strong>of</strong> Organic Pollutants: Optimization <strong>of</strong> <strong>the</strong> Experimental<br />

Conditions<br />

Ana Lopes, University <strong>of</strong> Beira Interior, Portugal<br />

Assessing Performance and Degradation Mechanisms in Proton Exchange Membrane Fuel Cells<br />

Carmen Rangel, Laboratório Nacional de Energia e Geologia, Portugal<br />

September, 811, 2010. ISEL - Lisbon 3


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Oral Communications List<br />

Code Title and Authors Page<br />

PL 1<br />

PL 2<br />

Electron Reservoir Activity <strong>of</strong> High-­‐Nuclearity Transition Metal Carbonyl<br />

Clusters<br />

Piero Zanello<br />

Electron Transfer in Nanostructures <strong>of</strong> Gold Substrates Modified with SAM and<br />

Gold Nanoparticles<br />

M. Blàzquez, T. Pineda, R. Madueño, D. García-­‐Raya<br />

PL 3 Espectroscopia de impedância electroquímica aplicada a estudos de corrosão 14<br />

João Salvador Fernandes<br />

PL 4 Dynamic Electrochemical Studies <strong>of</strong> Redox Proteins 15<br />

Margarida M. Correia dos Santos<br />

PL 5 <strong>Electrochemistry</strong> <strong>of</strong> molecules with two (or more) redox centers 16<br />

<br />

KN 1 Novel layer-­‐by-­‐layer interfacial [Ni(salen)]-­‐polyelectrolyte hybrid films 18<br />

Cristina Freire<br />

KN 2 Tratamentos de Superfície em Ligas de Alumínio de Aplicação Aeronáutica 19<br />

Mário Freitas<br />

KN 3 "Smart" self-­‐healing coatings for active corrosion protection" 20<br />

M.L. Zheludkevich, M.G.S. Ferreira<br />

KN 4 Evaluation <strong>of</strong> antioxidant activity: a reagentless electrochemical approach 21<br />

M. Dulce Geraldo, M. Fátima Bento<br />

KN 5<br />

KN 6<br />

Electrochemical degradation <strong>of</strong> organic pollutants: optimization <strong>of</strong> <strong>the</strong><br />

experimental conditions<br />

Ana Lopes<br />

Assessing Performance and Degradation Mechanisms in Proton Exchange<br />

Membrane Fuel Cells<br />

Carmen Rangel, R.A. Silva, T.I.Paiva<br />

OA 1 Solvay -­‐ Ready for tomorrow 26<br />

Rui Rocha<br />

OA 2<br />

Modern QSPR methodology to address non-­‐solved solution electrochemistry<br />

old issues<br />

Luís Moreira, Marina Reis, Nelson Nunes, Rui Filipe, Filomena Martins, Ruben Elvas Leitão<br />

OA 3 Investigations into <strong>the</strong> electrochemical syn<strong>the</strong>sis <strong>of</strong> hydrogen peroxide 28<br />

Maria Campos, Sarah Ball, Rob Potte<br />

OA 4<br />

Acidity Constants <strong>of</strong> Diprotic Acids from Potentiometric Titrations: Principles<br />

<strong>of</strong> <strong>the</strong> Calculation Illustrated Through <strong>the</strong> Construction <strong>of</strong> a Simple Algorithm<br />

Elsa Gonçalves, António Conceição<br />

12<br />

13<br />

22<br />

23<br />

27<br />

29<br />

September, 811, 2010. ISEL - Lisbon 4


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

OA 5 Functionalized carbon supported Pt-­‐Ru electrocatalysts for alcohols oxidation 30<br />

José R.C. Salgado, Raquel G. Duarte, Laura M. Ilharco, Ana M. Botelho do Rego, M.G.S.<br />

Ferreira<br />

OA 6<br />

Chemical Microscopy: <strong>the</strong> study <strong>of</strong> reduction-­‐oxidation reactions under a<br />

stereomicroscope<br />

Clementina Teixeira<br />

OA 7 The capacitive behaviors <strong>of</strong> self-­‐assembled manganese dioxide thin films 32<br />

Suh Cem Pang, Boon Hong Wee<br />

OA 8<br />

OB 1<br />

OB 2<br />

OB 3<br />

OB 4<br />

Síntesis Electroquímica selectiva de a y/o b Hidroxido de Niquel con aditivos de<br />

Co y su caracterización como material de electrodo para baterías recargables<br />

Felipe J. Rodríguez Nieto, Daniela Becker, Arnaldo Visinti<br />

Application <strong>of</strong> a Membraneless Extraction Module in <strong>the</strong> Voltammetric<br />

Determination <strong>of</strong> Sulphites in Wine<br />

Luís M. Gonçalves, Miriam F. Anunciação, Inês M. Valente, João G. Pacheco, José M.<br />

Rodrigues Aquiles A. Barros<br />

<br />

acid interference<br />

Maria J.F. Rebelo Dulce M.A. Gil<br />

An electrochemical biosensor for toxic amides determination: Merits and<br />

Limitations<br />

Nelson A. F. Silva, Manuel J. Matos, Amin Karmali, Maria Manuela Rocha<br />

Construction <strong>of</strong> a nitrite biosensor based on <strong>the</strong> direct electrochemistry <strong>of</strong> a<br />

multihemic nitrite reductase on carbon nanotube modified electrodes<br />

Célia M. Silveira, Marta Pimpão, Fernando Pereira, José J.G. Moura, M. Gabriela Almeida<br />

OB 5 Polymeric chemiresistive sensors for wood classification 38<br />

Renata Lippi, Jonas Gruber, Juliana R. Cordeiro, Erica S. Takahashi, Rosamaria W. C. Li<br />

OB 6<br />

OC 1<br />

OC 2<br />

Water soluble phthalate determination from bottled and coolers water by<br />

using Square Wave Voltammetric(SWV) technique<br />

Munawar Saeed Qureshi, Sirajuddi<br />

Electrosyn<strong>the</strong>sis and Redox Conversion <strong>of</strong> Poly (3,4-­‐ethilenedioxythiophene)<br />

Films An Ellipsometric and Probe Beam Deflection Study<br />

Ana I. Melato, J. P. Correia, L. M. Abrantes<br />

Convolutive modelling with Ma<strong>the</strong>matica® using Oldham-­‐Mahon-­‐Myland hi(t)<br />

functions. CrEq mechanism in CV<br />

M. J. Barrera-­‐Niebla, M.J. González Morín, M. R. García Hernández, D.M. Grandoso Medina,<br />

L.C. Fernández Mérida<br />

OC 3 Electro-­‐oxidation <strong>of</strong> alcohols on Pd-­‐Ag alloys in alkaline medium 42<br />

Cristina Oliveira Rosa Rego<br />

OC 4<br />

OC 5<br />

Versatile surface functionalization <strong>of</strong> gold surfaces based on CS2-­‐amine<br />

reaction<br />

Inês Almeida, A. S. Viana<br />

Convolutive modelling with universal master equation <strong>of</strong> Oldham-­‐Mahon-­‐<br />

Myland by using Ma<strong>the</strong>matica® s<strong>of</strong>tware. EqCi mechanism in CV at spherical<br />

electrodes<br />

M. J. Barrera-­‐Niebla, M. R. García Hernández, M. J. González Morín, L.C. Fernández Mérida,<br />

D.M. Grandoso Medina<br />

31<br />

33<br />

34<br />

35<br />

36<br />

37<br />

39<br />

40<br />

41<br />

43<br />

44<br />

September, 811, 2010. ISEL - Lisbon 5


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

OC 6 Electrocrystallisation <strong>of</strong> (Perylene)2 [M(mnt)2] salts 45<br />

Mónica Afonso, Manuel J. Matos, Rafaela A. L. Silva, Quirina Ferreira, Manuel Almeida<br />

OC 7<br />

OD 1<br />

OD 2<br />

OD 3<br />

Application <strong>of</strong> <strong>the</strong> Scanning Electrochemical Microscope to study <strong>the</strong> corrosion<br />

mechanism in thin organic coatings with defects<br />

Andreia Marques, Alda Simões<br />

Quasi-­‐simultaneous localised measurements <strong>of</strong> current density and ion<br />

distribution (pH, Cl-­‐, Na+)<br />

Svetlana V. Lamaka, M. G. Taryba, F. Montemor, H. S. Isaacs, M. G. S. Ferreira<br />

Water Uptake Estimation in Organic Coatings using Electrochemical Impedance<br />

Spectroscopy<br />

R. G. Duarte, A. S. Castela, M. G. Ferreira<br />

Novel electrochemical techniques for classical corrosion problems: <strong>the</strong><br />

Scanning Vibrating Electrode applied to galvanized steel cut edges<br />

Alda Simões<br />

OE 1 <strong>Electrochemistry</strong> <strong>of</strong> Push-­‐Pull compounds based on Quinoline-­‐N-­‐Oxide 50<br />

Cristina Capel Ferron, B. Vercelli, G. Zotti, J. M. Montenegro, E. Pérez Inestrosa, V.<br />

Hernández, J. T. López Navarrete<br />

OE 2<br />

Electrochemical, Thermodynamic and Kinetic Studies <strong>of</strong> <strong>the</strong> Acylated<br />

Cyanoimido-­‐Complexes trans-­‐ [Mo(NCN){NCNC(O)R}(dppe)2]Cl<br />

Elisabete Alegria, M. Fátima C. Guedes da Silva, Maxim L. Kuznetsov, Luísa M.D.R.S. Martins,<br />

Armando Pombeiro<br />

OE 3 Potentiometric determination <strong>of</strong> copper with a new selective electrode 52<br />

Kamran T. Mahmudov, Maximilian N. Kopylovich, Matti Haukka, Konstantin V. Luzyanin,<br />

Armando Pombeiro<br />

OE 4 Redox Properties <strong>of</strong> Cu(I) Camphor Hydrazone Complexes 53<br />

Tiago. A. Fernandes, M. Fernanda N.N. Carvalho, Adelino M. Galvão<br />

46<br />

47<br />

48<br />

49<br />

51<br />

September, 811, 2010. ISEL - Lisbon 6


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Posters List<br />

Code Title and Authors Page<br />

PA 1<br />

PA 2<br />

PA 3<br />

Nickel Speciation in <strong>the</strong> Xylem Sap <strong>of</strong> <strong>the</strong> Hyperaccumulator Alyssum<br />

serpyllifolium ssp. lusitanicum Growing on Serpentine Soils <strong>of</strong> Nor<strong>the</strong>ast<br />

Portugal<br />

Sheila Alves, Cristina Nabais, Maria de Lurdes Gonçalves, Margarida Correia dos Santos<br />

Electrodegradation <strong>of</strong> 4-­‐aminonaphtalene-­‐2-­‐sulfonic acid with BDD and<br />

Ti/Pt/PbO2 Anodes<br />

A.S. Rodrigues, M.J. Pacheco, L. Ciríaco, A. Lopes<br />

Influence <strong>of</strong> hydrodynamic conditions on <strong>the</strong> anodic degradation <strong>of</strong> phenol on<br />

BDD<br />

Ana Lopes, S. Sobreira, L. Ciríaco, M.J. Pacheco<br />

56<br />

57<br />

58<br />

PA 4 Recuperação de Metais em Solução 59<br />

Lurdes Ciríaco, C. Ascensão, M.J. Pacheco, Ana Lopes<br />

PA 5<br />

PA 6<br />

PA 7<br />

PA 8<br />

PA 9<br />

The effects <strong>of</strong> lithium, potassium and cesium ions on <strong>the</strong> diffusion behaviour <strong>of</strong><br />

caffeine in aqueous solutions<br />

Victor M.M. Lobo, Cecilia I.A.V. Santos, Miguel A. Esteso, Marisa C.F. Barros, Ana C.F. Ribeiro<br />

Improving electrocatalityc activity <strong>of</strong> LaNiO3 coatings by deposition on foam<br />

nickel substrates<br />

Cybelle O. Soares, M. D. Carvalho, M.E. Melo Jorge, A. Gomes, R.A.Silva, C.M. Rangel, M.I. da<br />

Silva Pereira<br />

Electrochemical treatment <strong>of</strong> <strong>the</strong> dye C.I. Reactive Yellow 138:1 in a filter press<br />

reactor<br />

Ana Isabel del Río, Enrique Duval, Mª José Benimeli, Javier Molina, José Bonastre, Francisco<br />

Cases<br />

Síntesis electroquímica de nanopartículas de plata y su potencial uso como<br />

agente antimicrobiano<br />

Felipe Hernández-­‐Luis, Mario V. Vázquez, Lucas Blandón, Gelmy Ciro, Dora M. Benjumea<br />

-­‐<br />

suelos contaminados<br />

Felipe Hernández-­‐Luis, Mario V. Vázquez, Lucas Blandón, Lina García, Nedher Sánchez<br />

PA 10 Electric Dreams 65<br />

Clementina Teixeira, Maria da Conceição Oliveira, Erik C.P. Benedict<br />

PA 11<br />

PB 1<br />

Determinación de conductividades y viscosidades del sistema (CoCl 2 + sacarosa<br />

+água) a temperatura de 298,15 K.<br />

Damien O. Costa, Ana C.F. Ribeiro, Cecilia I.A.V. Santos, Ana C. Santos, Carmen Teijeiro e<br />

Miguel A. Esteso<br />

Voltammetric Analysis <strong>of</strong> Sulphites in Alcoholic Beverages using Gas-­‐Diffusion<br />

Microextraction<br />

Manuel Cruz, Inês M. Valente, Luís M. Gonçalves, João P. Pacheco, José A. Rodrigues, Aquiles<br />

A. Barros<br />

60<br />

61<br />

62<br />

63<br />

64<br />

66<br />

67<br />

September, 811, 2010. ISEL - Lisbon 7


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

PB 2<br />

Identificação de solventes voláteis por meio de nariz eletrônico de poli(sulfeto<br />

de fenileno-­‐fenilenoamina) dopado eletroquimicamente<br />

Renata Lippi, Rosamaria W. C. Li, Jonas Gruber<br />

PB 3 Non-­‐Usual Features <strong>of</strong> Haem Proteins at Pyrolytic Graphite Electrodes 69<br />

Patrícia M. Paes de Sousa, S<strong>of</strong>ia R. Pauleta, M. Lurdes Gonçalves, Graham W. Pettigrew,<br />

Isabel Moura, José J. G. Moura, M. Correia dos Santos<br />

PB 4 Evaluation <strong>of</strong> Antioxidant Capacity by potentiostatic electrolyses 70<br />

Juliana Marques, Raquel Oliveira, Fátima Bento, Dulce Geraldo, Paula Bettencourt<br />

PB 5<br />

PB 6<br />

PB 7<br />

PB 8<br />

PB 9<br />

PB 10<br />

PB 11<br />

Evaluation <strong>of</strong> gallic acid antioxidant activity based on its extensive oxidation<br />

promoted by electrochemical methods<br />

Raquel Oliveira, Juliana Marques, Fátima Bento, Dulce Geraldo, Paula Bettencourt<br />

Thiol monolayers on bismuth electrodes for organic matter fouling prevention<br />

in <strong>the</strong> voltammetric stripping analysis <strong>of</strong> heavy metals<br />

María de la Gala Morales, Eduardo Pinilla Gil, Lorenzo Calvo Blázquez<br />

Electrochemiluminescence <strong>of</strong> luminol/H 2 O 2 system catalyzed by ferrocenes<br />

derivatives in solution on ITO electrode<br />

Diogo Ramadas, Ana S. Viana, A.C. Cascalheira<br />

Estudio ciclovoltamperométrico de Nimodipina sobre electrodos de carbono<br />

vítreo modificados con nanotubos de carbono<br />

Juan Arturo Squella, Luis J. Núñez-­‐Vergara, Manuel López López<br />

Iron (II) and Ru<strong>the</strong>nium (II) Cyclopentadienyl Derivative Complexes: new<br />

potential antitumor agents<br />

Milan N. Chhaganlal, M. H. Garcia, M. P. Robalo, V. Moreno<br />

Cytotoxicity Studies and DNA Interaction <strong>of</strong> New Ru<strong>the</strong>nium(II)<br />

Cyclopentadienyl Complexes with Nitrogen Coordinated Ligands<br />

Tânia S. Morais, M. H. Garcia, M. P. Robalo, A.Valente, V. Moreno, M. Font-­‐Bardia, T. Calvet,<br />

J. Lorenzo, F. X. Avilé<br />

several potential anti-­‐tubercular drugs: isoniazid and thiobenzanilide<br />

derivatives<br />

M. Cristina Ventura, A. Catarina Bastos, M. João Sarmento, João Manso, Susana Borges,<br />

Vanessa Miranda, Susana Santos, Filomena Martins<br />

PB 12 Bacterial cellulose: A new material for cell immobilization in biosensors 78<br />

Manuel J. Matos, Nelson A. F. Silva, Amin Karmali, Edison Pecoraro<br />

PC 1<br />

A Conducting Polymer / Self-­‐Assembled Monolayer Modified Electrode for <strong>the</strong><br />

Determination <strong>of</strong> Ascorbic Acid<br />

José Carlos A. Mesquita, Sónia Maria A. Fernandes, Jorge M. G. Teixeira<br />

PC 2 Carbon paper-­‐supported Pd nano materials for <strong>the</strong> oxygen reduction reaction 80<br />

Cristina Oliveira Rosa Rego, Ana Maria Rego<br />

PC 3<br />

PC 4<br />

PD 1<br />

Formation <strong>of</strong> mixed self-­‐assembled monolayers <strong>of</strong> mono-­‐ and dithiols on<br />

Au(111)<br />

Teresa Pineda Rafael C. González-­‐Cano, Rafael Madueño, Manuel Blázquez<br />

Electrochemical control on <strong>the</strong> formation <strong>of</strong> mixed 11-­‐mercaptoundecanoic<br />

acid and octanethiol self-­‐assembled monolayers on Au(111)<br />

Teresa Pineda Zoilo González-­‐Granados, Rafael Madueño, Manuel Blázquez<br />

In-­‐situ study <strong>of</strong> corrosion morphology <strong>of</strong> a duplex stainless steel in a<br />

concentrated LiBr solution and in an impure phosphoric acid solution by<br />

confocal laser scanning microscopy (CLSM)<br />

Jose García-­‐Antón, R. Leiva-­‐García, M.J. Muñoz-­‐Portero<br />

68<br />

71<br />

72<br />

73<br />

74<br />

75<br />

76<br />

77<br />

79<br />

81<br />

82<br />

83<br />

September, 811, 2010. ISEL - Lisbon 8


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

PD 2 Copper corrosion in soils contaminated with chloride ions 84<br />

Carla Barradas Dias, M. M. M. Neto, I. T. E. Fonseca<br />

PD 3<br />

PD 4<br />

PD 5<br />

PD 6<br />

PD 7<br />

PD 8<br />

PD 9<br />

PE 1<br />

PE 2<br />

PE 3<br />

Estudo da eficiência de duas técnicas na remoção de cloretos em amostras de<br />

uma bala de canhão de um naufrágio do séc. <strong>XVI</strong>II<br />

João Carlos Coelho, M. D. Carvalho, I. T. E. Fonseca<br />

Electrochemical characterization <strong>of</strong> polypyrrole-­‐based conducting fabrics in<br />

different pH media<br />

Javier Molina, Javier Fernández, Ana Isabel del Río, José Bonastre, Francisco Cases<br />

Influence <strong>of</strong> Molybdenum on electronic structure <strong>of</strong> passive films on stainless<br />

steels<br />

Maria Alice Catarino, M.I. Godinho, M. da Cunha Belo, A.M.P. Simões, M.J. Ferreira, M.F.<br />

Montemor<br />

Corrosion behaviour <strong>of</strong> quaternary bronzes in slightly passivating<br />

environments<br />

Mariano Pérez Maurizia Calvisi, Gemma González-­‐Mesa<br />

Complementary application <strong>of</strong> localized and electrochemical techniques to<br />

reveal self-­‐healing ability in small defects<br />

Maryna Taryba, D. Snihirova, S. Lamaka, M.F. Montemor, M.G.S.Ferreira<br />

Gold Electrodeposition from Ionic Liquids: An Alternative to Conventional<br />

Aqueous Baths<br />

Carmen M. Rangel, A.I.de Sá, S. Quaresma, S. Eugénio, R. Vilar<br />

Effect <strong>of</strong> chloride and sulphate ions on <strong>the</strong> electrochemical behaviour <strong>of</strong> an<br />

austenitic stainless steel, <strong>the</strong> HAZ and <strong>the</strong> welded metal in phosphoric acid<br />

medium at different temperatures<br />

Jose García-­‐Antón, Blasco-­‐Tamarit, E, García-­‐García, D.M, Ibáñez-­‐Ferrándiz, M.V<br />

Some aspects <strong>of</strong> <strong>the</strong> electrochemical reduction <strong>of</strong> <strong>the</strong> herbicide<br />

imazamethabenz acid on mercury electrodes<br />

Sara Pintado, Mercedes Ruiz Montoya José Miguel Rodríguez Mellado<br />

Electrochemical and Spectroelectrochemical Study <strong>of</strong> Alkyl-­‐Substituted<br />

Heptathienoacenes<br />

Cristina Capel Ferron, B. Vercelli, G. Zotti, Mingqian He, Weijun Niu, V. Hernández, J. T.<br />

López Navarrete<br />

Evaluation <strong>of</strong> <strong>the</strong> antioxidant capacity <strong>of</strong> imidazoimidazole phenolic derivatives<br />

by cyclic voltammetry<br />

Filipa Gomes, A.P. Bettencourt, C. Correia, M.A. Carvalho M.F. Proença<br />

PE 4 Complexes for NLO: Cyclic Voltammetry Study 95<br />

Ana Margarida Santos, J. Mendes, Tiago J. L. Silva, M. H. Garcia, M. P. Robalo<br />

PE 5 Electrochemical studies <strong>of</strong> CuI-­‐scorpionate complexes 96<br />

Luísa Martins, Riccardo Wanke, Armando Pombeiro<br />

PE 6<br />

PE 7<br />

Electrochemical behaviour <strong>of</strong> C-­‐functionalized or substituted-­‐pyrazolyl<br />

scorpionate cobalt complexes<br />

Telma F.S. Silva, Luísa M.D.R.S. Martins, Armando Pombeiro<br />

Electrochemical behaviour <strong>of</strong> <strong>the</strong> novel scorpionate and pyrazole<br />

dioxovanadium complexes<br />

Konstantin V. Luzyanin, Telma F.S. Silva, Luísa M.D.R.S. Martins, Armando Pombeiro<br />

85<br />

86<br />

87<br />

88<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

97<br />

98<br />

September, 811, 2010. ISEL - Lisbon 9


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

PE 8<br />

PE 9<br />

PE 10<br />

PE 11<br />

PE 12<br />

PE 13<br />

PE 14<br />

Electrochemical behaviour <strong>of</strong> para-­‐substituted 3-­‐(phenylhydrazo)pentane-­‐2,4-­‐<br />

diones<br />

Kamran T. Mahmudov, Maximilian N. Kopylovich, Luísa Martins, Fátima Guedes da Silva,<br />

Maxim L. Kuznetsov, Telma F.S. Silva, João J. R. Fraústo da Silva, Armando Pombeiro<br />

Redox behavior <strong>of</strong> dinuclear iron(II) and ru<strong>the</strong>nium(II) complexes as potential<br />

molecular wires<br />

Ana Catarina Sousa, Vanda Pacheco, M. Paula Robalo<br />

Investigation <strong>of</strong> 4-­‐dimethoxymethyl-­‐ and 4-­‐formyl-­‐substituted 1,4-­‐<br />

dihydropyridine redox reactions<br />

Anna Lielpetere, Inguna Goba, Baiba Turovska<br />

Redox properties <strong>of</strong> antitumor active organotin(IV) complexes containing 1-­‐(4-­‐<br />

chlorophenyl)-­‐1-­‐cyclopentanecarboxylato ligands<br />

Elisabete Alegria, Xianmei Shang Xianggao Meng Qingshan Li, M. Fatima C. Guedes da Silva,<br />

Armando J.L. Pombeir<br />

Syn<strong>the</strong>sis and electrochemical studies <strong>of</strong> molecular wires based on dinuclear<br />

Pd and Ru OPE and OTE rods<br />

João Figueira, José Carlos Mesquita, Kari Rissanen, João Rodrigues<br />

Electrochemical studies on luminescent bis-­‐calix[4]arene-­‐based poly(p-­phenylene<br />

ethynylene) copolymers<br />

Maria Paula Robalo, Hugo S. Pinto, Alexandra I. Costa, José V. Prata<br />

Ru<strong>the</strong>nium (II) and Iron (II) Complexes bearing low band-­‐gap thiophenic ligands<br />

as possible NLO switches<br />

Tiago J. L. Silva, Paulo J. G. Mendes, M. Helena Garcia M. Paula Robalo<br />

PE 15 Electrocrystallization <strong>of</strong> (DT-­‐TTF)2[M(mnt)2] on microelectrodes 106<br />

Rafaela A. L. Silva, Mónica Afonso, Manuel J. Matos, Dulce Belo, Manuel Almeida<br />

PE 16 An electrochemical study <strong>of</strong> Schiff-­‐base oxovanadium (IV) complexes 107<br />

Faranak Bishehsari, A. Rouhollahi, S. Rayati<br />

99<br />

100<br />

101<br />

102<br />

103<br />

104<br />

105<br />

September, 811, 2010. ISEL - Lisbon 10


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Plenary Lectures<br />

September, 811, 2010. ISEL - Lisbon 11


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PL 01<br />

Electron Reservoir Activity <strong>of</strong> High-Nuclearity T ransition<br />

Metal Carbonyl Clusters<br />

Piero Zanello<br />

Department <strong>of</strong> Chemistry <strong>of</strong> <strong>the</strong> University <strong>of</strong> Siena, Via A. De Gasperi, 2 - 53100 Siena, Italy<br />

zanello@unisi.it<br />

Metal carbonyl clusters (MCC) are molecules or molecular ions perfectly defined in<br />

size, composition and structural details, which belong by size to <strong>the</strong> field <strong>of</strong><br />

nanomaterials.<br />

The structures <strong>of</strong> high nuclearity MCC result from subtle balances between <strong>the</strong> M-M<br />

and M-CO interactions and usually adopt close-packed structures in which a chunk <strong>of</strong><br />

ccp or hcp metal lattice is surrounded by a shell <strong>of</strong> CO ligands.<br />

Very <strong>of</strong>ten, such derivatives display a multivalent behaviour affording out-and-out<br />

reversible electron cascades [1].<br />

In addition, <strong>the</strong> presence <strong>of</strong> interstitial or semi-interstitial atoms <strong>of</strong> <strong>the</strong> main group<br />

elements (E = C, N, P, etc.), establishing several M-E int interactions and contributing to<br />

<strong>the</strong> number <strong>of</strong> cluster valence electrons with no sterical requirements on <strong>the</strong> cluster<br />

surface, in many cases increases such uncommon electron transfer properties.<br />

As illustrated in Figure 1, a quite representative example is for instance <strong>of</strong>fered by <strong>the</strong><br />

hexa-anion [Ni 32 C 6 (-CO) 36 ] 6- [2].<br />

Figure 1. Cyclic and d.c. voltammetric pr<strong>of</strong>iles recorded at a Pt electrode in MeCN<br />

solution <strong>of</strong> [Ni 32 C 6 (-CO) 36 ] 6- .<br />

The electrochemical and spectroelectrochemical behavior <strong>of</strong> a variety <strong>of</strong> high nuclearity<br />

metal-carbonyl clusters will be presented.<br />

Acknowledgments: The financial support <strong>of</strong> Miur (PRIN 2008) is gratefully acknowledged.<br />

References<br />

Metal Clusters in Chemistry<br />

Braunstein, P.; Oro, L.A.; Raithby, P.R. Eds., Wiley-VCH, Vol. 2, 1999, 1137-1158;<br />

(b) Collini, D.; Femoni, C.; Iapalucci, M.C.; Longoni, G.; Zanello, P.; Perspectives in<br />

Organometallic Che, Screttas C.G. and Steele B.R. Eds., RSC, 2003, 183-195.<br />

[2] Calderoni, F.; Demartin, F.; Fabrizi de Biani, F.; Femoni, C.; Iapalucci, M.C.; Longoni, G.;<br />

Zanello, P.; Eur.J.Inorg.Chem., 1999, 663.<br />

September, 811, 2010. ISEL - Lisbon 12


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PL 02<br />

Electron T ransfer in Nanostructures <strong>of</strong> Gold Substrates<br />

Modified with SA M and Gold Nanoparticles.<br />

M. Blázquez, T. Pineda, R. Madueño, D. García-Raya<br />

Departamento de Química Física y T.A., Universidad de Córdoba, Spain<br />

mblazquez@uco.es<br />

Nanoscale charge transfer is important in fundamental science and applications in<br />

molecular electronics including sensors, photonics, electrocatalysis, and solar<br />

photoconversion. Progress in <strong>the</strong> nanoscale charge transfer requires interdisciplinary<br />

collaboration combining a wide range <strong>of</strong> materials syn<strong>the</strong>sis and characterization.<br />

Important classes <strong>of</strong> materials at <strong>the</strong> nanoscale are metal colloids and nanocrystals. The<br />

low dimensions <strong>of</strong> <strong>the</strong>se materials (1-20 nm) confer <strong>the</strong>m unique properties. The ability<br />

to construct well-defined nanostructures by bottom-up approaches is a major goal in <strong>the</strong><br />

field <strong>of</strong> nanoscale science and technology. In recent years, nanoparticles have been <strong>the</strong><br />

subject <strong>of</strong> numerous investigations being widely accepted as ideal building blocks due to<br />

<strong>the</strong> ease <strong>of</strong> preparation and <strong>the</strong> accurate control over particle size and shape. Surface<br />

derivatization schemes have been developed employing self assembled monolayer<br />

(SAM) with special terminating groups which typically induce nanoparticles<br />

organization on <strong>the</strong> surface. The SAM is prepared by <strong>the</strong> spontaneous adsorption <strong>of</strong><br />

molecules from liquid or gas phases producing crystalline or semi-crystalline structures<br />

on <strong>the</strong> substrate surfaces. The high affinity <strong>of</strong> thiol groups to coin metals generates well<br />

organized layers with a variety <strong>of</strong> chemical functions exposed to <strong>the</strong> interface. Many<br />

applications <strong>of</strong> nanoarchitectures require chemical, optical or biological signals to be<br />

transformed into electrical signals that are readable to modern electronic equipment.<br />

Therefore, <strong>the</strong> ability to allow electron communication between nanoparticles and <strong>the</strong><br />

underlying substrate is essential for <strong>the</strong>se applications. In this work we make a revision<br />

<strong>of</strong> several procedures for SAM preparation on Au (111) single crystals. The key point is<br />

<strong>the</strong> preparation <strong>of</strong> defect free SAMs that may show an electron transfer blocking<br />

behavior [1]. We study some strategies for preparation <strong>of</strong> gold nanoparticles <strong>of</strong> different<br />

sizes [2] and characterize <strong>the</strong> properties <strong>of</strong> <strong>the</strong> nanostructured material obtained by <strong>the</strong><br />

combination <strong>of</strong> <strong>the</strong> SAM and nanoclusters on a single crystal substrate<br />

(Au(111)/SAM/AuNP). It can be shown that electron communication between <strong>the</strong><br />

anchored AuNPs and <strong>the</strong> underlying gold substrate occurs through <strong>the</strong> insulating<br />

sandwiched monolayer. Under <strong>the</strong>se conditions, <strong>the</strong> electron transfer occurs by a<br />

tunneling process across <strong>the</strong> bridging molecules. A general discussion <strong>of</strong> <strong>the</strong><br />

electrochemical behavior <strong>of</strong> nanoparticle array electrodes on <strong>the</strong> basis <strong>of</strong> different<br />

surface methods is carried out.<br />

Acknowledgments: Project CTQ2007-62723/BQU (MEC) and Junta de Andalucía<br />

References<br />

[1] García-Raya, D.; Madueño, R.; Blázquez, M; Pineda, T.; J.Phys.Chem. C, 2010, 114, 3568.<br />

[2] Viudez, A. J.; Madueño R.; Pineda, T.; Blázquez, M.; J.Phys.Chem. C, 2006, 110, 17840.<br />

September, 811, 2010. ISEL - Lisbon 13


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PL 03<br />

Espectroscopia de impedância electroquímica aplicada a<br />

estudos de corrosão<br />

João C. Salvador Fernandes<br />

ICEMS, Instituto Superior Técnico, TULisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal<br />

joao.salvador@ist.utl.pt<br />

A Espectroscopia de Impedância Electroquímica é uma técnica de grande utilidade para<br />

o estudo do comportamento face à corrosão de sistemas metal/meio e, em particular,<br />

para a investigação dos mecanismos reaccionais envolvidos.<br />

Na análise dos resultados de EIE podem ser usadas duas abordagens distintas: na<br />

primeira, que será aqui estudada com maior detalhe, utiliza- <br />

<br />

complexidade com base na cinética das reacções heterogéneas envolvidas.<br />

A primeira abordagem baseia-se no facto de, em princípio, qualquer célula<br />

electroquímica poder ser representada por um modelo eléctrico. Assim, uma interface<br />

eléctrodo/electrólito na qual ocorra uma determinada reacção electroquímica será<br />

análoga a um circuito eléctrico, formado por um conjunto de resistências, condensadores<br />

e, eventualmente, indutores. É nesta analogia que reside uma das principais vantagens da<br />

impedância electroquímica, já que torna possível a caracterização de um sistema<br />

electroquímico através do seu "circuito eléctrico equivalente" que apresenta a mesma<br />

resposta de impedância e que deverá ter um significado físico coerente.<br />

Para que um estudo de EIE seja válido, será necessário encontrar um circuito<br />

equivalente que permita separar as contribuições dos diferentes processos e quantificar<br />

os parâmetros relativos a cada um deles. Nos últimos anos, com o grande incremento<br />

verificado na utilização da técnica e com a generalização do uso de s<strong>of</strong>tware de ajuste<br />

automático de resultados, utilizadores menos experientes têm sido tentados a aceitar<br />

qualquer circuito equivalente que se ajuste aos dados experimentais, sem olhar ao<br />

significado físico desse circuito. Desta forma, vários circuitos sem correspondência<br />

lógica a processos físicos têm surgido na literatura.<br />

O presente trabalho apresenta uma discussão dos princípios a seguir na escolha de um<br />

circuito equivalente, sendo ilustrado por vários exemplos de aplicações da técnica aos<br />

estudos de corrosão.<br />

September, 811, 2010. ISEL - Lisbon 14


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PL 04<br />

Dynamic Electrochemical Studies <strong>of</strong> Redox Proteins<br />

Margarida M. Correia dos Santos<br />

Centro de Química Estrutural, IST, Av. Rovisco Pais, 1049-001, Lisboa, Portugal<br />

mcsantos@ist.utl.pt<br />

The use <strong>of</strong> voltammetric techniques is well proved nowadays in unravelling important<br />

aspects <strong>of</strong> <strong>the</strong> chemistry <strong>of</strong> metalloproteins and metalloenzymes [1,2]. Unlike <strong>the</strong> more<br />

conventional and widespread used <strong>of</strong> potenciometric titrations, voltammetric methods<br />

allow in situ measurements <strong>of</strong> reduction potentials toge<strong>the</strong>r with <strong>the</strong> acquisition <strong>of</strong><br />

information about <strong>the</strong> kinetics <strong>of</strong> <strong>the</strong> electrode reactions as well <strong>of</strong> relevant parameters<br />

<strong>of</strong> coupled reactions including catalysis.<br />

It is now well recognized <strong>the</strong> electron transfer process occurring between a redox protein<br />

and a solid electrode is a protein electrode surface recognition process A large effort has<br />

been put forward to understand and control <strong>the</strong> way <strong>the</strong> protein surface interacts with <strong>the</strong><br />

electrodes and nowadays <strong>the</strong> problem is quite mastered.<br />

<br />

advantages over bulk titrations. However a wealth <strong>of</strong> information can be obtained by<br />

<strong>the</strong>se methodologies that quite overpass <strong>the</strong> "static" utilization <strong>of</strong> <strong>the</strong> technique. The<br />

study <strong>of</strong> electron transfer (intra and intermolecular), recognition <strong>of</strong> redox partners and<br />

<strong>the</strong> observation <strong>of</strong> catalytic currents, for example, puts <strong>the</strong> methods on a dynamic range<br />

<strong>of</strong> utilization.<br />

Some <strong>of</strong> <strong>the</strong>se topics will be covered in this lecture [3-8].<br />

References<br />

[1] Armstrong, F.A.; Bioelectrochemistry (Ed.: Wilson G..S.) in Encyclopedia <strong>of</strong> <strong>Electrochemistry</strong><br />

(Eds: Bard, A..J.;.Stratmann, M.)., Vol.9, Ch.1, 13, Wiley-VCH, 2003.<br />

[2] Léger, C.; Bertrand, P. Chem.Rev., 2008, 108, 2379.<br />

[3] Santos, M.M.C.; de Sousa, P.M.P.; Gonçalves, M.L.S.; Krippahl, L.; Moura, J.J.G.; Lojou, E. ;<br />

Bianco, P. J. Electroanal. Chem., 2003, 541, 153.<br />

[4] Santos, M.M.C.; de Sousa, P.M.P.; Gonçalves, M.L.S.; Romão, M..J.; Moura, I. ; Moura, J.J.G.<br />

Eur. J. Biochem., 2004, 271, 1329.<br />

[5] Santos, M.; Santos, M.M.C.; Gonçalves, M.L.S.; Costa, C.; Romão, J.C.; Moura, J.J.G. J. Inorg.<br />

Biochem., 2006, 100, 2009.<br />

[6] de Sousa, P.M.P.; Pauleta, S.R.; Gonçalves, M.L.S.; Pettigrew, G.W.; Moura, I.; Santos,<br />

M.M.C.; Moura, J.J.G. J Biol Inorg Chem., 2007, 12, 691.<br />

[7] de Sousa, P.M.P.; Pauleta, S.R.; Rodrigues, D.; Gonçalves, M.L.S.; Pettigrew, G.W.; Moura, I.;<br />

Moura, J.J.G.; Santos, M.M.C. J Biol Inorg Chem., 2008, 13, 779.<br />

[8] de Sousa, P.M.P.; Pauleta, S.R.; Gonçalves, M.L.S.; Pettigrew, G.W.; Moura, I.; Moura, J.J.G.;<br />

Santos, M.M.C. Submitted for publication in Angewandte Chemie.<br />

September, 811, 2010. ISEL - Lisbon 15


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PL 05<br />

<strong>Electrochemistry</strong> <strong>of</strong> molecules with two (or more) redox<br />

centers<br />

<br />

J. Heyrovský Institute <strong>of</strong> Physical ChemistryCzech Rep.<br />

jiri.ludvik@ jh-inst.cas.cz<br />

Molecules <strong>of</strong> organic or coordination compounds have <strong>of</strong>ten two or more redox centers.<br />

These centers may be independent or communicating, according to <strong>the</strong>ir mutual distance<br />

and extent <strong>of</strong> electron delocalization between <strong>the</strong>m. The most attractive is <strong>the</strong> case <strong>of</strong><br />

strong interaction between <strong>the</strong> centers, when <strong>the</strong> redox active groups do not preserve<br />

<strong>the</strong>ir typical redox properties and create a new electron system with its specific redox<br />

reactivity. To understand <strong>the</strong> structural rules and eventually to tune <strong>the</strong> redox properties<br />

is an interesting <strong>the</strong>me for fundamental research as well as for development <strong>of</strong> catalysts,<br />

dyes, pharmaceutical products, agrochemicals etc.<br />

Electrochemical approach is a very suitable experimental tool for examination <strong>of</strong> such<br />

intramolecular electron interactions. In <strong>the</strong> contribution, several examples will be<br />

mentioned: azines, where <strong>the</strong> N-N bond prevents <strong>the</strong> electron interaction <strong>of</strong> two C=N<br />

double bonds [1], mono-oximes <strong>of</strong> aromatic 1,2-diketones, where two isomers have<br />

different reduction behaviour [2]. Next examples are represented by Fischer<br />

aminocarbene complexes [3-4] and by various mono-and dinuclear transition metal<br />

complexes bearing ferrocene as 1) ano<strong>the</strong>r redox center able to form a new delocalized<br />

system [5-8], 2) as an electrochemical probe [9-10]. Finally, <strong>the</strong> recent investigation <strong>of</strong><br />

redox properties <strong>of</strong> two types <strong>of</strong> polynitrocompounds (geminal dinitroderivatives and<br />

mono-, di-, tri- and tetranitrocalixarenes) will be discussed.<br />

Acknowledgments: The work was supported by <strong>the</strong> grants IAA 400 400 813 (Grant Agency <strong>of</strong> <strong>the</strong><br />

Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic) and ME 09 002 (Ministry <strong>of</strong> education, youth and<br />

sports <strong>of</strong> <strong>the</strong> Czech Republic).<br />

References<br />

[1] Surname, A. B.; Surname C. D. Journal, Year, volume, starting page.<br />

[1] Zuman, P.; Ludvík, J. Tetrahedron letters, 2000, 41, 7851.<br />

[2] Celik, H.; Ludvík, J.; Zuman, P. <strong>Electrochemistry</strong> Communnication, 2006, 8, 1749.<br />

[3] Meca, L.; D.; Ludvík, J.; I.; , P. Organometallics, 2004, 23, 2541.<br />

[4] Hoskovcová, I.; J.; Meca, L.; Tobrman, T.; D.; Ludvík, J. Electrochim.<br />

Acta, 2005, 50, 4911.<br />

[5] Organometallics, 1996, 15, 543.<br />

[6] Lukesova, L.; Ludvik, J.; Cisarova, I.; Stepnicka, P. Coll. Czech. Chem. Commun., 2000, 65,<br />

1897.<br />

[7] Auzias, M.; Süss-J. Inorg. Chim. Acta, 2007, 360, 2023.<br />

[8] Auzias, M.; Therrien, B.; Süss-J. Organomet. Chem., 2007,<br />

692, 755.<br />

J. Organomet. Chem. 2001, 637-639, 291.<br />

Chem. Eur.<br />

J., 2004, 10, 2058.<br />

September, 811, 2010. ISEL - Lisbon 16


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Key Notes<br />

September, 811, 2010. ISEL - Lisbon 17


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society K N 01<br />

Novel layer-by-layer interfacial [Ni(salen)]-polyelectrolyte<br />

hybrid films<br />

C ristina F reire<br />

REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do<br />

Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal<br />

acfreire@fc.up.pt<br />

The syn<strong>the</strong>tic derivatisation <strong>of</strong> [M(salen)]-type complexes with ionic groups can provide<br />

building blocks for <strong>the</strong> fabrication <strong>of</strong> hybrid films using <strong>the</strong> electrostatic layer-by-layer<br />

(LBL) self-assembly technique. This technique affords molecular-level control over<br />

fabrication <strong>of</strong> thin films by precise control <strong>of</strong> components assembly.[1] Specifically, it is<br />

an ideal tool for tailoring <strong>the</strong> properties <strong>of</strong> multilayer films on <strong>the</strong> nanometer scale by<br />

electrostatic deposition <strong>of</strong> charged [M(salen)]-type complexes functionalized with<br />

receptor groups and organic polyelectrolytes with a view to sensor application.<br />

In this work <strong>the</strong> novel multilayer films containing cationic phosphonium-derivatized<br />

Ni(salen)-type complex and poly(sodium-4-styrenesulfonate (NaPSS) was assembled<br />

onto quartz, mica and Au surfaces using LbL technique, Figure 1. [2] UV-visible and<br />

QCM responses for <strong>the</strong> multilayer films show regular stepwise growths and <strong>the</strong><br />

signature <strong>of</strong> strong electrostatic interactions between <strong>the</strong> component layers. Permeability<br />

<strong>of</strong> <strong>the</strong> films to <strong>the</strong> redox probe [Fe(CN) 6 ] 3/4 was studied by cyclic voltammetry (CV)<br />

and electrochemical impedance spectroscopy (EIS). The EIS data were interpreted using<br />

a capillary membrane model (CMM), to yield values <strong>of</strong> coverage, apparent charge<br />

transfer resistance, double layer capacitance, pore size and diffusion coefficient. The<br />

recognition properties towards Ca 2+ and Ba 2+ <strong>of</strong> hybrid [Ni(salen)]-PSS LbL thin films<br />

assembled onto Au electrodes was also studied by CV and EIS by using <strong>the</strong> redox<br />

couple probe [Fe(CN) 6 ] 3-/4- .<br />

N<br />

N<br />

Ni O<br />

O<br />

t-Bu<br />

PPh 3<br />

PPh 3<br />

N<br />

N<br />

Ni<br />

t-Bu<br />

O<br />

O<br />

t-Bu<br />

PPh 3<br />

t-Bu<br />

PPh 3<br />

PSS<br />

Film bilayer (xn)<br />

NaPSS =<br />

SO 3 Na<br />

*<br />

PAH<br />

PSS<br />

Precursor bilayer (x2)<br />

PAHCl =<br />

NH 3 Cl<br />

*<br />

Modified substrate<br />

Figure 1. Schematic representation <strong>of</strong> LBL films and individual PAHCl, NaPSS and [Ni(salen)] 2+<br />

components.<br />

Acknowledgments: Partially funded by F CT, through project Ref PTDC/QUI/67786/2006.<br />

References<br />

[1] Decher, G. Science 1997, 277, 1232.<br />

[2] Patrício, S.; Cruz, A.I.; Biernacki, K.; Ventura, J.; Eaton, P.; Magalhães, A. L.; Moura, C.;<br />

Hillman , A. R.; Freire, C. Langmuir, 2010, in press: DOI: 10.1021/la1006956<br />

September, 811, 2010. ISEL - Lisbon 18


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society K N 02<br />

T ratamentos de Superfície em Ligas de Alumínio de Aplicação<br />

Aeronáutica<br />

Mário F reitas<br />

OGMA-Indústria Aeronáutica de Portugal, 2615-173 Alverca, Portugal<br />

mario.c.freitas@ogma.pt<br />

Devido às suas diversas propriedades o alumínio é amplamente utilizado na indústria<br />

aeronáutica e aeroespacial. Note-se no entanto que o referido metal no seu estado puro<br />

apresenta-se demasiado macio e fraco para suportar grandes esforços, possuindo baixa<br />

resistência mecânica quando sujeito a altas temperaturas. Para contornar esta situação, o<br />

alumínio pode ser submetido a inúmeros tratamentos, bem como adição de elementos<br />

de liga.<br />

Embora a adição de elementos de liga (ex.: cobre, magnésio, silício e zinco) aumente a<br />

resistência mecânica do alumínio, por outro lado diminui a capacidade do mesmo na sua<br />

capacidade de resistência à corrosão.<br />

Na indústria aeronáutica, a corrosão nas estruturas de ligas de Alumínio é uma das<br />

maiores causas de custos de manutenção.<br />

Neste âmbito, a OGMA Indústria Aeronáutica de Portugal, apresenta-se como uma<br />

empresa de Manutenção e Fabricação aeronáutica, onde se encontra inserida uma área<br />

de Tratamentos Químicos e Electroquímicos com capacidade de tratar várias ligas<br />

metálicas, entre as quais ligas de alumínio.<br />

Os processos especiais existentes na OGMA para tratamento de ligas de Alumínio<br />

correspondem a:<br />

- Oxidação Anódica Crómica;<br />

- Oxidação Anódica Sulfúrica;<br />

- Conversão Química.<br />

É de referir que estes revestimentos possuem na sua composição cromatos , o que se por<br />

um lado lhes confere a capacidade de inibidor de corrosão superior, por outro lado<br />

também os torna ambientalmente pouco recomendaveis.<br />

As fortes propriedades de oxidação dos cromatos implicaram a realização de estudos<br />

minuciosos relativamente ao seu uso, sendo que nos finais da década de 70 deu-se inicio<br />

à pesquisa para substituição destes revestimentos em ligas de alumínio.<br />

Enquadrado neste tema, as novas tecnologias que surgiram e que têm sido alvo de<br />

avaliação para implementação, por parte da OGMA dizem respeito a:<br />

- Tartaric Sulfuric Anodizing (TSA), com alternativo ao processo de Oxidação<br />

Anódica Crómica;<br />

- Sol-Gel e Prekote, como alternativos ao processo de Conversão Química.<br />

Estes processos alternativos, bem como outros que se encontram em fase de<br />

investigação irão certamente desempenhar um papel importante num futuro próximo<br />

pois, as preocupações ambientais assumem cada vez mais um papel de relevo no Mundo<br />

Global e às quais a Industria Aeronáutica não é alheia.<br />

September, 811, 2010. ISEL - Lisbon 19


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society K N 03<br />

" Smart " self-healing coatings for active corrosion protection<br />

M.L. Zheludkevich, M.G.S. Ferreira<br />

CICECO, DECV, University <strong>of</strong> Aveiro, Aveiro, 3810-193, Portugal<br />

mzheludkevich@ua.pt<br />

The application <strong>of</strong> organic coatings is <strong>the</strong> most common and cost effective<br />

method <strong>of</strong> protection and improving durability <strong>of</strong> metallic structures in corrosive<br />

environments. However <strong>the</strong> degradation processes develop faster after disruption <strong>of</strong> <strong>the</strong><br />

protective ba-<br />

coatings is necessary to provide long-term effect.<br />

The present work summarizes recent developments in <strong>the</strong> area <strong>of</strong> <strong>the</strong> new<br />

active multi- lease nanocontainers<br />

incorporated into <strong>the</strong> polymer coating matrix. The nanocontainer (or nanoreservoir) is a<br />

nanosized volume filled with an active substance confined in a porous core and/or a<br />

shell which prevents direct contact <strong>of</strong> <strong>the</strong> active agent with <strong>the</strong> adjacent environment. A<br />

multi-level self-healing approach combines - within one system - several damage<br />

prevention and reparation mechanisms including trapping <strong>of</strong> corrosive ions, corrosion<br />

inhibition and water displacement from active defects.<br />

Several types <strong>of</strong> nanoreservoirs <strong>of</strong> corrosion inhibitors, nanotraps and were<br />

microcapsules with water displacers are developed, introduced to <strong>the</strong> coating system and<br />

tested in terms <strong>of</strong> active corrosion protection.<br />

The novel experimental approaches to study self-healing properties <strong>of</strong> <strong>the</strong><br />

active protective coatings are also addressed in <strong>the</strong> present paper.<br />

September, 811, 2010. ISEL - Lisbon 20


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society K N 04<br />

Evaluation <strong>of</strong> antioxidant activity: a reagentless<br />

electrochemical approach<br />

Dulce Geraldo, Fátima Bento<br />

Departament <strong>of</strong> Chemistry, Universidade do Minho, 4710-057 Braga<br />

gdulce@quimica.uminho.pt<br />

The growing interest in <strong>the</strong> study <strong>of</strong> <strong>the</strong> action <strong>of</strong> antioxidants in health and<br />

biotechnology has led to <strong>the</strong> development <strong>of</strong> different analytical methods for <strong>the</strong><br />

evaluation <strong>of</strong> <strong>the</strong> antioxidant capacity <strong>of</strong> <strong>the</strong>se compounds.<br />

Cyclic voltammetry has been widely used in <strong>the</strong> analysis <strong>of</strong> samples containing mixtures<br />

<strong>of</strong> antioxidants. The analysis <strong>of</strong> voltammograms gives qualitative information, which<br />

relates to <strong>the</strong> identification <strong>of</strong> peaks, or waves resulting from overlapping voltammetric<br />

peaks. This information is usually used to evaluate <strong>the</strong> power <strong>of</strong> <strong>the</strong> antioxidants present<br />

in <strong>the</strong> sample. Quantitative information can be achieved by following two different<br />

approaches, consisting in measuring <strong>the</strong> current intensity at a fixed potential, or <strong>the</strong> area<br />

under <strong>the</strong> anodic scan <strong>of</strong> voltammograms. The values <strong>of</strong> current or area are converted to<br />

relative values <strong>of</strong> antioxidant activity against a model antioxidant. Besides cyclic<br />

voltammetry, electrochemical methods have been used as an alternative to optical<br />

methods for monitoring <strong>the</strong> consumption <strong>of</strong> reactive species, such as <strong>the</strong> DPPH [1] . O<strong>the</strong>r<br />

studies reported <strong>the</strong> use <strong>of</strong> coulometric titration at constant current to generate reactive<br />

species such as <strong>the</strong> cation radical ABTS [2] , Ce(IV) [3] , Cl 2<br />

[4, 5] and Br 2 [5] . As <strong>the</strong> reactivity<br />

<strong>of</strong> <strong>the</strong>se species is different from that <strong>of</strong> naturally ROS involved in oxidative damage /<br />

oxidative stress, <strong>the</strong> significance <strong>of</strong> <strong>the</strong>se results is ra<strong>the</strong>r limited and may lead to an<br />

underestimation or overestimation <strong>of</strong> <strong>the</strong> antioxidant activity according to <strong>the</strong> relative<br />

value <strong>of</strong> <strong>the</strong> reduction potential <strong>of</strong> reactive species. Likewise, <strong>the</strong> difference between <strong>the</strong><br />

reduction potentials <strong>of</strong> <strong>the</strong> reactive species used in <strong>the</strong> various methods difficult <strong>the</strong><br />

establishment <strong>of</strong> a parallelism between <strong>the</strong> results from <strong>the</strong>se methods.<br />

The direct analysis <strong>of</strong> electron transfer with <strong>the</strong> antioxidants using controlled potential<br />

exhaustive electrolysis can overcome <strong>the</strong>se limitations.<br />

In this work, we present a new analytical approach for evaluating <strong>the</strong> antioxidant<br />

activity <strong>of</strong> chemical species in syn<strong>the</strong>tic solutions or in natural systems, designed to<br />

measure <strong>the</strong>ir reactivity against specific ROS (from <strong>the</strong> O 2 to <strong>the</strong> HO • ) under defined<br />

experimental conditions (eg pH). The method is based on <strong>the</strong> response <strong>of</strong> antioxidants<br />

during electrolysis conducted at a fixed potential, simulating an oxidative attack by a<br />

natural ROS.<br />

References<br />

[1] Milardovic, S.; Ivekovic, D.; Grabaric B. S. Bioelectrochemistry, 2006, 68, 175.<br />

[2] Alonso, A. M.; Dominguez, C.; Guillén D. A.; Barroso, C. G. J. Agric. Food Chem., 2002, 50,<br />

3112.<br />

[3] Ferreira, R. Q.; Avaca, L. A. Electroanalysis 2008, 20, 1323.<br />

[4] Addullin, I. F.; Turova, E. N.; Ziyatdinova, G. K.; Budnikov, H. C. Journal <strong>of</strong> Analytical<br />

Chemistry , 2002, 57, 730.<br />

Talanta, 2006, 68, 800.<br />

September, 811, 2010. ISEL - Lisbon 21


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society K N 05<br />

Electrochemical degradation <strong>of</strong> organic pollutants:<br />

optimization <strong>of</strong> <strong>the</strong> experimental conditions<br />

Ana Lopes<br />

UMTP and Department <strong>of</strong> Chemistry, University <strong>of</strong> Beira Interior, 6201-001 Covilhã, Portugal<br />

analopes@ubi.pt<br />

Biological degradation is <strong>the</strong> cheapest process for removal <strong>of</strong> organic pollutants from<br />

wastewaters. However, some compounds have low biodegradability or give origin to<br />

biotic products that persist in <strong>the</strong> receiving waters. When conventional biological<br />

treatments fail, a tertiary process, like chemical or electrochemical coagulation,<br />

adsorption or membrane filtration, is usually performed, with <strong>the</strong> disadvantage <strong>of</strong> sludge<br />

formation. O<strong>the</strong>r alternatives, such as chemical oxidation with strong oxidants and<br />

advanced oxidation processes, besides being quite expensive, still present operational<br />

problems.<br />

Anodic oxidation techniques have also shown to be very efficient in <strong>the</strong> degradation <strong>of</strong><br />

organic persistent pollutants. The use <strong>of</strong> <strong>the</strong>se processes in wastewaters treatment has<br />

been intensively investigated in <strong>the</strong> last two decades [1,2]. The materials that can be<br />

used as electrodes are numerous and some <strong>of</strong> <strong>the</strong>m are extraordinary promising. In<br />

particular, boron doped diamond (BDD) anodes have received great attention in <strong>the</strong> last<br />

years, due to <strong>the</strong>ir unique characteristics <strong>of</strong> mechanical and electrochemical stability,<br />

wide potential window for oxygen evolution and ability to produce radical species<br />

capable <strong>of</strong> oxidation <strong>of</strong> most <strong>of</strong> <strong>the</strong> organic pollutants [2-7].<br />

Although anodic oxidation with BDD electrodes can be very effective, energetic costs<br />

are a drawback in <strong>the</strong> application <strong>of</strong> <strong>the</strong>se techniques at industrial scale. This way, <strong>the</strong><br />

optimization <strong>of</strong> experimental parameters and hydrodynamic conditions, in order to<br />

reduce maintenance costs, are a requirement for <strong>the</strong> implementation <strong>of</strong> <strong>the</strong>se processes.<br />

In this study, <strong>the</strong> influence <strong>of</strong> pollutant type and concentration, electrolyte concentration,<br />

initial pH, applied current density, operation mode, stirring speed and recirculation flow<br />

rate in <strong>the</strong> organic load removal are evaluated.<br />

Acknowledgments: The financial support <strong>of</strong> Fundação para a Ciência e a Tecnologia, F CT,<br />

PDCT/AMB/59392/2004, PDCT/AMB/59388/2004, PTDC/CTM/64856/2006 and PTDC/AAC-<br />

AMB/103112/2008 and Adamant Technologies are gratefully acknowledged.<br />

References<br />

[1] Juttner, K., Galla, U., Schmieder, H., Electrochim. Acta, 2000, 45, 2575.<br />

[2] Martínez-Huitle, C.A., Ferro, S., Chem. Soc. Rev., 2006, 35, 1324.<br />

[3] Morão, A., Lopes, A., Pessoa de Amorim, M.T.,.Gonçalves, I., Electrochim. Acta, 2004, 49,<br />

1587.<br />

[4] Panizza, M., Cerisola, G., Electrochim. Acta, 2005, 51, 191.<br />

[5] Pacheco, M.J., Morão, A., Lopes, A., Ciríaco L. , Gonçalves, I., Electrochim. Acta, 2007,<br />

53, 629.<br />

[6] Ciríaco, L., Anjo, C., Correia, J., Pacheco, M. J., Lopes, A., Electrochim. Acta, 2009, 54, 1464.<br />

[7] Santos, V., Diogo, J., Pacheco, M.J.A., Ciríaco, L., Morão, A., Lopes, A., Chemosphere , 2010,<br />

79, 637.<br />

September, 811, 2010. ISEL - Lisbon 22


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society K N 06<br />

Assessing Performance and Degradation Mechanisms in<br />

Proton Exchange Membrane Fuel Cells<br />

C.M. Rangel, R.A. Silva, T.I. Paiva<br />

Laboratório Nacional de Energia e Geologia, Paço do Lumiar 22,<br />

Unidade de Pilhas de Combustível e Hidrogénio 1649-038 Lisboa, Portugal<br />

carmen.rangel@ineti.pt<br />

Fuel cells, considered <strong>the</strong> next generation <strong>of</strong> power sources, exhibit high generation<br />

efficiency and low environmental impact. From <strong>the</strong> different type <strong>of</strong> fuel cells available,<br />

<strong>the</strong> Proton Exchange Membrane Fuel Cell, PEMFC, has shown rapid development in <strong>the</strong><br />

last decade, with a great increase in <strong>the</strong> power density to specific power ratio.<br />

Portable and mobile as well as stationary applications <strong>of</strong> fuel cells have been<br />

demonstrated. Fur<strong>the</strong>rmore, a variety <strong>of</strong> energy conversion applications, in association<br />

with renewable sources for fuel and oxidant supply, have been put forward and are seen<br />

as viable options in future highly distributed power generation.<br />

A considerable research effort in Materials Science and <strong>Electrochemistry</strong> is needed in<br />

order to increase <strong>the</strong> knowledge about fuel cells lifetime and reliability. In this work,<br />

<strong>the</strong> modular character <strong>of</strong> a PEM fuel cell will serve to examine <strong>the</strong> factors affecting<br />

performance, focussing on electrode kinetics and operating conditions toge<strong>the</strong>r with <strong>the</strong><br />

issues <strong>of</strong> <strong>the</strong>rmal and water managements. A comparison will be done for PEM fuel<br />

cells fed by gas and liquid fuels emphasizing <strong>the</strong> effect on efficiency <strong>of</strong> <strong>the</strong> electrode<br />

kinetics, arising from multi-step fuel oxidation reactions and fuel crossover.<br />

The mechanism <strong>of</strong> ageing and degradation in fuel cells are not well understood. PEM<br />

fuel cell operates under very aggressive conditions in both anode and cathode. Increases<br />

in cell voltage leading to higher efficiencies may lead to surface oxidation <strong>of</strong> <strong>the</strong><br />

supported catalyst, decreasing reaction activity and accelerating electrode degradation.<br />

In <strong>the</strong> case <strong>of</strong> fuel starvation, <strong>the</strong> anode potential may rise to levels compatible with <strong>the</strong><br />

oxidization <strong>of</strong> water and if water is not available, oxidation <strong>of</strong> <strong>the</strong> carbon support will<br />

accelerate catalyst sintering. These issues will be addressed, in order to better categorize<br />

irreversible changes in <strong>the</strong> kinetic and/or transport properties <strong>of</strong> <strong>the</strong> cell, demonstrating<br />

<strong>the</strong> use <strong>of</strong> non-destructive electrochemical as well as ex-situ approaches.<br />

The contribution <strong>of</strong> ma<strong>the</strong>matical modeling in PEM fuel cells will be also emphasized,<br />

focusing <strong>the</strong> prediction <strong>of</strong> conditions for a better <strong>the</strong>rmal and water management and in<br />

aiding design and operating strategies.<br />

September, 811, 2010. ISEL - Lisbon 23


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Oral Communications<br />

September, 811, 2010. ISEL - Lisbon 25


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O A 01<br />

Solvay Ready for tomorrow<br />

Rui Rocha<br />

Solvay Portugal, R. Eng. Clement Dumoulin, 2625-106 Póvoa de Santa Iria, Portugal<br />

rui.rocha@solvay.com<br />

Solvay is an international industrial Group active in Chemistry, where <strong>the</strong> electrolysis<br />

chlor-alkali is present for over a century (since 1898). During this period, <strong>the</strong> group has<br />

suffered a lot <strong>of</strong> transformations (a plastics sector has appeared and, later on, a<br />

pharmaceuticals business that was sold in 2010) and has grown motivated by providing<br />

solutions to sustainability. Solvay is present in almost every continent (50 countries) and<br />

is <strong>the</strong> global leader in many <strong>of</strong> its main products.<br />

Solvay Portugal operates an integrated small plant that uses its differentiated situation<br />

(small, flexible and with some <strong>of</strong> <strong>the</strong> main processes used in Solvay Group) to combine<br />

strong human and financial resources in R&D, mainly application <strong>of</strong> new innovations to<br />

be replicated all over <strong>the</strong> group. For example, <strong>the</strong> high rate H2O2 plant was tested and<br />

optimized in our plant; Solvay Póvoa was <strong>the</strong> first plant to have membrane technology.<br />

Now we are preparing <strong>the</strong> future. Fully compliant with <strong>the</strong> REACH directive, <strong>the</strong> Solvay<br />

<br />

into all our business activities <strong>the</strong> triple requirement <strong>of</strong> sustainable development:<br />

economic growth, employment and social progress, environmental impact. Before 2020,<br />

<strong>the</strong> Solvay Group intends to reduce most <strong>of</strong> its emission parameters by 20%.<br />

September, 811, 2010. ISEL - Lisbon 26


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O A 02<br />

Modern QSPR methodology to address non-solved solution<br />

electrochemistry old issues<br />

Luís Moreira, 1,2 Marina Reis, 1 Nelson Nunes, 1,3 Rui Filipe, 3,4 Filomena<br />

Martins, 1,3 Ruben Elvas Leitão 1,3<br />

1 CQB/FCL, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal<br />

2 ISEC/UCT, Al. das Linhas de Torres, 179, 1750-142 Lisboa, Portugal<br />

3<br />

ISEL/DEQ, R. Conselheiro Emídio Navarro, 1950-062, Lisboa, Portugal<br />

4<br />

CPQ/IST, DEQB, Av. Rovisco Pais, 1049-001 Lisboa, Portugal<br />

lmmoreira@fc.ul.pt<br />

Conductivity measurements <strong>of</strong> 2,6-lutidinium chloride were performed in several<br />

solvents in different concentrations ranging from 0.0001 mol dm -3 to 0.02 mol dm -3 and<br />

temperatures (25.00 to 80.00 ºC). The obtained m = f (c) curves were adjusted to <strong>the</strong><br />

FHP (Fuoss-Hsia-Prini) equation both in its full and truncated forms. The statistical<br />

significance <strong>of</strong> including all three adjustable parameters ( 0 m, K A , a) and fur<strong>the</strong>r terms<br />

used in this equation is fully discussed.<br />

The large amount <strong>of</strong> data collected allowed an in-depth analysis <strong>of</strong> temperature effects<br />

on ionic association and mobility which has been started elsewhere [1]. In particular, <strong>the</strong><br />

application <strong>of</strong> a suitable equation within a QSPR (quantitative structure-property<br />

relationships) context allowed a proper identification and quantification <strong>of</strong> specific ionsolvent-solvent<br />

interactions which play an important role in ionic association. In<br />

addition, <strong>the</strong> temperature dependence <strong>of</strong> <strong>the</strong> referred interactions was also scrutinised.<br />

The present work strongly emphasises <strong>the</strong> need to establish a modern methodology to<br />

address non-solved old issues such as solvent effects on association phenomena in order<br />

to obtain a clearer understanding <strong>of</strong> <strong>the</strong> underlying molecular events.<br />

References<br />

[1] Moreira, L.; Leitão, R. E.; Martins, F. Molecular Physics, 2006, 104, 1905.<br />

September, 811, 2010. ISEL - Lisbon 27


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O A 03<br />

Investigations into <strong>the</strong> electrochemical syn<strong>the</strong>sis <strong>of</strong> hydrogen<br />

peroxide<br />

Maria Campos, Sarah Ball, Rob Potter<br />

Johnson Mat<strong>the</strong>y RG4 9NH, UK<br />

camposm@mat<strong>the</strong>y.com<br />

Johnson Mat<strong>the</strong>y is a specialist chemicals company with core skills in catalysis, precious<br />

metals, fine chemicals and process technology. In addition, it has well-established<br />

capabilities in proton-exchange membrane (PEM) fuel cell technology. At <strong>the</strong> JM<br />

Technology Centre (Reading, UK), we are investigating <strong>the</strong> adaptation <strong>of</strong> fuel cell<br />

technology for electro-chemical syn<strong>the</strong>sis. A novel catalyst for <strong>the</strong> electrochemical<br />

generation <strong>of</strong> hydrogen peroxide, suitable for use in a PEM fuel cell device, has been<br />

discovered [1].<br />

At present, this non-precious metal catalyst, based on a cobalt complex supported on<br />

high surface-area carbon, is being optimised and characterized by electrochemical<br />

techniques in a conventional 3-electrode cell and a PEM single cell. One <strong>of</strong> <strong>the</strong><br />

techniques used within in <strong>the</strong> conventional 3-electrode arrangement was <strong>the</strong> rotating ring<br />

disk electrode. This technique was used to analyse <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> cobalt complex<br />

and in comparison to a 38% Pt on carbon catalyst (Figure 1). The current efficiency for<br />

<strong>the</strong> production <strong>of</strong> hydrogen peroxide was calculated using <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> disc and ring<br />

currents. The Co catalyst current efficiency was found to be up to 70% for peroxide<br />

formation, compared to about 3% for Pt/C.<br />

Figure 1 Rotating ring disk voltammogram for carbon-supported Pt and Co catalysts<br />

in 0.1 M HClO 4 , at 10 mV s -1 at a rotating speed <strong>of</strong> 2500 rpm.<br />

Acknowledgments: Sarah Ball, Rob Potter, Fuel Cells group in Johnson Mat<strong>the</strong>y Technology<br />

Centre, Reading, UK<br />

References<br />

[1] Garcia Lopez, Sonia, Potter, Robert John, Improvements in catalysts, , WO 2009/081183 A1.<br />

September, 811, 2010. ISEL - Lisbon 28


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O A 04<br />

Acidity Constants <strong>of</strong> Diprotic Acids from Potentiometric<br />

Titrations: Principles <strong>of</strong> <strong>the</strong> Calculation Illustrated Through<br />

<strong>the</strong> Construction <strong>of</strong> a Simple Algorithm<br />

Elsa Gonçalves, 1,2 António Conceição 3<br />

1 Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa,<br />

1649-016 Lisboa, Portugal<br />

2 Instituto Politécnico de Setúbal, ESTBarreiro, Rua Américo da Silva Marinho,<br />

2839-001 Lavradio, Portugal<br />

3 Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico,<br />

1049-001 Lisboa, Portugal<br />

emdgoncalves@fc.ul.pt<br />

Acidity constants are a measure <strong>of</strong> <strong>the</strong> strength <strong>of</strong> a weak acid in solution and are<br />

defined as <strong>the</strong> equilibrium constants <strong>of</strong> <strong>the</strong> dissociation reactions <strong>of</strong> <strong>the</strong> acid in solution.<br />

The pH <strong>of</strong> a solution resulting from <strong>the</strong> dissolution <strong>of</strong> a weak acid depends on <strong>the</strong> value<br />

<strong>of</strong> <strong>the</strong>se constants, that also allows <strong>the</strong> preparation <strong>of</strong> pH buffer solutions.<br />

This work describes <strong>the</strong> step by step construction <strong>of</strong> an algorithm suitable for those<br />

calculations. The different steps <strong>of</strong> <strong>the</strong> calculation sequence are illustrated by means <strong>of</strong> a<br />

flow-chart [1]. The algorithm can be easily implemented in a worksheet or in<br />

programmable calculator with graphical capabilities. This will be exemplified by using a<br />

commented Excel worksheet.<br />

The constants calculated using this algorithm were compared with those obtained using<br />

<strong>the</strong> Hyperquad [2] for <strong>the</strong> titration <strong>of</strong> nicotinic acid with sodium hydroxide, figure 1.<br />

Figure 1 - Experimental and calculated titration curves for <strong>the</strong> reaction <strong>of</strong><br />

0.100 mmol <strong>of</strong> <strong>the</strong> nicotinic acid with 0.109 M sodium<br />

hydroxide in 0.2 M potassium chloride.<br />

300<br />

200<br />

10 0<br />

Titration curve<br />

Experimental<br />

Calculated<br />

E(mV ) 0<br />

0 0.5 1 1.5 2 2.5 3<br />

-100<br />

-200<br />

-300<br />

Vb(mL)<br />

References<br />

[1] Conceição, A. C. L.; Minas da Piedade, M.E., J. Chem. Ed., 2006, 83, 1853.<br />

[2] Gans, P.; Sabatini, A.; Vacca, A., Talanta, 1996, 43, 1739.<br />

September, 811, 2010. ISEL - Lisbon 29


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O A 05<br />

Functionalized carbon supported Pt-Ru electrocatalysts for<br />

alcohols oxidation<br />

J.R.C. Salgado 1 , Raquel G. Duarte 1,3 , Laura M. Ilharco 2 , Ana M. Botelho do<br />

Rego 2 , M.G.S. Ferreira 1,2<br />

1 ICEMS, 2 CQFM and IN, IST, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1,<br />

1049-001, Lisboa, Portugal<br />

3 Escola Superior de Tecnologia do Barreiro, IPS, R. Américo da Silva Marinho,<br />

2839-001, Barreiro, Portugal<br />

4 CICECO, Universidade de Aveiro, Campus De Santiago, 3810-193 Aveiro, Portugal<br />

jose.salgado@ist.utl.pt<br />

Research and development <strong>of</strong> new materials for <strong>the</strong> electrocatalytic reactions in low<br />

temperature alcohols fuel cells are <strong>of</strong> great importance for <strong>the</strong> viability <strong>of</strong> <strong>the</strong>se systems.<br />

Therefore, <strong>the</strong> carbon supported Pt based materials are up to now <strong>the</strong> best<br />

electrocatalysts for low temperature alcohols fuel cells. However, Pt is expensive and<br />

easily poisoned by CO adsorptionTo overcome <strong>the</strong>se drawbacks several binary Pt alloys<br />

have been studied [1]. Among <strong>the</strong>m, <strong>the</strong> Pt-Ru alloy presents improved electrocatalytic<br />

behaviour. Never<strong>the</strong>less, <strong>the</strong> electrocatalytic activity <strong>of</strong> Pt-Ru/C is strongly dependent<br />

on <strong>the</strong> preparation method and on <strong>the</strong> particle size [2]. Therefore, <strong>the</strong> present research<br />

work reports <strong>the</strong> preparation <strong>of</strong> functionalized carbon supported Pt-Ru binary<br />

electrocatalysts for alcohols oxidation reaction (methanol and ethanol). The carbon<br />

material (Vulcan XC-72R) was modified by chemical and <strong>the</strong>rmal treatments. Thus, <strong>the</strong><br />

as received carbon was treated with HNO 3 , HNO 3 +H 2 SO 4 and H 2 O 2 aqueous solutions,<br />

in order to create surface reactive groups such as carboxylic, carbonyls and o<strong>the</strong>rs.<br />

Thermal treatment <strong>of</strong> <strong>the</strong> carbon in <strong>the</strong> atmosphere was performed. The treated carbon<br />

samples were characterized by elemental analysis, BET, FTIR and XPS. Subsequently,<br />

<strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong> carbon supported Pt and Pt-Ru electrocatalysts was performed by<br />

formic acid reduction [2]. The samples were characterized by ATG, XRD, SEM/EDS,<br />

XPS and TEM; <strong>the</strong> alcohol (methanol and ethanol) oxidation reaction was studied by<br />

electrochemical techniques, namely CV, CR and EIS.<br />

Acknowledgments: J.R.C. Salgado acknowledges F CT Fundação para a Ciência e Tecnologia<br />

for <strong>the</strong> financial support <strong>of</strong> his contract under Ciência 2008 (Science 2008).<br />

References<br />

[1] L. Hansan; Z. Jiujun, Electrocatalysis <strong>of</strong> Direct Methanol Fuel Cells: From Fundamentals to<br />

Applications, 2009, Wiley-VCH, Weinheim.<br />

[2] J.R.C. Salgado, F. Alcaide, G. Álvarez, L. Calvillo, M.J. Lázaro, E. Pastor, J. Power Sources,<br />

195 (2010) 4022.<br />

September, 811, 2010. ISEL - Lisbon 30


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O A 06<br />

Chemical Microscopy: <strong>the</strong> study <strong>of</strong> reduction-oxidation<br />

reactions under a stereomicroscope<br />

Clementina Teixeira<br />

Centro de Química Estrutural, Departamento de Engenharia Química e Biológica do Instituto<br />

Superior Técnico, 1049-001, Lisboa, Portugal<br />

clementina@ist.utl.pt<br />

Chemical Microscopy was defined by Émile Monnin Chamot and Clyde Walter Mason<br />

(1915) as <strong>the</strong> study <strong>of</strong> chemical reactions under a microscope, aiming <strong>the</strong> development<br />

<strong>of</strong> spot tests for <strong>the</strong> identification <strong>of</strong> a wide variety <strong>of</strong> chemicals.<br />

The study <strong>of</strong> reductionoxidation reactions were performed under a stereomicroscope<br />

<br />

(easily available) were used. This procedure led to a better observation and<br />

interpretation <strong>of</strong> many redox processes such as <strong>the</strong> study <strong>of</strong> displacement reactions for<br />

<strong>the</strong> electrochemical series <strong>of</strong> metals (Li, Mg, Al, Zn, Sn, Pb, Cu, Hg, Ag) and <strong>the</strong> study<br />

<strong>of</strong> potassium permanganate as oxidizer in several oxidation states (VII, VI, V, IV, II).<br />

The results were used to illustrate Latimer, Frost and Pourbaix diagrams, as well as <strong>the</strong><br />

balance <strong>of</strong> redox equations in high school teaching programs.<br />

The photomicrographs <strong>of</strong> <strong>the</strong>se redox processes were obtained with a digital camera<br />

<br />

decoration <strong>of</strong> textiles such as T-shirts, aprons, coasters and o<strong>the</strong>r house hold items, as<br />

well as note books, albums, mouse pads, etc. A large collection <strong>of</strong> items were created,<br />

will be presented.<br />

Figure 1. a) Potassium permanganate solution (violet) reacting with magnesium in basic<br />

medium (a pellet <strong>of</strong> NaOH was added). The chemical pattern is obtained repeating four<br />

times <strong>the</strong> fotomicrograph. b) The end <strong>of</strong> <strong>the</strong> redox reaction, producing manganese<br />

dioxide (brown) and white crystals.<br />

a) b)<br />

Acknowledgments: Ciência Viva projects and MCT funding programs.<br />

References<br />

[1] Teixeira, C. Química, Boletim da Sociedade Portuguesa de Química, 2007, 107, 18.<br />

September, 811, 2010. ISEL - Lisbon 31


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O A 07<br />

The Capacitive Behavior <strong>of</strong> Self-assembled<br />

Manganese Dioxide Thin Films<br />

Suh Cem Pang, Boon Hong Wee<br />

Department <strong>of</strong> Chemistry, Faculty <strong>of</strong> Resource Science & Technology,<br />

Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.<br />

scpang@frst.unimas.my or suhcem@gmail.com<br />

Self-assembled manganese dioxide thin films were deposited directly on<br />

metalized plastic supporting substrates by a horizontal submersion process which<br />

entailed <strong>the</strong> spontaneous assembly <strong>of</strong> preformed manganese dioxide nanoparticles in <strong>the</strong><br />

form <strong>of</strong> stable colloidal suspension under controlled conditions. Films with desired<br />

thicknesses were deposited simply by repeating <strong>the</strong> submersion process a desirable<br />

number <strong>of</strong> times. The surface morphological characteristics <strong>of</strong> deposited films were<br />

observed to be substantially affected by <strong>the</strong> deposition conditions such as duration <strong>of</strong><br />

submersion, temperature, suspension concentration, pH and ionic strength <strong>of</strong> <strong>the</strong><br />

suspension, as well as <strong>the</strong> post-deposition calcination temperature. Self-assembled films<br />

<strong>of</strong> tailored microstructure were prepared by optimizing deposition conditions and<br />

elucidation <strong>of</strong> <strong>the</strong> underlying deposition mechanisms. The electrochemical properties <strong>of</strong><br />

self-assembled manganese dioxide films were characterized by cyclic voltammetry (CV)<br />

and electrochemical impedance spectroscopy (EIS) based on a standard 3-electrode<br />

configuration. These films were observed to exhibit excellent capacitive behavior as<br />

evidenced by <strong>the</strong> almost perfectly rectangular shape <strong>of</strong> cyclic voltamograms within <strong>the</strong><br />

potential range <strong>of</strong> 0.0 to 1.0 V (versus SCE) in mild aqueous Na 2 SO 4 electrolyte as well<br />

as in polymeric gel electrolyte (Fig. 1). Nyquist plots generated from EIS data showed a<br />

linear vertical spike within <strong>the</strong> frequency range <strong>of</strong> 1 MHz and 10 mHz, had fur<strong>the</strong>r<br />

confirmed <strong>the</strong> excellent capacitive behavior <strong>of</strong> self-assembled manganese dioxide thin<br />

films. The good capacitive behavior <strong>of</strong> self-assembled manganese dioxide thin films<br />

could be attributed to redox reactions involving homogeneous intercalation and<br />

deintercalation <strong>of</strong> protons and Na + ions during charging and discharging cycles. <br />

-film electrochemical capacitors were fabricated from<br />

such self-assembled manganese dioxide thin films and polymer gel electrolyte. Such<br />

prototypes <strong>of</strong> optimized dual-planar electrode configuration exhibited high cycling<br />

stability and reversibility upon prolonged cycling <strong>of</strong> more than 1,000 cycles (Fig. 2).<br />

The potential utility <strong>of</strong> self-assembled manganese dioxide thin films as electrode<br />

material for <strong>the</strong> fabrication <strong>of</strong> electrochemical capacitors or related charge-storage<br />

devices is <strong>the</strong>refore highly envisaged.<br />

Current density (A/g)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

Potential (V)<br />

Cycle50<br />

Cycle1000<br />

Liquid Electrolyte<br />

Figure 1. CV curves <strong>of</strong> thin-film electrochemical<br />

capacitor prototype with liquid or gel electrolytes.<br />

Specific capacitance (F/g)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Configuration 3<br />

Configuration 1<br />

Configuration 2<br />

Capacitance (F/g)<br />

Configuration 1, 2, and 3<br />

(Overlapping lines)<br />

Qa/Qc ratio<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

Fig. 2. Cycling behaviors <strong>of</strong> electrochemical<br />

capacitor prototypes with different device<br />

configurations.<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

September, 811, 2010. ISEL - Lisbon 32


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O A 08<br />

Síntesis Electroquímica selectiva de y/o Hidroxido de<br />

Niquel con aditivos de Co y su caracterización como material<br />

de electrodo para baterías recargables<br />

Felipe J. Rodríguez Nieto, Daniela Becker, Arnaldo Visintin<br />

INIFTA, Facultad de Ciencias Exactas, UNLP, CCT La Plata-CONICET, Diag. 113 y 64. CC 16<br />

Suc. 4 (1900) La Plata, Argentina<br />

rodrini@inifta.unlp.edu.ar, coconieto@gmail.com<br />

El hidróxido de níquel es un material complejo y con una<br />

estructura que en general depende del método de preparación. Generalmente existe en<br />

las formas polimorficas -Ni(OH) 2 , y - Ni(OH) 2 las cuales son transformadas en -<br />

NiOOH y -NiOOH durante el proceso de carga-descarga del electrodo. Las actividades<br />

electroquímicas de estas fases difieren de una a otra debido a los cambios en su<br />

estructura, composición y características morfológicas que provocan cambios en los<br />

diversos procesos que tienen lugar durante los ciclos de carga-descarga. Por lo tanto el<br />

proceso de fabricación del electrodo juega un rol muy importante en la actividad<br />

electroquímica del hidróxido de niquel.<br />

En el presente trabajo se realiza el estudio del comportamiento<br />

electroquímico de muestras de /-Ni(OH) 2 y de -Ni(OH) 2 con adición de partículas<br />

de Co que han sido obtenidas a través de una indirecta precipitación electroquímica<br />

realizada a corriente constante (30mA/cm 2 ) usando como electrodo de trabajo una malla<br />

cilíndrica de Platino de alta área y como contra electrodos, dos placas porosas de níquel.<br />

El procedimiento experimental se ha realizado en una celda electroquímica de vidrio en<br />

la que se ha modificado la geometría de la celda cambiando la posición de los contra<br />

electrodos: (a) colocados en el mismo compartimiento, y (b) colocándolos en<br />

compartimientos separados por una placa porosa.<br />

La electrólisis se ha realizado usando solución de nitrato de níquel 0.5 M y la adición de<br />

Co a partir de solución de nitrato de Cobalto a fuerza iónica constante y una temperatura<br />

de 70ºC. El precipitado obtenido es separado y lavado hasta obtener pH neutro,<br />

finalmente es secado a 60 ºC por 24 h.<br />

El material activo obtenido es caracterizado por Difracción de rayos X (DRX), análisis<br />

termogravimétrico (TGA, DTA), espectroscopia infrarroja (FTIR) y microscopia<br />

electrónica de barrido (SEM) y de transmisión (TEM); asimismo, la perfomance<br />

electroquímica como material de electrodo de baterías recargables se realiza mediante<br />

voltamperometría cíclica, ciclos de cargadescarga y diferentes velocidades de descarga<br />

(rate capability) en una solución de KOH 7 M a 25 ºC.<br />

Los resultados muestran que la estructura de los polvos Ni(OH) 2 obtenido no es<br />

cristalina, y es selectiva en especial a la geometría de la celda electroquímica originada<br />

por la posición de los contraelectrodos, siendo -Ni(OH) 2 , para el arreglo (b) y -<br />

Ni(OH) 2 para el arreglo (a). Las muestras obtenidas de -Ni(OH) 2 puro y con adición<br />

de Cobalto muestran la mejor perfomance electroquímicas como material de electrodo<br />

para baterías recargables obteniéndose capacidades de 350 y 290 mAhg -1<br />

respectivamente.<br />

September, 811, 2010. ISEL - Lisbon 33


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O B 01<br />

Application <strong>of</strong> a Membraneless Extraction Module in <strong>the</strong><br />

Voltammetric Determination <strong>of</strong> Sulphites in Wine<br />

Luís M. Gonçalves, Miriam F. Anunciação, Inês M. Valente,<br />

João G. Pacheco, José M. Rodrigues, Aquiles A. Barros<br />

Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto,<br />

Rua do Campo Alegre, no. 687, 4169-007 Porto, Portugal<br />

luis.goncalves@fc.up.pt<br />

In this work, a new methodology for <strong>the</strong> voltammetric analysis <strong>of</strong> sulphites in wine is<br />

proposed [1]. It makes use <strong>of</strong> a recently developed membraneless extraction module<br />

(MLEM) for <strong>the</strong> analysis <strong>of</strong> volatile and semi-volatile compounds [2]. Sulphites are<br />

widely used as preservatives in <strong>the</strong> food industry for <strong>the</strong>ir several roles including <strong>the</strong><br />

prevention <strong>of</strong> undesirable microbial growth and oxidation processes. Among a whole<br />

variety <strong>of</strong> methodologies proposed for <strong>the</strong> determination <strong>of</strong> sulphites in wine, <strong>the</strong> most<br />

used are based on <strong>the</strong> classical Monier-Williams procedure and <strong>the</strong> also ancient Ripper<br />

method. Never<strong>the</strong>less, voltammetric-based methodologies appear to be <strong>the</strong> most<br />

accurate ones. Square-wave voltammetry (SWV) is very advantageous in <strong>the</strong><br />

determination <strong>of</strong> sulphites since <strong>the</strong>re is a direct detection, i.e. it is <strong>the</strong> SO 2 molecule that<br />

is instrumentally measured in <strong>the</strong> electrode [3]. The major drawback when using<br />

voltammetry is <strong>the</strong> previous analyte extraction step required since wine is such a<br />

complex matrix. The extraction process is based on a MLEM that works with <strong>the</strong> same<br />

principles <strong>of</strong> pervaporation however it does not require a membrane, and <strong>the</strong>refore does<br />

not have <strong>the</strong> associated problems with its use. The sample is placed inside <strong>the</strong> module<br />

and <strong>the</strong> volatile compounds evaporate to <strong>the</strong> headspace. Inside <strong>the</strong> module <strong>the</strong>re is a<br />

suspended small reactor, where a small volume <strong>of</strong> an acceptor solution is placed. After a<br />

period <strong>of</strong> time, <strong>the</strong> acceptor solution is collected and analyzed by SWV. The proposed<br />

method was validated by comparison to <strong>the</strong> reference methodology. It showed<br />

repeatability (RSD lower than 5%) and linearity (between 20 to 200 mg L -1 ) as well as<br />

suitable limit <strong>of</strong> detection (6 mg L -1 ). Moreover, if needed, <strong>the</strong>se limits can be easily<br />

lowered by increasing <strong>the</strong> time <strong>of</strong> extraction, which in this case was less than 5 minutes.<br />

Acknowledgments: LMG (SFRH/BD/36791/2007) and JGP (SFRH/BD/30279/2006) wish to<br />

acknowledge Portuguese Fundação para a Ciência e Tecnologia (F CT) for <strong>the</strong>ir PhD studentships.<br />

References<br />

[1] Gonçalves, L.M.; Anunciação, M.F., Valente, I.M., Pacheco, J.G.; Magalhães, P.J.; Rodrigues,<br />

J.A.; Barros, A.A. Collection <strong>of</strong> Czechoslovak Chemical Communications. Accepted manuscript<br />

[1] Pacheco, J.G.; Valente, I.M.; Gonçalves, L.M.; Magalhães, P.J.; Rodrigues, J.A.; Barros, A.A.<br />

Talanta. 2010, 81, 372<br />

[3] Gonçalves, L.M.; Pacheco, J.G.; Magalhães, P.J.; Rodrigues, J.A.; Barros, A.A. Food Additives<br />

and Contaminants. 2010, 27, 175<br />

September, 811, 2010. ISEL - Lisbon 34


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O B 02<br />

<br />

activity. Gallic acid interference<br />

Maria J.F. Rebelo, Dulce M.A. Gil<br />

CCMM -Faculdade de Ciências da Universidade de Lisboa, Campo Grande, C 8<br />

1749-016 Lisboa, Portugal,<br />

mjrebelo@fc.ul.pt<br />

It is, nowadays, common knowledge that wines contain polyphenols, which make <strong>the</strong>m<br />

<br />

polyphen<br />

<br />

which had a good correlation to <strong>the</strong> antioxidant activity <strong>of</strong> several Portuguese wines,<br />

measured by <strong>the</strong> ABTS assay, r = 0.9795 (p < 0.05).<br />

<br />

Folin-Ciocalteu assay, which takes gallic acid as reference, most <strong>of</strong> <strong>the</strong> times. So, we<br />

studied <strong>the</strong> influence <strong>of</strong> gallic acid in enzymatic assays in more detail. The interaction <strong>of</strong><br />

gallic acid in free (with UV-Vis spectrophotometric detection) and immobilized (with<br />

amperometric biosensor detection) Laccase enzyme oxidation <strong>of</strong> caffeic acid is<br />

presented. IC 50, was determined to be 19.15 ± 0.11 µM and 5.11 ± 0.19 µM for free and<br />

immobilized enzyme, respectively. The gallic acid study was complemented with cyclic<br />

voltammetry <strong>of</strong> separate and mixed solutions <strong>of</strong> caffeic and gallic acid, at bare or<br />

covered by membranes with immobilized laccase glassy carbon electrodes and will be<br />

presented.<br />

Aknowledgements: D.M.A Gil acknowledges F CT (Fundação para a Ciência e a Tecnologia) for a<br />

Ph.D. fellowship (SFRH/BD/34511/2006). The authors acknowledge Financial support from<br />

Faculdade de Ciências da Universidade de Lisboa<br />

September, 811, 2010. ISEL - Lisbon 35


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O B 03<br />

An electrochemical biosensor for toxic amides determination:<br />

Merits and Limitations<br />

Nelson A. F. Silva 1 , Manuel J. Matos 1 , Amin Karmali 1 , Maria Manuela Rocha 2<br />

1 CIEQB-ISEL - Instituto Superior de Engenharia de Lisboa, Portugal<br />

2 DQB Faculdade de Ciências da Universidade de Lisboa, Portugal<br />

nsilva@deq.isel.ipl.pt<br />

The present work reports some experimental results concerning an investigation that is<br />

presently being conducted in order to develop and implement an electrochemical<br />

biosensor for toxic amides determination [1].<br />

The biological recognition element consists <strong>of</strong> whole cells <strong>of</strong> Pseudomonas aeruginosa<br />

containing intracellular amidase activity, which catalyses <strong>the</strong> hydrolysis <strong>of</strong> amides, such<br />

as acrylamide, producing ammonium ions and acrylic acid.<br />

The transduction process is provided by an ammonium ion selective electrode.<br />

Whole cells were firstly immobilized in several types <strong>of</strong> polymeric membranes, such as<br />

polye<strong>the</strong>rsulfone, nitrocellulose, polycarbonate or nylon, which were attached to <strong>the</strong><br />

surface <strong>of</strong> <strong>the</strong> transductor according to different procedures. The reaction time was 6<br />

minutes. These biosensors, typically, exhibited a linear response in <strong>the</strong> range <strong>of</strong><br />

10 -4 -10 -1 mol.L -1 <strong>of</strong> acrylamide, a detection limit in <strong>the</strong> order <strong>of</strong> 10 -4 mol.L-1 <strong>of</strong><br />

acrylamide, and a sensitivity <strong>of</strong> 48.0 mV/decade. O<strong>the</strong>r figures <strong>of</strong> merit such as,<br />

selectivity, correlation coefficient, response time or half life time, concerning <strong>the</strong><br />

ility, were also investigated.<br />

<br />

example, <strong>the</strong> time needed for complete removal <strong>of</strong> ammonium ions from <strong>the</strong> vicinity <strong>of</strong><br />

<strong>the</strong> transducer, after <strong>the</strong> catalytic reaction, so that each assay could start with identical<br />

conditions, was about 45 minutes. This period <strong>of</strong> time is not compatible with continuous<br />

measurements or even environmental monitoring <strong>of</strong> acrylamide.<br />

In order to overcome this limitation, some investigation studies are being conducted<br />

regarding <strong>the</strong> development and optimization <strong>of</strong> o<strong>the</strong>r immobilization matrices for whole<br />

cells <strong>of</strong> Pseudomonas aeruginosa. Some main characteristics <strong>of</strong> <strong>the</strong>se matrices, such as,<br />

high substrate and product diffusion rates, easy removal <strong>of</strong> ammonium ions after each<br />

assay; biochemical compatibility with <strong>the</strong> biological recognition element and<br />

mechanical stability, should be accomplished.<br />

Glutaraldehyde, bovine serum albumin (BSA), gelatin, nafion, agarose, zeolites, sol-gel<br />

technology, alginates beds, and o<strong>the</strong>r immobilization agents and procedures, have been<br />

used and combined, to prepare several different immobilization matrices. [refs!]<br />

The results that we will present, bearing in mind <strong>the</strong> characteristics mentioned above,<br />

range from poor to frankly good.<br />

In future we hope to be able to use this biosensor for acrylamide and o<strong>the</strong>r toxic amides<br />

determination in food and environmental samples.<br />

References<br />

[1] Silva, N.; Gil, D.; Karmali, A.; Matos, M.; Biocat Biotransf, 2009, 27, 143.<br />

September, 811, 2010. ISEL - Lisbon 36


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O B 04<br />

Construction <strong>of</strong> a nitrite biosensor based on <strong>the</strong> direct<br />

electrochemistry <strong>of</strong> a multihemic nitrite reductase on carbon<br />

nanotube modified electrodes<br />

Célia M. Silveira 1 , Marta Pimpão 1 , Fernando Pereira 2 , José J.G. Moura 1 ,<br />

M. Gabriela Almeida 1<br />

1<br />

REQUIMTE Departamento de Química, CQFB, Faculdade de Ciências e Tecnologia,<br />

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal<br />

2<br />

LCM Laboratório de Catálise e Materiais, DEQ - Faculdade de Engenharia da Universidade do<br />

Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal<br />

celia.silveira@dq.fct.unl.pt<br />

In recent years, biosensors have been an intense research field, as <strong>the</strong>y constitute<br />

advantageous alternatives to conventional analytical methods. The electrochemical<br />

enzyme based devices are <strong>of</strong> particular interest due to <strong>the</strong>ir operational simplicity, low<br />

cost fabrication, portability and real-time monitoring capability. The devices based on<br />

direct electron transfer between <strong>the</strong> electrode and <strong>the</strong> redox enzyme represent <strong>the</strong> most<br />

attractive and simple approach. However, several issues still challenge <strong>the</strong> direct<br />

electrochemistry <strong>of</strong> proteins. As so, <strong>the</strong> development <strong>of</strong> appropriate electrodes and<br />

protein immobilization methods to enhance <strong>the</strong> direct electron exchange while retaining<br />

biological activity is crucial. In this regard, <strong>the</strong> modification <strong>of</strong> electrode surfaces at a<br />

molecular scale using carbon nanotubes (CNTs) has become increasingly popular. CNT<br />

deposits on solid supports generate three dimensional porous structures that greatly<br />

enlarge electrode surfaces. As a result we can obtain higher loadings <strong>of</strong> proteins on<br />

electrodes and achieve optimal distances to <strong>the</strong>ir redox centers. The efficiency <strong>of</strong><br />

heterogeneous electron transfer and bioelectrocatalysis is thus markedly improved [1-3].<br />

This work reports <strong>the</strong> use carbon nanotubes to promote <strong>the</strong> direct electrochemistry <strong>of</strong> <strong>the</strong><br />

multihemic nitrite reductase (ccNiR) from Desulfovibrio desulfuricans ATCC 27774.<br />

Multi-walled (MWCNT) CNTs were used to modify <strong>the</strong> surface <strong>of</strong> pyrolytic graphite<br />

electrodes (PGEs). A layer-by-layer deposition method was used, in which drops <strong>of</strong><br />

CNTs dispersions are successively applied on <strong>the</strong> electrode, followed by <strong>the</strong> addition <strong>of</strong><br />

enzyme. Dispersions were prepared in water, organic solvents and detergents. The<br />

catalytic response to nitrite was considerably improved in <strong>the</strong> presence <strong>of</strong> <strong>the</strong> carbon<br />

nanotubes when compared to plain electrodes modified with enzyme only. The<br />

electrocatalytic characteristics <strong>of</strong> <strong>the</strong> bioelectrodes responses were compared and<br />

evaluated in terms <strong>of</strong> <strong>the</strong> structural and chemical properties <strong>of</strong> <strong>the</strong> different CNTs. The<br />

analytical performance <strong>of</strong> <strong>the</strong> bioelectrodes will also be presented and discussed.<br />

Acknowledgments: C.M. Silveira thanks <strong>the</strong> financial support funded by Fundação para a Ciência<br />

e Tecnologia (SFRH/BD/28921/2006).<br />

References<br />

[1] J.J. Davis, K.S. Coleman, B.R. Azamian, C.B. Bagshaw, M.L. Green, Chem. Eur. J. 9 (2003)<br />

3732.<br />

[2] J.J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F.J. Mearns, J.G. Shapter, D.<br />

B. Hibbert, J. Am. Chem. Soc. 125 (2003) 9006.<br />

[3] K. Gong, Y. Yan, M. Zhang, L. Su, S. Xiong, L. Mao, Anal. Sci. 21 (2005) 1383.<br />

September, 811, 2010. ISEL - Lisbon 37


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O B 05<br />

Polymeric chemiresitive sensors for wood classification<br />

Renata Lippi, Jonas Gruber, Juliana R. Cordeiro, Erica S. Takahashi,<br />

Rosamaria W. C. Li<br />

Instituto de Química, Universidade de São Paulo, SP, Brasil<br />

Renata.Lippi@poli.usp.br<br />

An electronic nose [1] capable <strong>of</strong> identifying two pairs <strong>of</strong> wood species: (a) mahogany<br />

and cedar (Figure 1) and (b) Brazilian walnut and black-cinnamon was developed. The<br />

electronic nose consists <strong>of</strong> four gas sensors, fabricated by <strong>the</strong> deposition <strong>of</strong> thin doped<br />

conjugated polymer films onto <strong>the</strong> surface <strong>of</strong> interdigitated electrodes. The electrical<br />

conductance <strong>of</strong> <strong>the</strong>se electrodes was measured during exposure to <strong>the</strong> volatile<br />

compounds <strong>of</strong> wood samples. Treatment <strong>of</strong> <strong>the</strong>se data by principal component analysis<br />

and by cluster analysis gave excellent separation between <strong>the</strong> data sets. Leave-one-out<br />

analysis [2] presented a rate <strong>of</strong> hits <strong>of</strong> 100% in 80 identification assays carried out<br />

randomly with <strong>the</strong> above-cited species. Sets <strong>of</strong> electrodes have been tested for over six<br />

months and are still operational. The cost <strong>of</strong> each electrode is less than US$ 10. The<br />

equipment is portable and has low power consumption; hence, it can be used by police<br />

<strong>of</strong>ficers on <strong>the</strong> roads for <strong>the</strong> inspection <strong>of</strong> lorries carrying woods.<br />

Figure 1. PCA plot for mahogany and cedar<br />

Acknowledgments: to CNPq for <strong>the</strong> grants and financial support.<br />

References<br />

[1] Gardner, J. W.; Bartlett, P. N. Electronic Noses Principles and Applications, 1999, Oxford<br />

University Press. N.Y.<br />

[2] Lopes, F. M.; Martins-Jr, D. C.; Cesar-Jr, R. M. BMC Bioinformatics, 2008, 9, 451.<br />

September, 811, 2010. ISEL - Lisbon 38


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O B 06<br />

Water soluble phthalate determination from bottled and<br />

coolers water by using Square Wave Voltammetric(SW V)<br />

technique<br />

Munawar Saeed Qureshi, Sirajuddin<br />

National Centre <strong>of</strong> Excellence in Analytical Chemistry University <strong>of</strong> Sindh, Jamshoro 76080,<br />

Pakistan.<br />

munwar_saeed@yahoo.com<br />

Phthalic acid esters (dialkyl or alkyl aryl esters) known as phthalates are<br />

commonly used as plasticizers in <strong>the</strong> polymer industry. Phthalates are widely used as<br />

additives in nail polish, printer inks, insecticides, toys, PVC, lubricants, food wraps,<br />

blood bags, ca<strong>the</strong>ters, etc. Phthalates are not chemically bound to <strong>the</strong> polymers and can<br />

diffuse out <strong>of</strong> <strong>the</strong> plastic and leach into <strong>the</strong> environment. The interest about phthalate<br />

esters is growing due <strong>the</strong>ir significant use and potential toxicity. Hence an efficient<br />

analytical method is needed for assaying <strong>of</strong> phthalates in various polymer products<br />

essential for safe monitoring <strong>of</strong> phthalates[1-4].<br />

In our present study, a fast, simple and highly sensitive Square Wave<br />

Voltammetric (SWV) method was developed for evaluation <strong>of</strong> total water soluble<br />

phthalates by taking 95% aqueous di-n-butyl phthalate (DBP) as a model at glassy<br />

carbon electrode (GCE). The study showed that 100 µM aqueous solution <strong>of</strong> DBP gives<br />

best response with 0.05 M Tetra butyl ammonium bromide (TBAB), at stirring rate <strong>of</strong><br />

1400 rpm, deposition time, 20 s and pH value, 4.0±0.1. The optimum frequency and<br />

scan rate was 100 Hz and 0.9 V/s respectively. SW Voltammetric response was linear in<br />

3 ranges, 70110 µM, 2060 µM and 210 µM with regression coefficient <strong>of</strong> 0.9873,<br />

0.9978 and 0.9935 respectively and limit <strong>of</strong> detection (LOD), 0.47 µM for total water<br />

soluble phthalates in aqueous medium. Under <strong>the</strong> same conditions Differential Pulse<br />

Voltammetry (DPV) gave a linear range <strong>of</strong> 0.5 4.5 µM with R value <strong>of</strong> 0.999 and<br />

detection limit <strong>of</strong> 0.05 µM. The developed method was successfully applied for total<br />

phthalates determination in various samples <strong>of</strong> water stored in PVC coolers and plastic<br />

bottles. The validity <strong>of</strong> <strong>the</strong> result was checked with reported method and good<br />

agreement was noticed between <strong>the</strong>m.<br />

-40.0u<br />

I (A)<br />

-30.0u<br />

-20.0u<br />

-10.0u<br />

-1.20 -1.30 -1.40 -1.50 -1.60 -1.70 -1.80<br />

U (V)<br />

(V)<br />

Fig.1 - SW voltammograms <strong>of</strong> triplicate water sample from PVC cooler (Eagle Star)<br />

References<br />

[1] L. Guiseppe, V.D. Antonio, M. Marika, V. Alberto, F.D. Claudio, Toxicology, 2006, 226, 90.<br />

[2] X. Zhiyong, E. Ralf, T. Christin, L. Rainer, C. Armando, R. Wolfgan, Environ. Sci, Technol.<br />

2007, 41, 4555.<br />

[3] B.Tamar, C.H. Drorit, C.M. Antonia, N.L. Calafat, A.Yona, W. Uri, R. Elhu, Envir. Int, 2009,<br />

35, 353.<br />

[4] E. Makoto, M. Emiko, K. Kunio, Rep. Toxicol, 2000, 14, 13.<br />

September, 811, 2010. ISEL - Lisbon 39


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O C 01<br />

Electrosyn<strong>the</strong>sis and Redox Conversion <strong>of</strong><br />

Poly(3,4-ethilenedioxythiophene) Films An Ellipsometric<br />

and Probe Beam Deflection Study<br />

A. I. Melato, J. P. Correia, L. M. Abrantes<br />

CQB, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa,<br />

Campo Grande, 1749-016 Lisboa, Portugal<br />

aimelato@fc.ul.pt<br />

Poly(3,4-ethilenedioxythiophene) (PEDOTh) has been <strong>the</strong> subject <strong>of</strong> intense research<br />

devoted to <strong>the</strong> influence <strong>of</strong> <strong>the</strong> electropolymerization conditions on <strong>the</strong> films properties<br />

[1-3]. Despite <strong>the</strong> valuable data ga<strong>the</strong>red by purely electrochemical techniques on <strong>the</strong><br />

charge transfer processes during <strong>the</strong> syn<strong>the</strong>sis and redox conversion <strong>of</strong> <strong>the</strong> polymers,<br />

<strong>the</strong>y are unable to provide insights about <strong>the</strong> structural features <strong>of</strong> <strong>the</strong> films and on <strong>the</strong><br />

nature <strong>of</strong> <strong>the</strong> species involved in <strong>the</strong> redox processes. Such information can be achieved<br />

by <strong>the</strong> powerful association <strong>of</strong> optical techniques with <strong>the</strong> electrochemical ones. In-situ<br />

Ellipsometry and Probe Beam Deflection (PBD) have been successfully employed to<br />

evaluate <strong>the</strong> dielectric properties and mass fluxes taking place both during <strong>the</strong> formation<br />

and electrochemical conversion <strong>of</strong> several conducting polymers [4-6].<br />

In this work an ellipsometric and PBD study <strong>of</strong> <strong>the</strong> electrosyn<strong>the</strong>sis and redox behaviour<br />

<strong>of</strong> PEDOTh films is presented. Thin polymeric films were generated on platinum<br />

electrodes, from organic solutions <strong>of</strong> <strong>the</strong> monomer, under potentiostatic and<br />

potentiodynamic modes, being electrochemically characterized by cyclic voltammetry.<br />

A two-homogeneous phase model has proven to be appropriate to describe <strong>the</strong> films<br />

optical properties and <strong>the</strong> ma<strong>the</strong>matical tool <strong>of</strong> temporal convolution was employed to<br />

determine <strong>the</strong> extent and nature <strong>of</strong> each individual participation for <strong>the</strong> overall mass<br />

transfer. The combined electrochemical and optical information, collected for films<br />

prepared with distinct growth charges and in different supporting electrolytes, allowed<br />

to discuss <strong>the</strong> values <strong>of</strong> <strong>the</strong> local dielectric properties <strong>of</strong> <strong>the</strong> polymer and <strong>the</strong>ir relation<br />

with <strong>the</strong> mass transfer phenomena taking place during <strong>the</strong> PEDOTh formation and in <strong>the</strong><br />

course <strong>of</strong> <strong>the</strong> doping/undoping processes.<br />

References<br />

[1] Melato, A. I.; Mendonça, M. H.; Abrantes, L. M. J. Solid State Electrochem. 2009, 13, 417.<br />

[2] Aubert, P.-H.; Groenendaal, L.; Louwet, F.; Lutsen, L.; Vanderzande, D.; Zotti, G. Synth.<br />

Metals 2002, 126, 193.<br />

[3] Niu, L.; Kvarnström, C.; Ivaska, A. J. Electroanal. Chem. 2004, 569, 151.<br />

[4] Correia, J. P.; Vieil, E.; Abrantes, L. M. J. Electroanal. Chem. 2004, 573, 299.<br />

[5] Abrantes, L. M.; Correia, J. P. Electrochim. Acta 1999, 44, 1901.<br />

[6] Melato, A. I.; Correia, J. P.; Abrantes, L. M. J. Electroanal. Chem.,<br />

doi:10.1016/j.jelechem.2010.02.025.<br />

September, 811, 2010. ISEL - Lisbon 40


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O C 02<br />

Convolutive modelling with Ma<strong>the</strong>matica ® using Oldham-<br />

Mahon-Myland h i (t) functions. C r E q mechanism in C V.<br />

M. J. Barrera-Niebla 1 , M.J. González Morín 1 , M. R. García Hernández 2 ,<br />

D.M. Grandoso Medina 1 , L.C. Fernández Mérida 1<br />

1 Physical Chemistry Department. University <strong>of</strong> La Laguna. La Laguna. 2 Consejería de Presidencia,<br />

Justicia y Seguridad. Gobierno de Canarias.TENERIFE. CANARY ISLANDS. SPAIN.<br />

mbarnie@ull.es<br />

Convolutive Modelling is an important methodology <strong>of</strong> Semiintegral and Convolution<br />

<strong>Electrochemistry</strong> [1]. We model with Ma<strong>the</strong>matica ® s<strong>of</strong>tware, in order to overcome <strong>the</strong><br />

advanced ma<strong>the</strong>matics, <strong>the</strong> I E curves for a C r Eq<br />

mechanism at planar electrodes.<br />

The mentioned methodology employs <strong>the</strong> universal convolution algorithm <strong>of</strong> Oldham<br />

and <strong>the</strong> extended semiintegrals M R (t)<br />

and M P (t)<br />

. The mechanism represented by<br />

k<br />

k<br />

f<br />

<br />

<br />

<br />

S(<br />

soln)<br />

<br />

R(<br />

soln)<br />

R(<br />

soln)<br />

ne P(<br />

soln)<br />

(1)<br />

k'<br />

kb<br />

allows us to infer for k k'<br />

<strong>the</strong> following expression for h R (t)<br />

, namely<br />

<br />

2k<br />

k'<br />

1<br />

2exp ( k k')<br />

t<br />

h R ( t)<br />

<br />

2( k k')<br />

t<br />

<br />

<br />

<br />

2<br />

<br />

2 k t<br />

k'<br />

exp<br />

<br />

k k'<br />

<br />

<br />

<br />

Erfi<br />

3/ 2 <br />

( k k')<br />

<br />

<br />

<br />

k'<br />

t <br />

<br />

Erfi<br />

k k'<br />

<br />

k t <br />

<br />

<br />

k k'<br />

<br />

<br />

required to calculate, with Ma<strong>the</strong>matica ® , <strong>the</strong> single integral <strong>of</strong> equation (2) needed in<br />

<strong>the</strong> convolutive modelling. When k k'<br />

an easier equation is obtained.. These<br />

methodologies let us to obtain <strong>the</strong> files: M R (t)<br />

, M P (t)<br />

, and in duplicate, I (E)<br />

. A very<br />

basic program written for Ma<strong>the</strong>matica ® is reported to model I E curves. We check<br />

<strong>the</strong>se files with those obtained by convolutive modelling with Oldham-Mahon-Myland<br />

g(t)<br />

functions and by digital simulation with DigiSim ® and DigiElch ® . This comparison<br />

was made with <strong>the</strong> assistance <strong>of</strong> SigmaPlot ® s<strong>of</strong>tware. The agreement is excellent. The<br />

methodologies employed are based in <strong>the</strong> following convolutions<br />

dh t<br />

I t M t i ( )<br />

( ) i ( )* i R,<br />

P<br />

(3)<br />

dt<br />

The extended semiintegrals M R (t)<br />

and M P (t)<br />

are connected with electrode surface<br />

concentrations by a linear relation with known parameters. Hence <strong>the</strong> C R ( 0, t)<br />

and<br />

C P ( 0, t)<br />

files are obtained in a straightforward procedure and are complementary with<br />

<strong>the</strong> concentration pr<strong>of</strong>iles C R ( x,<br />

1 t ) and C P ( x,<br />

1 t ) determined by digital simulation.<br />

(2)<br />

Acknowledgements: To Pr<strong>of</strong>essor Keith B. Oldham, Peter J. Mahon and Jan C. Myland.<br />

References<br />

[1] Barrera-Niebla, M.J.. Semiintegral and Convolution <strong>Electrochemistry</strong>. Research line.<br />

Department <strong>of</strong> Physical Chemistry. (2010). La Laguna University. Tenerife. Canary Islands.<br />

September, 811, 2010. ISEL - Lisbon 41


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O C 03<br />

Electro-oxidation <strong>of</strong> alcohols on Pd-Ag alloys<br />

in alkaline medium<br />

C ristina Oliveira, Rosa Rego<br />

Departamento de Química, Centro de Química - Vila Real, Universidade de Trás-os-Montes e Alto<br />

Douro, Apartado 1013, 5001-801 Vila Real<br />

mcris@utad.pt<br />

A new research era on direct alcohol fuel cells (DAFC) is emerging with <strong>the</strong><br />

recent development <strong>of</strong> alkaline membranes. For decades, <strong>the</strong> development <strong>of</strong> new<br />

electrode materials for polymer electrolyte membrane fuel cells (PEMFC) concerned<br />

almost exclusively <strong>the</strong>ir behaviour in acid media. However, since <strong>the</strong> appearance <strong>of</strong><br />

alkaline membranes, electrocatalysis studies are turning towards <strong>the</strong> alkaline media. As<br />

a consequence, alkaline direct alcohol fuel cells are coming out as an alternative to<br />

conventional acid direct alcohol fuel cells.<br />

In <strong>the</strong> last years, several works have shown that in alkaline media, Pd and Pdbased<br />

catalysts may display higher poison tolerance and higher activity than Pt based<br />

catalysts towards alcohol oxidation reaction, especially for ethanol oxidation reaction<br />

(EOR) [1]. Despite some studies have shown that Pd alloys may display even higher<br />

catalytic activity towards EOR than pure Pd, examples <strong>of</strong> <strong>the</strong>se materials are still scarce<br />

and restricted to Au-Pd, Pd-Pb, Pd-Pt and Pd-Ni alloys [2-5].<br />

In this work Pd-Ag alloys containing different amounts <strong>of</strong> Ag are prepared and<br />

characterized by XRD and SEM/EDS and <strong>the</strong>ir activities towards <strong>the</strong> electro-oxidation<br />

<strong>of</strong> alcohols in alkaline media is evaluated and compared to Pd and Pt.<br />

References<br />

[1] - C. Bianchini and P. Shen, Chem. Rev. 2009, 109, 41834206.<br />

[2]- M.Nie, H. Tang, Z.Wei, S. Jiang, P. Shen, Electrochem. Communicat. 2007, 9, 23752379.<br />

[3]- Y. Wanga, T. Nguyena, X. Liub, X.Wanga Journal <strong>of</strong> Power Sources 2010, 195, 26192622.<br />

[4]- S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, Journal <strong>of</strong> Power Sources 2010,195, 10011006.<br />

[5]- J. Lua, S.Lua, D.Wanga, M.Yanga, Z. Liub, C.ei Xub, S. Jianga, Electrochim. Acta 2009, 54,<br />

54865491.<br />

September, 811, 2010. ISEL - Lisbon 42


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O C 04<br />

Versatile surface functionalization <strong>of</strong> gold surfaces based on<br />

CS 2 -amine reaction<br />

I. Almeida, A. S. Viana<br />

Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Ed. C8,<br />

Campo Grande, 1749-016 Lisboa, Portugal<br />

ibalmeida@fc.ul.pt<br />

Numerous strategies have been developed in <strong>the</strong> preparation <strong>of</strong> biosensing surfaces,<br />

where <strong>the</strong> biological activity <strong>of</strong> <strong>the</strong> biomolecule is not compromised during and upon <strong>the</strong><br />

immobilisation to <strong>the</strong> transduction surface. Self-assembled monolayers (SAMs) provide<br />

a simple route to modify electrode surfaces by organic molecules containing free anchor<br />

groups such as organosulphur derivatives. The monolayers are in general very stable,<br />

organized and packed allowing tremendous flexibility depending upon <strong>the</strong>ir terminal<br />

functionality, being suitable platforms for biosensing [1]. Recently, Dithiocarbamates<br />

(DTCs) have been used as an alternative to thiolated SAMs and implicated as important<br />

gold nanoparticles-binding groups in molecular electronics, due to <strong>the</strong>ir bidentate<br />

resonance structure involving N-C-S 2 [2]. DTCs may be formed readily in situ by <strong>the</strong><br />

combination <strong>of</strong> secondary amines and CS 2 in <strong>the</strong> presence <strong>of</strong> gold substrates [3].<br />

The main purpose <strong>of</strong> this work is to study by electrochemical methods <strong>the</strong> reactivity<br />

between carbon disulphide and several amines, including direct enzyme immobilisation<br />

onto gold surfaces. Different methodologies were used for gold functionalisation,<br />

namely: one-step DTCs formation onto gold (substrate in contact with a mixture <strong>of</strong> CS 2<br />

and amines); DTCs formation in solution followed by exposure to <strong>the</strong> gold surface; and<br />

finally, CS 2 self-assembling and post-reaction with amine-compounds. The redox<br />

behaviour <strong>of</strong> modified electrodes with electroactive compounds containing primary and<br />

secondary amines clearly revealed <strong>the</strong>ir covalent immobilisation on gold and allowed to<br />

estimate <strong>the</strong>ir surface concentration. Electrochemical reductive desorption <strong>of</strong> <strong>the</strong><br />

anchored sulphur derivatives from gold provide fur<strong>the</strong>r evidence for surface<br />

modification. The reaction <strong>of</strong> CS 2 and enzymes has been demonstrated for Glucose<br />

Oxidase. Chronoamperometric assays in <strong>the</strong> presence <strong>of</strong> glucose have confirmed<br />

biomolecule immobilisation and catalytic activity. Scanning Probe techniques (STM,<br />

AFM) were also used to characterize <strong>the</strong> morphology <strong>of</strong> <strong>the</strong> modified electrodes.<br />

Acknowledgments: The authors acknowledge to Dr. António Cascalheira for helpful discussion, V.<br />

C. Ferreira for <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> gold nanoparticles and Fundação para a Ciência e a Tecnologia<br />

for funding (PTDC/QUI/66612/2006).<br />

References<br />

[1] Li M., Gao F.; Yang P.; Wang L.; Fang B. Surf. Sci., 2008,602, 151<br />

[2] Long D. P.; Troisi A. J. Am. Chem. Soc., 2007, 129, 15303<br />

[3] Zhu H.; Coleman D. M.; Dehen C. J.; Geisler I. M.; Zemlyanov D.; Chmielewski J.; Simpson<br />

G. J.; Wei A. Langmuir, 2008, 24, 8660<br />

September, 811, 2010. ISEL - Lisbon 43


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O C 05<br />

Convolutive modelling with universal master equation <strong>of</strong><br />

Oldham-Mahon-Myland by using Ma<strong>the</strong>matica ® s<strong>of</strong>tware.<br />

E q C i mechanism in C V at spherical electrodes.<br />

M. J. Barrera-Niebla 1 , M. R. García Hernández 2 , M. J. González Morín 1 ,<br />

L.C. Fernández Mérida 1 , D.M. Grandoso Medina 1<br />

1 Physical Chemistry Department. University <strong>of</strong> La Laguna. La Laguna<br />

2 Consejería de Presidencia, Justicia y Seguridad. Gobierno de Canarias<br />

TENERIFE. CANARY ISLANDS. SPAIN.<br />

mbarnie@ull.es<br />

Convolutive Modelling is an important methodology <strong>of</strong> Semiintegral and Convolution<br />

<strong>Electrochemistry</strong> [1]. We model with Ma<strong>the</strong>matica ® s<strong>of</strong>tware, to overcome <strong>the</strong> advanced<br />

ma<strong>the</strong>matics, I E curves for E q C i mechanism at spherical electrodes. The mechanism<br />

represented by<br />

k f<br />

<br />

<br />

k<br />

S( so ln) ne P(<br />

so ln) P(<br />

so ln) Q(<br />

so ln)<br />

(1)<br />

kb<br />

allows us to infer <strong>the</strong> following expressions for S (t)<br />

and P (t)<br />

, namely<br />

S(<br />

t)<br />

<br />

1 1 DSt<br />

<br />

<br />

exp<br />

erfc<br />

DSt<br />

a 2<br />

a <br />

<br />

P(<br />

t)<br />

exp<br />

kt<br />

<br />

<br />

Figure 1. Modelled<br />

voltammograms.<br />

DSt<br />

<br />

<br />

<br />

a <br />

1 1 D t <br />

exp P<br />

erfc<br />

DPt<br />

a 2<br />

a <br />

a electrode radius<br />

D <br />

<br />

Pt<br />

<br />

a <br />

required to apply <strong>the</strong> algorithm used to implement <strong>the</strong> master equation. A very basic<br />

program written for Ma<strong>the</strong>matica ® is reported to model I E curves. We check, with<br />

SigmaPlot , <strong>the</strong>se files with those obtained by digital simulation with DigiElch ® .<br />

The next figure display <strong>the</strong> comparison<br />

between convolutive modelling and digital<br />

simulation. The agreement is excellent. The<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-120<br />

10 6 I/A<br />

E/V<br />

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6<br />

(2)<br />

parameters employed were: T 298. 15K<br />

;<br />

a 10 3<br />

9<br />

2 1<br />

m ;<br />

DS DP<br />

10<br />

m s ;<br />

3<br />

CS b 1mol<br />

m<br />

0. 5<br />

0 4<br />

1<br />

k 10<br />

m s ;<br />

E reverse 0. 5V ;<br />

(3)<br />

; n 1<br />

;<br />

k 1s<br />

1 ;<br />

0<br />

E 0. 0V<br />

;<br />

1<br />

v 1V<br />

s ; t reverse 1s<br />

;<br />

3<br />

( sampling time)<br />

10<br />

s . DigiSim ® results<br />

also agree with previous files.<br />

Acknowledgements: To Pr<strong>of</strong>essor Keith B. Oldham, Peter J. Mahon and Jan C. Myland.<br />

References<br />

[1] Barrera-Niebla, M.J.; Semiintegral and Convolution <strong>Electrochemistry</strong>. Research line.<br />

Department <strong>of</strong> Physical Chemistry. (2010). La Laguna University. Tenerife. Canary Islands.<br />

September, 811, 2010. ISEL - Lisbon 44


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O C 06<br />

Electrocrystallisation <strong>of</strong> (Perylene) 2 [M(mnt) 2 ] salts<br />

Mónica Afonso, 1 Manuel J. Matos, 2,3 Rafaela A. L. Silva, 1 Quirina Ferreira, 2<br />

Manuel Almeida 1<br />

1 Dept. Chemistry, ITN / CFMCUL Estrada Nacional 10, P-2686-953 Sacavém, Portugal<br />

2<br />

IT, Av. Rovisco Pais, 1049-001 Lisboa, Portugal,<br />

3 ISEL, Av. Emídio Navarro, 1959-007 Lisboa, Portugal<br />

mafonso@itn.pt<br />

The charge transfer salts based on perylene (Per) and transition metal<br />

bis-maleonitrile-dithiolate M(mnt) 2 with different transition metals M and general<br />

formula, (Per) 2 [M(mnt) 2 ] have attracted continued interest for more than 30 years due to<br />

unique properties derived from <strong>the</strong> existence in <strong>the</strong> same solid <strong>of</strong> two types <strong>of</strong> chains:<br />

conducting chains <strong>of</strong> partially oxidized perylene molecules (Per) 1/2+ and chains <strong>of</strong><br />

monoanionic complexes [M(mnt) 2 ] - that depending on <strong>the</strong> metal can be ei<strong>the</strong>r<br />

diamagnetic (M=Cu, Au, Co) or paramagnetic (M=Ni, Pd, Pt, Fe). The mutual<br />

interaction between <strong>the</strong> two type <strong>of</strong> chains, both subject to lattice instabilities typical <strong>of</strong><br />

one-dimensional conducting and magnetic systems, leads to a very rich and<br />

unprecedented variety <strong>of</strong> physical phenomena [1,2]. However <strong>the</strong> study <strong>of</strong> <strong>the</strong>se<br />

compounds has been always limited by difficulties in <strong>the</strong> growth <strong>of</strong> good quality single<br />

crystals. The situation is fur<strong>the</strong>r complicated by <strong>the</strong> fact that <strong>the</strong> crystals can be obtained<br />

in two polymorphs, e.g. in M=Cu, Ni [3] and Pt [4] and different stoichiometries are<br />

possible for M=Co [1].<br />

These salts have been obtained mainly by electrocrystallisation; a solution <strong>of</strong> perylene<br />

and salts <strong>of</strong> [M(mnt) 2 ] - is submitted to electrochemical oxidation which generates<br />

perylene cations to give insoluble crystals <strong>of</strong> <strong>the</strong> (Perylene) 2 M(mnt) 2 compounds<br />

growing on <strong>the</strong> anode. This electrochemical method has advantages over chemical<br />

oxidation routes yielding better quality crystals, but has also strong limitations.<br />

In this communication we report <strong>the</strong> results <strong>of</strong> our systematic investigation aiming at to<br />

establish <strong>the</strong> best conditions for <strong>the</strong> growth <strong>of</strong> single crystals <strong>of</strong> <strong>the</strong> (Per) 2 M(mnt) 2<br />

compounds by electrocrystallisation that is constrained by <strong>the</strong> ra<strong>the</strong>r low solubility <strong>of</strong><br />

perylene in appropriated solvents and <strong>the</strong> instability <strong>of</strong> <strong>the</strong> perylene radical cation. The<br />

conditions which allowed for <strong>the</strong> first time <strong>the</strong> preparation <strong>of</strong> (Per) 2 [Pd(mnt) 2 ] by<br />

electrocrystallisation are described. AFM and STM microscopy were used to monitor<br />

<strong>the</strong> early stages <strong>of</strong> crystal growth on different electrodes. The nucleation is found to<br />

occur preferentially at edge dislocations <strong>of</strong> HOPG and to be oriented along Au and Pt<br />

crystallographic axis.<br />

Acknowledgments: Work supported by F CT under contract PTDC/QUI-QUI/101788/2008.<br />

References<br />

[1] Almeida M. and Henriques R. T., in Organic Conductive Molecules and Polymers, H. S. Nalwa<br />

ed., vol. 1, chapter 2, pp. 87-149, John Wiley 1997.<br />

[2] Brooks, J.S., Graf, E.S.; Almeida, M.; R.T.; Matos, M. et al.; J. Low Temp. Phys., 2006, 142, 787.<br />

[3] Gama, V.; Almeida, M.; Henriques, R.T.; Santos, I.C.; et al. J. Phys. Chem., 1991, 95, 4263.<br />

[4] Henriques, R.T.; Sousa, I.; Almeida, M.; et al.; J. Low Temp. Physics, 2006, 142, 405.<br />

September, 811, 2010. ISEL - Lisbon 45


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O C 07<br />

Application <strong>of</strong> <strong>the</strong> Scanning Electrochemical Microscope to<br />

study <strong>the</strong> corrosion mechanism in thin organic coatings with<br />

defects<br />

Andreia Marques, Alda Simões<br />

ICEMS/ DEQB, Instituto Superior Técnico, Technical University <strong>of</strong> Lisbon - TULisbon, Portugal<br />

alda.simoes@ist.utl.pt<br />

Corrosion resistance <strong>of</strong> steel sheet is greatly increased when metallic and organic<br />

coatings are applied toge<strong>the</strong>r. In recent decades this concept was extended to coilcoating<br />

or pre-painted metal sheet, which is <strong>of</strong> special interest for <strong>the</strong> automotive<br />

industry. On <strong>the</strong> o<strong>the</strong>r hand, coil-coatings are difficult to weld, prone to cut-edge<br />

corrosion and <strong>the</strong> shaping process may introduce micro-defects. Hence, <strong>the</strong> development<br />

<strong>of</strong> coatings combining weldability and corrosion protection originated from self-healing<br />

<strong>of</strong> damaged areas is <strong>of</strong> special interest.<br />

Electrogalvanized steel sheet coil-coated with a 1.8µm weldable primer was choosen as<br />

an object <strong>of</strong> study. Electrical conductivity is assured by graphite particles dispersed in<br />

<strong>the</strong> polymeric matrix.<br />

To understand <strong>the</strong> corrosion mechanisms in thin conductive coatings and <strong>the</strong><br />

mechanistic <strong>of</strong> self-repair <strong>of</strong> induced micro-defects <strong>of</strong> different sizes, samples were<br />

tested in 0.05M NaCl solutions. The Scanning Electrochemical Microscope (SECM)<br />

was used to study <strong>the</strong> localized corrosion kinetics <strong>of</strong> <strong>the</strong> thin protective coating at <strong>the</strong><br />

defect area. These studies were compared to data obtained from electrochemical<br />

impedance spectroscopy.<br />

The SECM ultra microelectrode (UME) was used for amperometric measurements, at a<br />

constant cathodic potential <strong>of</strong> -0.70 V vs SCE. When <strong>the</strong> probe was located above <strong>the</strong><br />

defect, very low current densities were measured at <strong>the</strong> UME. At this potential, currents<br />

correspond essentially to O 2 reduction. These results reveal local depletion <strong>of</strong> oxygen in<br />

solution, thus corresponding to an active cathodic area. Thus, a map <strong>of</strong> surface reactivity<br />

was obtained with good spatial resolution.<br />

Impedance spectroscopy revealed <strong>the</strong> activity <strong>of</strong> <strong>the</strong> coating is low when compared to<br />

metal-rich primers, probably because its conductive particles are graphite instead <strong>of</strong><br />

metal particles. This explains why <strong>the</strong> impedance remains practically constant with time.<br />

Acknowledgments: The research was funded under contract RF CS-CT-2008-00028.<br />

September, 811, 2010. ISEL - Lisbon 46


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O D 01<br />

Quasi-simultaneous localised measurements <strong>of</strong> current density<br />

and ion distribution (pH, Cl - , Na + )<br />

Svetlana V. Lamaka 1 , M. G. Taryba 1 , F. Montemor 1 , H. S. Isaacs 2 ,<br />

M. G. S. Ferreira 1,3<br />

1 ICEMS, Instituto Superior Técnico, UTL, Av. Rovisco Pais 1049-001 Lisbon, Portugal<br />

2 Brookhaven National Laboratory, Upton, NY 11973, USA<br />

3 CICECO, Dep.Ceramics and Glass Eng., University <strong>of</strong> Aveiro, 3810-193, Aveiro, Portugal<br />

sviatlana.lamaka@ist.utl.pt<br />

Scanning vibrating electrode technique (SVET) measures <strong>the</strong> potential differences<br />

in solution due to <strong>the</strong> ionic flux produced above <strong>the</strong> sample surface during<br />

electrochemical corrosion as it flows from anode to cathode. The measured potential<br />

difference is converted to an electrical current density (µA/cm ) at <strong>the</strong> point <strong>of</strong><br />

measurement. SVET is widely used as a powerful electrochemical technique for<br />

corrosion related studies. However, corrosion processes involve not only oxidationreduction<br />

reactions but also acid-base interactions. Acid-base equilibria can be studied<br />

by several localized electrochemical techniques in potentiometric mode, for example<br />

SECM and SIET. The same applies for determination <strong>of</strong> Cl - that plays a crucial role in<br />

<strong>the</strong> ionic equilibria at <strong>the</strong> surface <strong>of</strong> corroding metals.<br />

Scanning ion-selective electrode technique (SIET) works as a micro-potentiometric<br />

tool allowing measurements <strong>of</strong> specific ions over <strong>the</strong> active surface in solution. The size<br />

<strong>of</strong> <strong>the</strong> measuring tip <strong>of</strong> <strong>the</strong> ion-selective microelectrode is around 2 micron. SIET and<br />

SVET provide valuable and complementary information. Sequential use <strong>of</strong> both<br />

techniques was demonstrated by several groups in <strong>the</strong> field <strong>of</strong> corrosion [1-4].<br />

The presentation will describe SVET and SIET measurements undertaken<br />

simultaneously with a time lag 1.5 to 4 seconds. The combined SVET-SIET<br />

measurements correlate electrochemical oxidation-reduction processes with acid-base<br />

chemical equilibria. Simultaneously ra<strong>the</strong>r than sequentially measured distribution <strong>of</strong><br />

specific ions and current density provides a higher quality <strong>of</strong> local data that can be used<br />

for modelling and prediction <strong>of</strong> corrosion.<br />

Acknowledgments: The support by Fundação para a Ciência e a Tecnologia (F CT, Portugal)<br />

-<br />

LA-2008-214261is gratefully acknowledged.<br />

References<br />

[1] Ding, H.; Hihara, L.H. J.Electrochem.Soc. 2005, 152, B161.<br />

[2] Ogle, K.; Morel, S.; Jacquet, D. J.Electrochem.Soc. 2006, 153, B1.<br />

[3] Lamaka, S.V.; Karavai, O.V.; Bastos, A.C.; Zheludkevich, M.L.; Ferreira, M.G.S.<br />

Electrochem.Commun. 2008, 10, 259.<br />

[4] Bastos, A.C.; Taryba, M.G.; Karavai, O.V.; Zheludkevich, M.L.; Lamaka, S.V.; Ferreira,<br />

M.G.S. Electrochem.Commun. 2010, 12, 394.<br />

September, 811, 2010. ISEL - Lisbon 47


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O D 02<br />

Water Uptake Estimation in O rganic Coatings using<br />

Electrochemical Impedance Spectroscopy<br />

R. G. Duarte, 1,2 A. S. Castela, M. G. Ferreira<br />

1<br />

Instituto Superior Técnico, Chemical and Biological Eng. Dept/ICEMS, Av. Rovisco Pais,<br />

1049-001 Lisbon, Portugal.<br />

b<br />

Escola Superior de Tecnologia do Barreiro/ IPS, 2830-144 Barreiro, Portugal.<br />

raquel.duarte@estbarreiro.ips.pt<br />

The water uptake in organic coating films can be estimated by EIS and, for this purpose,<br />

several models can be found in <strong>the</strong> literature [1,2,3].<br />

The EIS method for <strong>the</strong> determination <strong>of</strong> <strong>the</strong> water uptake parameter presents several<br />

practical advantages compared with <strong>the</strong> more traditional ones, namely gravimetry, such<br />

as: it is a non destructive test, it can be used in every substrate and it can be applied in<br />

situ. These factors led to a wider use <strong>of</strong> such technique for <strong>the</strong> study <strong>of</strong> this parameter.<br />

In this presentation water uptake in PVC Plastisol films was estimate by EIS using<br />

models referred in <strong>the</strong> literature. The gravimetry technique was also used as a reference<br />

method. The influence <strong>of</strong> <strong>the</strong> salt concentration and ions type in <strong>the</strong> outer solution were<br />

also taken into consideration.<br />

In this study it was concluded that water uptake values estimated by EIS are influenced<br />

by <strong>the</strong> outer solution parameters, presenting higher values for films immersed in<br />

solutions containing cations with lower hydrated diameter and also for <strong>the</strong> more<br />

concentrated solutions. It was also verified that anions presented in <strong>the</strong> outer solution do<br />

not influence <strong>the</strong> water uptake values estimated by this technique. Likewise <strong>the</strong> film<br />

resistance is also influenced by <strong>the</strong> outer solution characteristics. however, <strong>the</strong> resistance<br />

evolution was opposite to <strong>the</strong> one determined for <strong>the</strong> water uptake.<br />

The gravimetric technique showed quite opposite results, in which <strong>the</strong> water uptake did<br />

not change with <strong>the</strong> cation characteristics and presented higher values for <strong>the</strong> solutions<br />

with lower concentration.<br />

Comparison between <strong>the</strong> water uptake values obtained by <strong>the</strong> EIS models and <strong>the</strong> ones<br />

obtained by gravimetry was also performed .<br />

References<br />

[1] D. M Brasher, A. H. Kingsbury, J. Appl. Chem., 1954 , 4, 62.<br />

[2] A. S. Castela, A. M. Simões, Corr. Sci., 2003, 45, 1647<br />

[3] R. G. Duarte, A. S. Castela, M. G. S. Ferreira, Prog. Org. Coat, 2009, 65, 197<br />

September, 811, 2010. ISEL - Lisbon 48


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O D 03<br />

Novel electrochemical techniques for classical corrosion<br />

problems: <strong>the</strong> Scanning Vibrating Electrode applied to<br />

galvanized steel cut edges<br />

Alda Simões<br />

ICEMS & DEQB / Instituto Superior Técnico/ TULisbon<br />

Av. Rovisco Pais, 1049-001 Lisboa, Portugal<br />

alda.simoes@ist.utl.pt<br />

Space-resolved electrochemical techniques have recently been gaining grounds for<br />

development in corrosion studies. They are based upon micro-electrodes and <strong>of</strong> a nonintrusive<br />

approach, allowing scanning and mapping <strong>of</strong> a chosen property along an active<br />

surface. The scanning vibrating electrode technique (SVET) is particularly useful for<br />

peculiar systems like cut edges <strong>of</strong> coil-coated steel, which combine close contact<br />

between anode and cathode with very thin electrodes, resulting in high gradients <strong>of</strong> pH<br />

and ion concentration and generating severe limitations to <strong>the</strong> classical techniques. The<br />

SVET has good characteristics for this system and has been successfully applied to cut<br />

edges [1-4]. The study deals with <strong>the</strong> potentialities <strong>of</strong> space-resolved techniques for such<br />

a system and with <strong>the</strong> effect <strong>of</strong> corrosion inhibitors in solution on <strong>the</strong> current values and<br />

distribution. The conclusions are supported by o<strong>the</strong>r techniques, namely<br />

potentiodynamic polarization and electrochemical impedance spectroscopy. Mapping <strong>of</strong><br />

<strong>the</strong> ionic currents reveals that <strong>the</strong> cathode shifts away from <strong>the</strong> anode as zinc corrosion<br />

products precipitate at <strong>the</strong> location <strong>of</strong> <strong>the</strong> peak cathodic current. The presence <strong>of</strong><br />

different inhibitors leads to different results, depending on <strong>the</strong> efficiency and<br />

mechanism. Sodium phosphate inhibits corrosion at <strong>the</strong> cut edge by precipitation <strong>of</strong> zinc<br />

phosphate clusters with barrier properties, whereas benzotriazole can under some<br />

circumstances cause loss <strong>of</strong> cathodic protection.<br />

Acknowledgements: The collaborations <strong>of</strong> Juliana Custódio and <strong>of</strong> Dr. João Fernandes are greatly<br />

acknowledged. The research was partly sponsored by <strong>the</strong> European Research Fund for Coal and<br />

Steel (contract RFS-CR-04021).<br />

References:<br />

[1] F.Zou, H.S.Isaacs, D.Thierry, Corrosion Science, 2000, 42, 1149.<br />

[2] K. Ogle, S. Morel and J.Jacquet, J.Electrochem. Soc., 2006, 153(1), B1.<br />

[3] A.M. Simões, J. Torres, R. Picciochi, J.C.S. Fernandes, Electrochim. Acta 2009, 54, 3857.<br />

[4] J.V. Custódio, S.M.L. Agostinho, A.M.P. Simões, Electrochim. Acta 2010, doi:10.1016/<br />

j.electacta.2010.03.072.<br />

September, 811, 2010. ISEL - Lisbon 49


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O E 01<br />

<strong>Electrochemistry</strong> <strong>of</strong> Push-Pull compounds based on<br />

Quinoline-N-Oxide<br />

C. Capel Ferrón a,b , B. Vercelli b , G. Zotti b ,<br />

J. M. Montenegro c , E. Pérez Inestrosa c , V. Hernández a , J. T. López Navarrete a<br />

a<br />

Department <strong>of</strong> Physical Chemistry, Málaga University, 29071 Málaga (Spain)<br />

b<br />

Institute for Energetics and Interphases-IENI CNR, C.so Stati Uniti, 4, 35127 Padova (Italy)<br />

c<br />

Department <strong>of</strong> Organic Chemistry, Málaga University, 29071 Málaga (Spain)<br />

capel@uma.es<br />

Dipolar push-pull chromophores are currently <strong>the</strong> subject <strong>of</strong> great interest for <strong>the</strong>ir use in<br />

photonic devices and represent <strong>the</strong> widest class <strong>of</strong> organic compounds investigated for<br />

<strong>the</strong>ir nonlinear optical (NLO) properties [1] and rectifying behaviour in molecular<br />

electronics. [2]<br />

Push-pull NLO systems are basically constituted by an electron-donor (D) and an<br />

electron-acceptor (A) group interacting though a -conjugated spacer (S) (D-S-A<br />

molecules). These systems constitute <strong>the</strong> way to achieve an efficient charge<br />

redistribution from <strong>the</strong> donor to <strong>the</strong> acceptor end groups.<br />

Here we consider a series <strong>of</strong> D-S-A molecules based on quinoline-N-oxide (A) moieties<br />

The UV-Vis absorption spectra in acetonitrile <strong>of</strong> 1-3 upon addition <strong>of</strong> acid (HClO 4 )<br />

increase in intensity and maxima are largely batochromically shifted, due to protonation<br />

<strong>of</strong> <strong>the</strong> N-oxide moiety which increases its acceptor ability. Fur<strong>the</strong>r addition <strong>of</strong> HClO 4 to<br />

solutions <strong>of</strong> 2 and 3 causes a subsequent hypsochromic shift due to <strong>the</strong> protonation <strong>of</strong><br />

<strong>the</strong> methoxy or dimethylamino electron-donor groups.<br />

The reduction potential <strong>of</strong> aromatic N-oxides is known to be strongly pH-dependent,<br />

reduction being facilitated under acidic conditions and <strong>the</strong> protonated N-oxide becoming<br />

a much better electron acceptor. In this regard, we have investigated <strong>the</strong><br />

electrochemistry <strong>of</strong> both <strong>the</strong> neutral and protonated forms <strong>of</strong> all <strong>the</strong>se D-S-A<br />

chromophores, toge<strong>the</strong>r with <strong>the</strong> complexation <strong>of</strong> 3 with a Lewis acid like zinc chloride.<br />

References<br />

[1] Prasad, P. N.; Wiliams, D. J. Introduction to Nonlinear Optical Effects in MolecVles and<br />

Polymers; Wiley: New York, 1991<br />

[2] (a) Ge<strong>of</strong>frey J. Ashwell,* Wayne D. Tyrrell, Anne J. Whittam, J.Am.Chem. Soc. 2004, 126,<br />

7102; (b) Ge<strong>of</strong>frey J. Ashwell, Anna Chwialkowska, Chem. Commun., 2006, 1404.<br />

September, 811, 2010. ISEL - Lisbon 50


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O E 02<br />

Electrochemical, Thermodynamic and K inetic Studies <strong>of</strong> <strong>the</strong><br />

Acylated Cyanoimido-Complexes<br />

trans- Mo(N C N){N C N C(O)R}(dppe) 2 Cl<br />

Elisabete C.B.A. Alegria, a,b M. Fátima C. Guedes da Silva, b,c Maxim L.<br />

Kuznetsov, b Luísa M.D.R.S. Martins, a,b Armando J.L. Pombeiro b<br />

a Área Departamental de Engenharia Química, ISEL, R. Conselheiro Emídio Navarro,<br />

1959-007 Lisbon, Portugal<br />

b Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, TU Lisbon, Av. Rovisco<br />

Pais, 1049001 Lisbon, Portugal<br />

c Universidade Lusófona de Humanidades e Tecnologias, ULHT Lisbon, Av. do Campo Grande,<br />

376, 1749-024 Lisbon, Portugal<br />

ebastos@deq.isel.ipl.pt<br />

The electrochemical behaviour <strong>of</strong> <strong>the</strong> complexes trans-<br />

Mo(NCN){NCNC(O)R}(dppe) 2 Cl (R = Me, Et and Ph) (denoted by A + ) has been<br />

investigated by cyclic voltammetry (CV) and controlled potential electrolysis (CPE) in<br />

aprotic medium, at a Pt electrode. These complexes exhibit, apart from a partially<br />

reversible oxidation attributed to <strong>the</strong> Mo(IV) to Mo(V) oxidation, a first partially<br />

reversible reduction (A + to A 0 ) process which involves a electron-transfer-induced<br />

rearrangement according to <strong>the</strong> indicated ECEC square-type Scheme (Figure). Digital<br />

simulation <strong>of</strong> <strong>the</strong> cyclic voltammetric data, at a range <strong>of</strong> scan rates, allows to estimate<br />

<strong>the</strong> corresponding equilibrium and rate constants. Theoretical calculations were also<br />

performed on attempting to identify <strong>the</strong> electrochemically generated species B.<br />

A +<br />

e<br />

A<br />

k2<br />

K 1 = k 1 / k -1<br />

k-2<br />

k -1 k 1<br />

K 2 = k 2 / k -2<br />

B +<br />

- e<br />

B<br />

Acknowledgments: This work has been partially supported by <strong>the</strong> IPL/41/2003 project, <strong>the</strong><br />

Fundação para a Ciência e Tecnologia (F CT), <strong>the</strong> POCTI (F EDER funded) and <strong>the</strong> PRODEP<br />

programmes.<br />

References<br />

1 S.M.P.R.M. Cunha, M.F.C. Guedes da Silva, A.J.L. Pombeiro, J. Chem. Soc., Dalton Trans.,<br />

2002, 1791<br />

2 A.J.L. Pombeiro, M.F.C. Guedes da Silva, M.A.N.D.A. Lemos, Coord. Chem Rev., 2001, 219.<br />

[3] M.L. Kuznetsov, A.J.L. Pombeiro, J. Chem. Soc., Dalton Trans., 2003, 738.<br />

September, 811, 2010. ISEL - Lisbon 51


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O E 03<br />

Potentiometric Determination <strong>of</strong> Copper with a New<br />

Selective Electrode<br />

Maximilian N. Kopylovich, a K amran T. Mahmudov, a Matti Haukka, b<br />

Konstantin V. Luzyanin, a Armando J. L. Pombeiro a<br />

a Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, TU Lisbon,<br />

Av. Rovisco Pais, 1049001 Lisbon, Portugal<br />

b University <strong>of</strong> Joensuu, Department <strong>of</strong> Chemistry, P.O. Box 111, FIN-80101, Joensuu, Finland<br />

kamran_chem@mail.ru<br />

A new azoderivative <strong>of</strong> benzoylacetone, namely 1-phenyl-2-(2-<br />

hydroxyphenylhydrazo)butane-1,3-dione (H 2 L), was syn<strong>the</strong>sized and shown to exist in<br />

solution as a mixture <strong>of</strong> enol-azo and hydrazo tautomeric forms, <strong>the</strong> latter being<br />

promoted by a decrease in temperature and an increase in solvent polarity. A copper(II)<br />

complex with H 2 L was isolated in <strong>the</strong> solid state and found to be <strong>the</strong> polymer [Cu 2 (-<br />

L) 2 ] n with a binuclear core. The dissociation constants <strong>of</strong> H 2 L (pK 1 =5.98±0.04,<br />

pK 2 =9.72±0.03) and <strong>the</strong> stability constants <strong>of</strong> its copper(II) complex (log 1 =11.010.07,<br />

log 2 =20.190.08) were determined.<br />

A new copper-selective PVC membrane electrode with H 2 L as a carrier was<br />

elaborated and its composition was optimized. This electrode has a detection limit <strong>of</strong><br />

6.30×10 M Cu(II) at pH 4.0 with response time 10 s and displays a linear EMF vs.<br />

log[Cu 2+ ] response over <strong>the</strong> concentration range 2.0×10 M Cu(II) with a<br />

0, and good<br />

selectivity over a wide range <strong>of</strong> metal ions (e.g. Na + , K + , Ba 2+ , Ca 2+ , Zn 2+ , Cd 2+ , Co 2+ ,<br />

Mn 2+ , Ni 2+ , Fe 2+ , Al 3+ ). The proposed sensor shows better characteristics than most <strong>of</strong><br />

its, response time and<br />

selectivity over o<strong>the</strong>r metal ions.<br />

A procedure for <strong>the</strong> determination <strong>of</strong> copper(II) in zinc, aluminum and nickel<br />

based alloys was also developed showing its high selectivity, sensitivity and<br />

reproducibility. Thus, <strong>the</strong> established method can be used in routine determination <strong>of</strong><br />

copper in a diversity <strong>of</strong> objects with environmental, biological, medical or industrial<br />

significance without need for preconcentration or pretreatment.<br />

Acknowledgements: This work has been partially supported by <strong>the</strong> Foundation for Science and<br />

<br />

References<br />

[1] Z. Bazooka, Analyst, 1988, 113, 1803.<br />

[2] A. Abbaspur, M.A. Kamyabi, Anal. Chim. Acta, 2002, 455, 225.<br />

[3] L.P. Singh, J.M. Bhatnagar, Talanta 64, 2004, 313.<br />

September, 811, 2010. ISEL - Lisbon 52


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society O E 04<br />

Redox Properties <strong>of</strong> Cu(I) Camphor Hydrazone Complexes<br />

M. Fernanda N.N. Carvalho, Tiago. A. Fernandes, Adelino M. Galvão<br />

CQE, Complexo I, Instituto Superior Técnico, Technical University <strong>of</strong> Lisbon,<br />

Av. Rovisco Pais 1049-001 Lisboa, Portugal<br />

fcarvalho@ist.utl.pt<br />

Aiming at get an insight into <strong>the</strong> redox properties <strong>of</strong> Cu(I) camphor hydrazone<br />

compounds we studied <strong>the</strong> electrochemical behavior <strong>of</strong> <strong>the</strong> one-dimensional<br />

coordination polymers [{CuX} 2 (YNC 10 H 14 O)] n (X=Cl: Y=NMe 2 1a; Y=NHMe 1b,<br />

Y=NH 2 1c; X=Br: Y=NH 2 2c) [1] and dimers [Cu(YNC 10 H 14 -X)] (X=Cl: Y=NMe 2<br />

3a; Y=NHMe 3b; X=Br: Y=NMe 2 4a; Y=NHMe 4b) [2] by cyclic voltammetry and<br />

controlled potential electrolysis (CPE).<br />

As a general trend <strong>the</strong> camphor hydrazone Cu(I) complexes display one cathodic and<br />

one anodic processes (Table 1). The cathodic processes occur at potential values in <strong>the</strong><br />

range <strong>of</strong> <strong>the</strong> corresponding free ligand suggesting a ligand based process.<br />

Table 1 - Cyclic voltammetry data a for complexes [{CuX} 2 (YNC 10 H 14 O)] n and [Cu(YNC 10 H 14 -X)]<br />

E ½ red (V)<br />

E ½ ox (V)<br />

X Y Polymer Dimer Polymer Dimer<br />

Cl NMe 2 -2,04 -2,07 0.61 0.60<br />

Cl NHMe -2.12 b, d -2.18 b,d 0.58 0.62<br />

Cl NH 2<br />

c<br />

0.63 <br />

Br NMe 2 -2,09 0.65<br />

Br NHMe -2.23 b,d 0.67<br />

Br NH 2 -1,96 d 0.62 <br />

a<br />

Pt wire as electrode and [NBu 4 ](BF 4 ] (0.2M) in THF using as electrolyte. Values measured in Volt (± 10 mV). b<br />

Irreversible wave. c Not observed within <strong>the</strong> potential range available. d Ano<strong>the</strong>r cathodic wave is observed at<br />

lower potential.<br />

The anodic processes are metal based involving transfer <strong>of</strong> two electrons per mole in <strong>the</strong><br />

dimer species. CPE performed at <strong>the</strong> potential <strong>of</strong> <strong>the</strong> anodic process in coordination<br />

polymers is masked by chemical reactivity.<br />

Acknowledgments: To Fundação para a Ciência e Tecnologia (F CT) for financial support to<br />

Project PPCDT 58119/QUI/2004 and a PhD grant to T.A. Fernandes (SFRH/BD/48331/2008).<br />

References<br />

[1] M.F.N.N. Carvalho, T.A. Fernandes, A.M. Galvão, H.-A. Krug von Nidda, M.A.P. Sampaio,<br />

Inorganica Chimica Acta, 2010, 363, 7176.<br />

[2] M.F.N.N. Carvalho, M.T. Duarte, T.A. Fernandes, A.M. Galvão, A. M. Botelho do Rego,<br />

unpublished work.<br />

September, 811, 2010. ISEL - Lisbon 53


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Poster Communications<br />

September, 811, 2010. ISEL - Lisbon 55


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PA 01<br />

Nickel Speciation in <strong>the</strong> Xylem Sap <strong>of</strong> <strong>the</strong> Hyperaccumulator<br />

Alyssum serpyllifolium ssp. lusitanicum G rowing on Serpentine<br />

Soils <strong>of</strong> Nor<strong>the</strong>ast Portugal<br />

Sheila Alves 1 , Cristina Nabais 2 , Maria de Lurdes Simões Gonçalves 1 ,<br />

Margarida M. Correia dos Santos 1<br />

1 Centro de Química Estrutural, IST, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.<br />

2 Centro de Ecologia Funcional, FCT, Universidade de Coimbra, 3000 Coimbra, Portugal<br />

sheila@ist.utl.pt<br />

Due to <strong>the</strong> dynamic nature <strong>of</strong> voltammetric methods, it is possible to have knowledge on<br />

<strong>the</strong> kinetics <strong>of</strong> <strong>the</strong> interconversion <strong>of</strong> <strong>the</strong> species present in solution and also to obtain<br />

information regarding <strong>the</strong> concentration <strong>of</strong> those species [1]. As previously reported,<br />

Square Wave (SW) and Cyclic Voltammetry proved to be efficient tools in a speciation<br />

study <strong>of</strong> Ni in <strong>the</strong> xylem sap <strong>of</strong> Quercus ilex, vulgar holly oak [2,3].<br />

In this work SW Voltammetry was used to provide a model for Ni speciation in <strong>the</strong><br />

xylem sap <strong>of</strong> Alyssum serpyllifolium Desf. ssp. lusitanicum Dudley & Silva, a Nihyperaccumulator<br />

endemic to <strong>the</strong> serpentine soils <strong>of</strong> nor<strong>the</strong>ast Portugal.<br />

The xylem sap was collected from plants growing in its native habitat and characterized<br />

in terms <strong>of</strong> Ni, Ca and Mg content using Flame atomic Absorption Spectrometry [4] and<br />

carboxylic and amino acids content using Reverse Phase High Performance Liquid<br />

Chromatography with Diode Array Detection (RP-HPLC-DAD) [5].<br />

Thereafter Ni speciation was study in model and<br />

real solutions <strong>of</strong> xylem sap by SW voltammetric<br />

titrations at 0.10 M ionic strength and pH = 7.0<br />

(figure 1).<br />

The results showed that Ni transport in <strong>the</strong> xylem<br />

sap occurs mostly as a free hydrated cation<br />

(about 70%). Citric acid is <strong>the</strong> main Ni<br />

complexing ligand (18% <strong>of</strong> total Ni). Oxalic,<br />

aspartic, malic and malonic acids complexes<br />

account for approximately 5, 4, 2 and 2% <strong>of</strong> total<br />

Ni, respectively. The coordination to o<strong>the</strong>r amino<br />

acids is negligible [5].<br />

Acknowledgments: This work was co-financed by<br />

POCI 2010 and by <strong>the</strong> European Social Fund. Sheila 50<br />

Alves acknowledges F CT for PhD Grant SFRH/BD/21597/2005.<br />

[Ni] Free 10 6 M<br />

Figure 1. SW voltammograms <strong>of</strong> <strong>the</strong> titration<br />

<strong>of</strong> A. serpyllifolium ssp. lusitanicum xylem<br />

sap diluted solution with nickel<br />

E / V vs. Ag/AgCl<br />

-1.5 -1.3 -1.1 -0.9<br />

40<br />

50<br />

References<br />

[Ni]<br />

0<br />

[1] Mota A.M.; Correia dos Santos M.M. In: Metal Speciation 30<br />

0 and 50 Bioavailability 100 150 in Aquatic<br />

[Ni] t, 10 6 M<br />

Systems (eds: Turner D.; Tessier A.), Wiley, 1995, pp. 205-258. [2] Correia dos Santos, M.M.;<br />

20<br />

Santos, M.M.; Alves, S.; Simões Gonçalves, M.L. Electroanalysis, 2007, 19, 2351. [4] Alves, S.;<br />

10<br />

Gonçalves, M.L.S.; Correia dos Santos, M.M. Phytochemical Analysis, 2009, 20, 365. [5] Alves, B<br />

[Ni] Free 10<br />

6 M<br />

A<br />

Incre<br />

asin<br />

Alves, S.; Simões Gonçalves, M.L.; Nabais C. Electroanalysis, 2006, 18, 814. [3] Correia dos<br />

S.; Nabais C.; Gonçalves, M.L.S.; Correia dos Santos, M.M. Submitted for publication.<br />

150<br />

100<br />

g<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-120<br />

-140<br />

0<br />

0 10 20 30 40 50<br />

[Ni] t , 10 6 M<br />

I / nA<br />

September, 811, 2010. ISEL - Lisbon 56


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PA 02<br />

Electrodegradation <strong>of</strong> 4-aminonaphtalene-1-sulfonic acid with<br />

BDD and Ti/Pt/PbO 2 Anodes<br />

A.S. Rodrigues, M.J. Pacheco, L. Ciríaco, A. Lopes<br />

UMTP and Department <strong>of</strong> Chemistry, University <strong>of</strong> Beira Interior, 6201-001 Covilhã, Portugal<br />

asfrodrigues@hotmail.com<br />

Naphthalene sulfonic amines are very toxic pollutants released to <strong>the</strong> environment in <strong>the</strong><br />

effluents <strong>of</strong> several industries, especially in <strong>the</strong> textile industry. Many <strong>of</strong> this type <strong>of</strong><br />

pollutants are biorefractory and electrochemical processes, such as anodic oxidation<br />

using anodes with high oxygen overpotential, like boron doped diamond (BDD) and<br />

Ti/Pt/PbO 2 , have become an alternative method to achieve <strong>the</strong>ir degradation [1]. Both<br />

anodes have high oxidation power and are able to generate highly reactive physisorbed<br />

hydroxyl radicals.<br />

The aim <strong>of</strong> this work was to study <strong>the</strong> performance <strong>of</strong> <strong>the</strong> above mentioned anodes,<br />

BDD and Ti/Pt/PbO 2 , in <strong>the</strong> anodic oxidation <strong>of</strong> 4-aminonaphtalene-1-sulfonic acid,<br />

using as supporting electrolyte two different salts: NaCl and Na 2 SO 4 .<br />

Ti/Pt/PbO 2 electrodes, with geometric area <strong>of</strong> 10 cm 2 , were prepared by <strong>the</strong>rmal<br />

electrochemical method [2]. The BDD electrode was purchased from Adamant<br />

Technologies/CSEM. The electrochemical assays were performed in galvanostatic<br />

mode, at 300 A m -2 imposed current density. The electrochemical assays were run in an<br />

electrochemical cell, with a BDD or Ti/Pt/PbO 2 anode, working in batch mode.<br />

Degradation <strong>of</strong> 4-aminonaphtalene-1-sulfonic acid was followed by UV-VIS<br />

spectrophotometry, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC)<br />

determinations.<br />

When <strong>the</strong> performance <strong>of</strong> both anode materials is compared, in <strong>the</strong> tests run with NaCl<br />

as electrolyte, it can be concluded that <strong>the</strong> mineralization is always higher for <strong>the</strong> BDD<br />

anode, since after 6 h assay TOC removal was 61% for this electrode and 21% for <strong>the</strong><br />

Ti/Pt/PbO 2 . However, in what concerns COD removals, <strong>the</strong> difference between <strong>the</strong><br />

<br />

BDD and 90% for those performed with Ti/Pt/PbO 2 .<br />

The analysis <strong>of</strong> data obtained with chlorides suggest that COD removal occurs in <strong>the</strong><br />

first hours <strong>of</strong> electrolysis, while, with sulfates, removal occurs gradually throughout <strong>the</strong><br />

test. In spite <strong>of</strong> this different behavior, <strong>the</strong> final COD removal, after 6 h, is only slightly<br />

dependent on <strong>the</strong> electrolyte.<br />

Acknowledgments: The financial support <strong>of</strong> Fundação para a Ciência e a Tecnologia, F CT, BII-<br />

12/UMTP/UBI/2009.<br />

References<br />

[1] Ciríaco L.; Anjo C.; Correia J.; Pacheco M.J.; Lopes A. Electrochimica Acta, 2009, 54, 1464.<br />

[2] Andrade L.S.; Rutuolo L.A.M.; Rocha-Filho R.C.; Bocchi N.; Biaggio S.R.; Iniesta J.; Garcia-<br />

Garcia V.; Montiel V. Chemosphere, 2007, 66, 2035.<br />

September, 811, 2010. ISEL - Lisbon 57


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PA 03<br />

Influence <strong>of</strong> hydrodynamic conditions on <strong>the</strong> anodic<br />

degradation <strong>of</strong> phenol on BDD<br />

S. Sobreira, L. Ciríaco, M.J. Pacheco, A. Lopes<br />

UMTP and Department <strong>of</strong> Chemistry, University <strong>of</strong> Beira Interior, 6201-001 Covilhã, Portugal<br />

analopes@ubi.pt<br />

The anodic oxidation <strong>of</strong> effluents containing organic pollutants is an alternative that has<br />

received great attention in <strong>the</strong> last years due to its interesting characteristics, since it is a<br />

clean process, can operate at low temperature and, in most cases, without adding any<br />

reagent and without sludge formation. Recently, an important development in <strong>the</strong>se<br />

processes took place with <strong>the</strong> use <strong>of</strong> boron-doped diamond (BDD) as anode material for<br />

<strong>the</strong> oxidation <strong>of</strong> all kind <strong>of</strong> organic pollutants [1].<br />

The objective <strong>of</strong> this work was to study <strong>the</strong> influence <strong>of</strong> hydrodynamic conditions on <strong>the</strong><br />

mass transfer process during <strong>the</strong> anodic oxidation <strong>of</strong> a model compound, phenol, using<br />

BDD as anode material.<br />

The electrochemical assays were performed in galvanostatic mode, at an imposed<br />

current density <strong>of</strong> 100 A m -2 . Two sets <strong>of</strong> electrochemical assays were run, using two<br />

different experimental set-ups: an electrochemical cell, with a BDD anode <strong>of</strong> 17.5 cm 2<br />

area, working in batch mode, at several stirring rates, and a DiaCel 196PVDF, with two<br />

monopol BDD electrodes, with 70 cm 2 area, working in batch with re-circulation mode,<br />

at several different flow rates. Degradation <strong>of</strong> phenol was followed by Chemical Oxygen<br />

Demand (COD) determinations, Total Organic Carbon (TOC) tests and UV-VIS<br />

spectrophotometry measurements. The experimental results have demonstrated that an<br />

increase in <strong>the</strong> stirring rate or in <strong>the</strong> recirculation flow rate leads to an increase in <strong>the</strong><br />

COD, TOC and absorbance removal rates.<br />

The obtained results have shown that <strong>the</strong> turbulence near <strong>the</strong> electrode surface is a<br />

very important parameter and its control can be used to increase <strong>the</strong> degradation rate,<br />

with equal energy consumption, thus decreasing energetic costs for <strong>the</strong> anodic oxidation<br />

<strong>of</strong> organic pollutants.<br />

Acknowledgments: The financial support <strong>of</strong> Fundação para a Ciência e a Tecnologia, F CT,<br />

PDCT/AMB/59392/2004, and Adamant Technologies are gratefully acknowledged.<br />

References<br />

[1] Panizza M.; Cerisola G. Electrochim. Acta, 2005, 51, 191.<br />

September, 811, 2010. ISEL - Lisbon 58


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PA 04<br />

Recuperação de Metais em Solução<br />

C. Ascensão, L. Ciríaco, M.J. Pacheco, A. Lopes<br />

UMTP e Departamento de Química, Universidade da Beira Interior<br />

lciriaco@ubi.pt<br />

A aplicação de técnicas electroquímicas na área do ambiente é cada vez mais uma<br />

realidade. Estas técnicas apresentam uma grande versatilidade e podem ser aplicadas na<br />

remoção de poluentes sólidos, líquidos e gasosos.<br />

Uma das classes de poluentes mais perigosos é a dos metais pesados. Existem vários<br />

métodos para a sua separação e/ou recuperação, alguns usando a combinação de várias<br />

técnicas como processos de membranas, electrólise ou precipitação, podendo os iões<br />

metálicos serem recuperados no estado metálico ou na forma de óxidos ou hidróxidos,<br />

para posteriormente serem reutilizados, recuperando assim o seu valor comercial.<br />

Muitos iões metálicos em solução podem ser recuperados na forma metálica por redução<br />

num cátodo sob condições específicas, sendo exemplos a prata e o cobre, cujo valor<br />

económico é significativo, e o cádmio e o chumbo, cuja toxicidade é elevada [1] e que<br />

são usados em pilhas comuns e baterias de automóveis. Outros metais, como o níquel e<br />

o crómio, são geralmente recuperados por precipitação dos respectivos hidróxidos. O<br />

chumbo pode ser facilmente recuperado electroquimicamente, tanto na forma metálica,<br />

sobre o cátodo, como na forma de óxido, sobre o ânodo [2], ambos produtos úteis.<br />

Pretende-se, neste trabalho, concentrar os metais existentes em amostras multicomponentes<br />

e, se possível, reduzi-los electroquimicamente à forma metálica ou<br />

precipitá-los na forma de hidróxidos. Na primeira parte deste estudo foram realizadas<br />

reduções de alguns iões metálicos partindo de soluções modelo, contendo um ou vários<br />

metais. Estudou-se a redução de Cu 2+ , Cd 2+ , Pb 2+ e Zn 2+ , determinando-se a<br />

percentagem de recuperação do metal consoante o potencial aplicado, quer por<br />

determinação da massa depositada sobre os eléctrodos quer por medidas da<br />

concentração do metal em solução ao longo dos ensaios, recorrendo à análise das<br />

soluções por espectroscopia de absorção atómica. Usaram-se soluções de sulfatos e/ou<br />

cloretos dos metais acidificadas a pH 3,5, aplicando-se diferentes potenciais durante 3 h.<br />

Os ensaios foram realizados numa célula de um compartimento, com uma placa de aço a<br />

funcionar como cátodo, entre 2 placas de platina, que funcionavam como ânodo, e o<br />

eléctrodo de Ag/AgCl,KClsat, como eléctrodo de referência. Para o chumbo realizaramse<br />

também ensaios em células de 2 compartimentos. Os melhores resultados de<br />

recuperação dos metais para as condições estudadas foram: Cu 2+ 99,5 % a E= 0,1 V;<br />

Cd 2+ 89,8 % a E= 0,8 V; Pb 2+ 99,6 % a E= 0,8 V e Zn 2+ 37,0 % a E= 1,3 V.<br />

Agradecimentos: Fundação para a Ciência e a Tecnologia, F CT, PTDC/CTM/64856/2006 e<br />

PTDC/AAC-AMB/103112/2008<br />

Referências<br />

[1] Doulakas, L.; Novy K.; Stucki, S.;Comninellis, Ch. Electrochimica Acta, 2000, 46, 349.<br />

[2] Brandon, N.P.; Pilone D.; Kelsall, G.H.; Yin, Q. Journal <strong>of</strong> Applied <strong>Electrochemistry</strong>, 2003, 33,<br />

853.<br />

September, 811, 2010. ISEL - Lisbon 59


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PA 05<br />

The effects <strong>of</strong> lithium, potassium and cesium ions on<br />

<strong>the</strong> diffusion behaviour <strong>of</strong> caffeine in aqueous solutions<br />

Victor M.M. Lobo 1 , Cecilia I.A.V. Santos 2 , Miguel A. Esteso 2 , Marisa C.F.<br />

Barros 1 , Ana C.F. Ribeiro 1<br />

1 Department <strong>of</strong> Chemistry, University <strong>of</strong> Coimbra, 3004 - 535 Coimbra, Portugal<br />

vlobo@ci.uc.pt<br />

Caffeine is naturally occurring in some beverages and is also used as a<br />

pharmacological agent which is a central nervous system stimulant [1-3]. The<br />

interactions <strong>of</strong> metal ions with caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-<br />

dione) are <strong>of</strong> major biological interest, due to <strong>the</strong> fact <strong>the</strong>se complexes play a dominant<br />

role in many biochemical interactions [1-3]. Currently, diffusion coefficients <strong>of</strong> caffeine<br />

[4] in aqueous solutions and <strong>the</strong>ir dependence on media composition (e.g., pH, ionic<br />

strength and metal ions) have been poorly characterized, even though <strong>the</strong>se transport<br />

parameters are necessary to obtain a satisfactory understanding <strong>of</strong> <strong>the</strong> tumor/drug<br />

interactions.<br />

H 3C<br />

O<br />

N<br />

H 3C<br />

N<br />

N<br />

O<br />

N<br />

CH 3<br />

Figure 1 caffeine<br />

The present communication intends to be a contribution in filling this gap. In this<br />

work, we present ternary diffusion coefficients D 11 , D 22 , D 12 and D 21 for <strong>the</strong> ternary<br />

systems (potassium chloride/caffeine, lithium chloride/caffeine, and caesium<br />

chloride/caffeine), for <strong>the</strong> range <strong>of</strong> concentrations <strong>of</strong> each component between 0.0001 M<br />

and 0.010 M at 298.15 K, using a specially designed apparatus built for experimentally<br />

measuring diffusion coefficients based on <strong>the</strong> Taylor technique. Comparing <strong>the</strong> main<br />

coefficients D 11 and D 22 and <strong>the</strong> binary diffusion coefficients <strong>of</strong> each component, and<br />

using <strong>the</strong> values <strong>of</strong> cross coefficients D 12 and D 21 , we can take conclusions about <strong>the</strong><br />

influence <strong>of</strong> <strong>the</strong> caffeine solutes in diffusion <strong>of</strong> <strong>the</strong>se salts. Also from <strong>the</strong> ratios D 21 /D 11<br />

and D 12 / D 22, it is possible to obtain information concerning <strong>the</strong> number <strong>of</strong> moles <strong>of</strong> each<br />

component transported per mole <strong>of</strong> <strong>the</strong> o<strong>the</strong>r component driven by its own concentration<br />

gradient. We believe that our results will provide guidance for a better understanding <strong>of</strong><br />

<strong>the</strong> physicochemical behavior <strong>of</strong> <strong>the</strong>se important pharmaceutical systems in aqueous<br />

solutions.<br />

Acknowledgments: We are also grateful to Pr<strong>of</strong>. Pierandrea Lo Nostro from <strong>the</strong> Department <strong>of</strong><br />

Chemistry <strong>of</strong> University Firenze, Italy, for his valuable help <strong>of</strong> <strong>the</strong> interpretation on <strong>the</strong> diffusion<br />

coefficients <strong>of</strong> <strong>the</strong>se 3 component systems.<br />

References<br />

[1] Nafisi, S.; Shamloo, D. S.; Mohajerani, N.; Omidi, A.J. Mol. Struct. 2002, 608, 1.<br />

[2] Nafisi, S.; Monajemi, M.; Ebrahimi, S. J. Mol. Struct. 2004, 705, 35.<br />

[3] Food Chem. 2004, 84, 383.<br />

[4] Ribeiro, A. C. F.; Santos, C. I. A. V.; Lobo, V. M. M.; Cabral, A. M. T. D. P. V.; Veiga, F. J.<br />

B.; Esteso, M. A.J. Chem. Eng. Data 2009, 54, 115.<br />

September, 811, 2010. ISEL - Lisbon 60


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PA 06<br />

Improving electrocatalityc activity <strong>of</strong> LaNiO 3 coatings by<br />

deposition on foam nickel substrates<br />

C.O. Soares 1 , M. D. Carvalho 1 , M.E. Melo Jorge 1 , A. Gomes 1 , R.A.Silva 2 ,<br />

C.M. Rangel 2 , M.I. da Silva Pereira 1<br />

1 C.C.M.M., Departamento de Química e Bioquímica da Faculdade de Ciências da<br />

Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal<br />

2 Laboratório Nacional de Energia e Geologia, Paço do Lumiar 22,<br />

Fuel Cells and Hydrogen Unit, 1649-038 Lisboa, Portugal<br />

cybelle_oliveira@hotmail.com<br />

Search for new or improved electrode materials is restless in <strong>the</strong> field <strong>of</strong> power sources,<br />

namely <strong>of</strong> batteries and fuel cells. One <strong>of</strong> <strong>the</strong> challenging problems in <strong>the</strong> area is to find<br />

an effective electrode material that operates alternatively as anode and cathode and<br />

catalyses <strong>the</strong> oxygen electrochemical reactions (bifunctional oxygen electrode) [1].<br />

Perovskite type oxide materials are considered potential candidates since <strong>the</strong>y present<br />

high electrochemical stability, in strong alkaline solutions, and can catalyse oxygen<br />

evolution and reduction, simultaneously.<br />

In this work LaNiO 3 oxide was prepared by a self-combustion method using citric acid.<br />

The electrodes were prepared by coating a nickel foam support with an oxide suspension<br />

followed by a heat-treatment. Electrochemical characterization was carried out by cyclic<br />

voltammetry. The electrodes electrocatalytic activity, towards <strong>the</strong> oxygen evolution<br />

reaction (OER) in alkaline medium, has been evaluated by steady state measurements.<br />

The OER follows a first order kinetics, with respect to OH - concentration, with Tafel<br />

slopes close to 60 and 120 mV for low and high overpotentials, respectively. These<br />

values are in accordance with those referred in <strong>the</strong> literature [2]. On <strong>the</strong> o<strong>the</strong>r hand <strong>the</strong><br />

recorded apparent current densities are higher than those usually reported for <strong>the</strong> same<br />

oxide material. This result indicates that <strong>the</strong> increase on <strong>the</strong> electrode activity is mostly<br />

related to geometric factors, what can be associated with a high electrode/electrolyte<br />

contact area provided by <strong>the</strong> foam nickel substrate, what is in accordance with <strong>the</strong><br />

roughness factor <strong>of</strong> 3463±250 estimated for <strong>the</strong> oxide coating.<br />

Acknowledgements: This work is partially financed by Fundação para a Ciência e Tecnologia<br />

(F CT), under contract nº PTDC/CTM/102545/2008<br />

References<br />

[1] Jorissen, L. J. Power Sources, 2006, 155, 23.<br />

[2]Singh, R. N.; Tiwari, S. K.; Sharma T.; Chartier P.; Koenig J. F. J New Mat for Electrochem<br />

Systems, 1999, 2, 65.<br />

September, 811, 2010. ISEL - Lisbon 61


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PA 07<br />

Electrochemical treatment <strong>of</strong> <strong>the</strong> dye C.I. Reactive Yellow<br />

138:1 in a filter press reactor<br />

Ana Isabel del Río, Enrique Duval, Mª José Benimeli, Javier Molina, José<br />

Bonastre, Francisco Cases<br />

1 Departamento de Ingeniería Textil y Papelera, EPS de Alcoy, Universidad Politécnica de<br />

Valencia, Plaza Ferrándiz y Carbonell s/n, 03801 Alcoy, Spain<br />

delgaran@doctor.upv.es<br />

The electrochemical behaviour <strong>of</strong> C.I. Reactive Yellow 138:1 was investigated. This dye<br />

was used as a commercial sample <strong>of</strong> a bifunctional reactive dyes containing<br />

monochlorotriazinyl group as reactive group. It was selected because it is a<br />

representative bifunctional dye. In general, reactive dyes produce an unusable<br />

hydrolyzed form that can amount to as much as 15-40% <strong>of</strong> <strong>the</strong> total applied [1].<br />

The concentration studied was 1.4 g L -1 . This value was selected because it corresponds<br />

to a typical dye concentration in a real wastewater. Besides, Na 2 SO 4 was employed as<br />

background electrolyte. The electrochemical treatment was carried out by means <strong>of</strong><br />

oxido-reduction, oxidation and reduction processes in a filter press reactor at different<br />

current densities. Stainless steel was used as cathode and Ti/SnO 2 -Sb-Pt as anode. UV-<br />

Visible spectroscopy analyses revealed a complete decolourisation when oxidoreduction<br />

and oxidation were carried out. It is also important to highlight that <strong>the</strong><br />

organic matter present in solution was not completely degraded since some bands were<br />

observed in <strong>the</strong> UV region after <strong>the</strong> electrochemical treatments. Moreover, HPLC<br />

technique was employed to monitor all <strong>the</strong> electrolyses and <strong>the</strong> decolourisation rate was<br />

established for all processes. The oxido-reduction processes decoloured <strong>the</strong> dye solution<br />

more quickly. In addition to this, it was demonstrated that all <strong>the</strong> electrochemical<br />

processes followed a pseudo-first order kinetic. For oxido-reduction and oxidation<br />

processes, COD removal was always higher than TOC removals. This implies <strong>the</strong><br />

production <strong>of</strong> oxidised intermediate species that could not be completely degraded.<br />

From COD and TOC measurements, different parameters such as Average Oxidation<br />

State (AOS), Carbon Oxidation State (COS), Average Current Efficiency (ACE) and <strong>the</strong><br />

ratio between <strong>the</strong> Average Current Efficiency and <strong>the</strong> initial value <strong>of</strong> COD (ACE/COD 0 )<br />

were calculated. Finally, BOD 5 assays were done in order to evaluate <strong>the</strong><br />

biodegradability <strong>of</strong> <strong>the</strong> dye solution after all <strong>the</strong> electrochemical treatments.<br />

Acknowledgments: Authors thank to <strong>the</strong> Spanish Ministerio de Ciencia y Tecnología and European<br />

Union Funds (F EDER) (contract CTM2007-66570-C02-02) and Universidad Politécnica de<br />

Valencia (Programa de apoyo a la investigación y desarrollo de la UPV (PAID-05-08)) for <strong>the</strong><br />

financial support. J. Molina and A.I. del Río are grateful <br />

(Generalitat Valenciana) and <strong>the</strong> Spanish Ministerio de Ciencia y Tecnología respectively for <strong>the</strong><br />

FPI fellowship.<br />

References<br />

[1] Allen R.L.M., Colour Chemistry. Nelson & Sons, London, 1971.<br />

September, 811, 2010. ISEL - Lisbon 62


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PA 08<br />

Síntesis electroquímica de nanopartículas de plata y su<br />

potencial uso como agente antimicrobiano<br />

Felipe Hernández-Luis 1 , Mario V. Vázquez 2 , Lucas Blandón 2 ,<br />

Gelmy Ciro 3 , Dora M. Benjumea 3<br />

1 Departamento de Química Física, Universidad de La Laguna, Tenerife, España<br />

2 Grupo de Electroquímica, Instituto de Química, Universidad de Antioquia, Medellín, Colombia<br />

3 Programa Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín, Colombia<br />

ffhelu@ull.es<br />

Las nanopartículas de plata (AgNP), forman parte de las llamadas nanopartículas de<br />

metales nobles. Pueden ser usadas como agentes antibacterianos, como materiales<br />

criogénicos superconductores, o como biosensores, entre otras aplicaciones. La<br />

eficiencia de las AgNP en estas áreas está relacionada con el tamaño de partícula y con<br />

la morfología de las mismas.<br />

Generalmente, el tamaño y la morfología de las nanopartículas se controlan ajustando<br />

las condiciones de reacción según el método de síntesis utilizado [1]. Se han ensayado<br />

diversos métodos de fabricación de nanopartículas metálicas como por ejemplo:<br />

molienda mecánica, pirólisis por pulverización, precipitación química y deposición por<br />

vapor [2]. En los últimos años se han desarrollado nuevos métodos de síntesis que<br />

utilizan reductores fuertes, descomposición térmica, ablación por láser, irradiación con<br />

microondas, síntesis sonoquímica y métodos electroquímicos. Para la síntesis<br />

electroquímica pueden emplearse distintas vías de preparación [3-4].<br />

La aplicación de nanopartículas de plata, como agentes de inhibición del crecimiento<br />

antimicrobiano, ha sido ensayada con distintas especies de acuerdo a lo reportado en<br />

varias publicaciones recientes [5].<br />

En este trabajo se presentan algunos resultados preliminares obtenidos con<br />

nanopartículas sintetizadas electroquímicamente, utilizando distintas condiciones<br />

experimentales. El análisis de tamaño de partícula muestra una distribución bastante<br />

buena, aunque susceptible de ser mejorada variando algunos procedimientos<br />

experimentales. Estas nanopartículas fueron analizadas como inhibidoras del<br />

crecimiento de Pseudomona Aeruginosa y de Escherichia Coli, empleando el método<br />

propuesto por Abate y colbs. [6]. Los primeros resultados muestran una concentración<br />

mínima inhibitoria de 5 ppm de AgNP.<br />

References<br />

[1] Zhang, W.; Qiao, X; Chen, J. Mater. Sci. Eng., B, 2007, 142, 1.<br />

[2] Kurihara, L.K.; Chow, G.M.; Schoen, P.E. Nanostruct. Mater. 1995, 5, 607.<br />

[3] Starowics, M.; Stypula, B.; Banás.J. Electrochem. Commun. 2006, 8, 227.<br />

[4] Khaydarov, R.A.; Khaydarov, R.R.; Gapurova, O.; Estrin, Y.; Scheper, T. J. Nanopart. Res.<br />

2009, 11, 1193.<br />

[5] Sondi, I.; Salopek-Sondi, B. J. Colloid Interface Sci. 2004, 275, 177.<br />

[6] Abate, G; Mshana R.N.; Miorner, H.. Int. J. Tuberc. Lung. Dis. 1998, 2, 1011.<br />

September, 811, 2010. ISEL - Lisbon 63


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PA 09<br />

-<br />

remediación de suelos contaminados<br />

Felipe Hernández-Luis 1 , Mario V. Vázquez 2 , Lucas Blandón 2 ,<br />

Lina García 2 , Nedher Sánchez 2<br />

1 Departamento de Química Física, Universidad de La Laguna, Tenerife, España<br />

2 Grupo de Electroquímica, Instituto de Química, Universidad de Antioquia, Medellín, Colombia<br />

ffhelu@ull.es<br />

El problema de los suelos y las aguas contaminadas requiere el continuo desarrollo de<br />

nuevas metodologías adecuadas para eliminar distintos contaminantes. La conocida<br />

técnica electrocinética de remediación de suelos (electro-remediación o electrodescontaminación)<br />

ha sido aplicada para movilizar un gran número de contaminantes<br />

orgánicos e inorgánicos [1-2]. Esta técnica electrocinética consiste básicamente en la<br />

aplicación de un campo eléctrico entre dos electrodos inertes que se encuentran en<br />

contacto con un suelo húmedo. Este campo eléctrico da origen a una serie de fenómenos<br />

de transporte [3] que propician el movimiento de sustancias cargadas y no cargadas<br />

presentes en los suelos, entre los que se destacan la migración y el flujo electroosmótico.<br />

Para el tratamiento de aguas contaminadas, un método habitual es el empleo de<br />

materiales adsorbentes [4]. Debido a las grandes cantidades disponibles, a su bajo costo<br />

y a su elevada eficacia, los absorbentes más usados son aquellos constituidos por<br />

biomasa lignocelulósica [4]. Estos materiales han mostrado una buena capacidad de<br />

adsorción de contaminantes cuando son sometidos a un pre-tratamiento químico [5]. Un<br />

ejemplo de este tipo de adsorbentes es el aserrín obtenido de distintas especies<br />

forestales. Este adsorbente ha mostrado ser muy eficaz para retener colorantes presentes<br />

de aguas residuales [6].<br />

En este trabajo se presentan algunos ensayos preliminares del tratamiento de un suelo<br />

contaminado con una disolución de colorante. Para ello se combina la técnica<br />

electrocinética de remediación con el método físico de adsorción. Con este propósito se<br />

emplea una célula convencional de electro-remediación a la que se le incorpora un<br />

<br />

electrodos se emplearon barras de grafito a las que se les aplicó un campo eléctrico<br />

constante de 24 V durante 48 h. El contaminante utilizado fue el colorante Rojo<br />

Reactivo 239, empleado habitualmente en la industria textil. Los resultados evidencian<br />

la posibilidad de movilizar dicho colorante desde el suelo para, posteriormente,<br />

inmovilizarlo sobre el tapón de aserrín.<br />

Referencias<br />

[1] Vazquez M.V.; Hernandez-Luis, F.; Lemus, M.; Arbelo C.D. Portugaliae Electrochimica Acta<br />

2004, 22, 387.<br />

[2] Reddy, K. R.; Chinthamreddy, S. Waste Manag. (Oxford) 1999, 19, 269.<br />

[3] Pomés, V.; Fernández A.; Houi, D. Trans IChemE 2002, 80, 256.<br />

[4] Sciban, M.; Radetic, B.; Kevresan, Z.; Klasnja, M. Bioresorse Technology 2007, 98, 407.<br />

[5] Larous S., Meniai H., Bencheikh M. Desalination 2005, 185, 483.<br />

[6] Sánchez, N., Tesis de Maestría, Universidad de Antioquia, 2010.<br />

September, 811, 2010. ISEL - Lisbon 64


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PA 10<br />

Electric Dreams<br />

Clementina Teixeira, Maria da Conceição Oliveira, Erik C.P. Benedicto<br />

Centro de Química Estrutural, Departamento de Engenharia Química e Biológica do Instituto<br />

Superior Técnico<br />

clementina@ist.utl.pt<br />

Following <strong>the</strong> approach <strong>of</strong> chemical microscopy, a series <strong>of</strong> reduction-oxidation<br />

<br />

10 up to 126x<br />

enabled a better understanding <strong>of</strong> <strong>the</strong>se reactions and were used to create decorative<br />

<br />

<br />

Figure 1. Growth <strong>of</strong> dendritic silver crystals from <strong>the</strong> reaction <strong>of</strong> copper with a silver<br />

nitrate 0.1 M solution.<br />

Figure 2. Growth <strong>of</strong> dendritic lead crystals from <strong>the</strong> reaction <strong>of</strong> zinc with lead nitrate<br />

0.1 M solution.<br />

Acknowledgments: Ciência Viva projects and MCT funding programs.<br />

References<br />

[1] Teixeira, C. Química, Boletim da Sociedade Portuguesa de Química, 2007, 107, 18.<br />

September, 811, 2010. ISEL - Lisbon 65


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PA 11<br />

Determinación de conductividades y viscosidades del sistema<br />

(CoCl 2 + sacarosa +água) a temperatura de 298,15 K<br />

Damien O. Costa 1 , Ana C.F. Ribeiro 2 , Cecilia I.A.V. Santos 1 , Ana C. Santos 1 ,<br />

Carmen Teijeiro 1 , Miguel A. Esteso 1*<br />

1 Departamento de Química Física, Universidad de Alcalá, 28871. Alcalá de Henares, Madrid,<br />

España<br />

2 Department <strong>of</strong> Chemistry, University <strong>of</strong> Coimbra, 3004-535 Coimbra, Portugal<br />

* autor para correspondencia, e-mail: miguel.esteso@uah.es<br />

Los hidratos de carbono y sus derivados son la fuente principal de energia<br />

alimenticia en todo el mundo. Entre ellos, los azúcares son los más utilizados para<br />

obtener energia para el funcionamiento corporal. Estos oligo-complejos, pueden afectar<br />

de forma significativa, la destrucióne de los dientes o restauraciónes dentales associadas<br />

presentes en la cavidad bucal. Los carbohidratos iran funcionar como substracto para las<br />

basterias produziren placa de acido, influenciando en la corrosión de las amalgamas. El<br />

cobalto, es un componente presente en muchas aleaciones utilizadas en estos<br />

restauraciones dentales que, por oxidación en el ambiente bucal agresivo, da lugar a la<br />

presencia en el medio de iones procendentes de este metal. Aunque la interacción entre<br />

carbohidratos y sus derivados y los iones metálicos há recebido particular atención,<br />

estudios de sus propriedades electroquímicas, como viscosidad y conductividad, seran<br />

necessários para entendermos mejor las interacciónes complejos-iónes en la corrosión<br />

ocurida en las amalgamas, sistemas para los que la informacion está en grand medida<br />

escasa o poco explorado.<br />

En esta comunicación se presentam medidas<br />

relativas a estas propriedades de transporte, viscosidad y<br />

conductividad, junto com valores de densidad, de<br />

disoluciones acuosas de cloruro de cobalto (en el rango de<br />

concentraciones molales compriendidas entre 0,0001 y<br />

0,1) en ausencia y presencia de sacarosa (concentraciones<br />

de azúcar < 0,03 molal), a la temperatura de 298,15 K.<br />

Estos datos han sido analizados en función de la fuerza<br />

iónica del medio, así como de la concentración del azúcar.<br />

Referencias<br />

1. F. Contu, B. Elsener, H. Ovni, Corrosion Sci. 47 (2005) 1863<br />

2. A. Ciszewski, M. Baraniaka, M. Urbanek-Brychczynska, Dental Mater. 23 (2007)<br />

1256<br />

3. A. C. F. Ribeiro, A. J. M. Valente, D. O. Costa, S. M. N. Simoes, R. F. P. Pereira, V.<br />

M. M. Lobo, M. A. Esteso, Electrochim. Acta 56 (2010)<br />

September, 811, 2010. ISEL - Lisbon 66


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 01<br />

Voltammetric Analysis <strong>of</strong> Sulphites in Alcoholic Beverages<br />

using Gas-Diffusion Microextraction<br />

Manuel P. C ruz, Inês M. Valente, Luís M. Gonçalves,<br />

João P. Pacheco, José A. Rodrigues, Aquiles A. Barros<br />

Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do<br />

Porto. Rua do Campo Alegre, n.º 687, 4169-007 Porto, Portugal<br />

jarodrig@fc.up.pt<br />

The purpose <strong>of</strong> this study was to develop a voltammetric methodology aiming sulphite<br />

determination using a hanging mercury drop electrode, based on prior extraction <strong>of</strong><br />

sulfur dioxide (SO 2 ) by gas-diffusion microextraction (GDME). Sulphites are widely<br />

used as preservatives in <strong>the</strong> food industry for <strong>the</strong>ir several roles including <strong>the</strong> prevention<br />

<strong>of</strong> undesirable microbial growth and oxidation processes [1]. Square-wave voltammetry<br />

(SWV) is very advantageous in <strong>the</strong> determination <strong>of</strong> sulphites since <strong>the</strong>re is a direct<br />

detection, i.e. it is <strong>the</strong> SO 2 molecule that is instrumentally measured in <strong>the</strong> electrode [2].<br />

GDME is an innovative technique that combines <strong>the</strong> advantages <strong>of</strong> membrane aided gasdiffusion<br />

with microextraction concepts [3,4]. GDME makes uses <strong>of</strong> a novel portable<br />

and low-cost device that comprises a small, commercially available, semi-permeable<br />

membrane. Volatile compounds released by <strong>the</strong> sample can permeate <strong>the</strong> membrane<br />

pores and are collected by an adequate solution. Some <strong>of</strong> <strong>the</strong> advantages <strong>of</strong> this<br />

extraction system are: <strong>the</strong> experimental simplicity <strong>of</strong> <strong>the</strong> sample preparation process, <strong>the</strong><br />

use <strong>of</strong> a disposable small sized membrane and <strong>the</strong> possibility <strong>of</strong> extraction <strong>of</strong> volatile<br />

compounds at low temperatures. The methodology is based on <strong>the</strong> sample acidulation<br />

transforming all sulphites into SO 2 that volatilizes and is collected, after passing through<br />

<strong>the</strong> membrane, by <strong>the</strong> existing solution within <strong>the</strong> extraction module. Such solution is<br />

acetate buffer in which <strong>the</strong>re is a reaction <strong>of</strong> conversion <strong>of</strong> SO 2 into non volatile HSO 3 - .<br />

After a certain period <strong>of</strong> time, this solution is collected and analyzed by SWV. The<br />

results were compared with <strong>the</strong> method <strong>of</strong> Ripper (Portuguese Norm 2220).<br />

Acknowledgments: LMG (SFRH/BD/36791/2007) and JGP (SFRH/BD/30279/2006) wish to<br />

acknowledge Portuguese Fundação para a Ciência e Tecnologia (F CT) for <strong>the</strong>ir PhD studentships.<br />

References<br />

[1] Bird, D Understanding wine technology: The science <strong>of</strong> wine explained, The Wine Appreciation<br />

Guild, 4th ed., EUA, 2005<br />

[2] Almeida, P.J.; Rodrigues, J.A.; Guido, L.F.; Santos, J.R.; Barros, A.A.; Fogg, A.G.<br />

Electroanalysis, 2003, 15, 587<br />

[3] Rodrigues, J.A.; Gonçalves, L.M.; Pacheco, J.G.; Barros, A.A.; PT Patent 104789 (pending),<br />

2009<br />

[4] Gonçalves, L.M.; Magalhães, P.J.; Valente, I.M.; Pacheco, J.G.; Dostálek, P.; Sýkora, D.;<br />

Rodrigues, J.A.; Barros, A.A. Journal Chromatography A, In Press.<br />

September, 811, 2010. ISEL - Lisbon 67


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 02<br />

Identificação de solventes voláteis por meio de nariz eletrônico<br />

de poli(sulfeto de fenileno-fenilenoamina) dopado<br />

eletroquimicamente<br />

Renata Lippi 1 , Fernanda F. Camilo 2 , Jonas Gruber 1<br />

1<br />

Instituto de Química da Universidade de São Paulo, Av. Pr<strong>of</strong>. Lineu Prestes, 748,<br />

CEP 05508-900, São Paulo SP Brasil<br />

2 Universidade Federal de São Paulo Campus Diadema<br />

Renata.Lippi@poli.usp.br<br />

Três filmes finos de poli(sulfeto de fenileno-fenilenoamina), PPSA, um copolímero<br />

alternado de polianilina e poli(sulfeto de fenileno) [1], depositados por spin-coating<br />

sobre eletrodos interdigitados, obtidos por litografia, com área de 1 cm 2 (cromo sobre<br />

vidro; distância entre dígitos de 24 m) foram oxidados potenciostaticamente a 0,7, 0,8<br />

e 1,0 V vs. Ag em acetonitrila/LiClO4 0,1 M.<br />

A condutância elétrica desse conjunto de sensores foi monitorada durante períodos<br />

alternados de exposição (15 s) a vapores de oito solventes voláteis a 32 ºC e períodos de<br />

recuperação (ar puro, 60 s). A resposta relativa (R a ) de cada sensor foi calculada pela<br />

expressão R a = (G 2 -G 1 )/G 1 , em que G 2 é a condutância no fim do período de exposição e<br />

G 1 é a condutância inicial. A análise de componentes principais (PCA) das respostas<br />

relativas dos três sensores mostrou que esse conjunto consegue identificar os oito<br />

solventes (Figura 1). Análise do tipo leave-one-out [2] resultou num índice de acertos de<br />

100 %.<br />

Figura 1. Gráfico de PCA para os oitos solventes estudados.<br />

Agradecimentos: Ao CNPq pelo auxílio financeiro. Ao Dr. Gustavo P. Rehder pela confecção dos<br />

eletrodos. Ao Leonardo Ventura pelo desenvolvimento do equipamento eletrônico.<br />

Referências<br />

[1] Bazito née Camilo, F. F.; Torresi, S. I. C. Polymer, 2006, 46, 1259.<br />

[2] Lopes, F. M.; Martins-Jr, D. C.; Cesar-Jr, R. M. BMC Bioinformatics, 2008, 9, 451.<br />

September, 811, 2010. ISEL - Lisbon 68


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 03<br />

Non-Usual Features <strong>of</strong> Haem Proteins at Pyrolytic G raphite<br />

Electrodes<br />

Patrícia M. Paes de Sousa, S<strong>of</strong>ia R. Pauleta, M. Lurdes Simões Gonçalves,<br />

Graham W. Pettigrew, Isabel Moura, José J. G. Moura, Margarida M. Correia<br />

dos Santos<br />

1 Requimte, Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de<br />

Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal<br />

patricia.sousa@dq.fct.unl.pt<br />

Direct electrochemistry <strong>of</strong> redox proteins has been reported in an increasing number<br />

<strong>of</strong> cases, opening <strong>the</strong> way to <strong>the</strong>rmodynamic and detailed mechanistic studies. To be<br />

successful, proteins must directly exchange electrons with <strong>the</strong> electrode and at <strong>the</strong> same<br />

time preserve <strong>the</strong>ir native properties [1]. Among <strong>the</strong> various types <strong>of</strong> electrode surfaces,<br />

pyrolytic graphite (PG) is extensively used, <strong>of</strong>ten in connection with protein film<br />

voltammetry [1]. In this useful strategy <strong>the</strong> proteins are adsorbed onto a freshly polished<br />

PG electrode, frequently just by painting <strong>the</strong> surface with a couple <strong>of</strong> micro litres <strong>of</strong> a<br />

concentrated protein sample.<br />

In this work, we show that <strong>the</strong> interaction <strong>of</strong> haem containing proteins with pyrolytic<br />

graphite electrodes induces altered forms <strong>of</strong> <strong>the</strong> proteins, which have a redox potential<br />

300 mV lower than <strong>the</strong> potential observed when analysed at o<strong>the</strong>r electrode surfaces<br />

[2,3]. Moreover, <strong>the</strong>se altered forms present (electro)catalytic activity towards hydrogen<br />

peroxide. This effect had been previously proposed for small Met-His c-type<br />

cytochromes [4,5], but we demonstrate that this phenomenon is independent <strong>of</strong> <strong>the</strong> axial<br />

coordination <strong>of</strong> <strong>the</strong> haem, and is also observed for a multihaem enzyme.<br />

Therefore, <strong>the</strong> interpretation <strong>of</strong> <strong>the</strong> electrochemical signals obtained for haem<br />

containing proteins at this type <strong>of</strong> electrodes should be carefully done in order to avoid a<br />

misinterpretation <strong>of</strong> <strong>the</strong> results, especially when studying enzymes, in which <strong>the</strong> altered<br />

forms may present catalytic activity towards <strong>the</strong> same substrate.<br />

References<br />

[1] Léger, C.; Bertrand, P. Chem. Rev., 2008, 108, 2379.<br />

[2] Correia dos Santos, M. M.; Paes de Sousa, P. M.; Simões Gonçalves, M. L.; Krippahl, L.;<br />

Moura, J. J.G.; Lojou, É.; Bianco, P. J. Electroanal. Chem., 2003, 541, 153.<br />

[3] Santos, M.; Correia dos Santos, M. M.; Simões Gonçalves, M. L.; Costa, C.; Romão, J. C.;<br />

Moura, J. J. G. J. Inorg. Biochem., 2006, 100, 2009.<br />

[4] Ye, T.; Kaur, R.; Senguen, F. T.; Michel, L. V.; Bren, K. L.; Elliott, S. J. J. Am. Chem. Soc.,<br />

2008, 130, 6682.<br />

[5] De Biase, P. M.; Paggi, D. A.; Doctorovich, F.; Hildebrandt, P.; Estrin, D. A.; Murgida, D. H.;<br />

Marti, M. A. J. Am. Chem. Soc., 2009, 131, 16248.<br />

September, 811, 2010. ISEL - Lisbon 69


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 04<br />

Evaluation <strong>of</strong> Antioxidant Capacity by potentiostatic<br />

electrolyses<br />

Juliana Marques, Raquel Oliveira, Fátima Bento, Dulce Geraldo, Paula<br />

Bettencourt<br />

Departament <strong>of</strong> Chemistry, Universidade do Minho, 4710-057<br />

juliana.g.marques@hotmail.com<br />

There has been a growing interest in <strong>the</strong> study <strong>of</strong> antioxidant activity ei<strong>the</strong>r for health<br />

purposes or for biotechnological applications, like in food preservation.<br />

Several methods have been proposed for evaluation <strong>of</strong> antioxidant capacity. However,<br />

<strong>the</strong>re is a lack <strong>of</strong> a validated assay that can reliably measure <strong>the</strong> antioxidant capacity<br />

<strong>of</strong> foods and biological samples. In this scope it is recognized <strong>the</strong> importance <strong>of</strong><br />

establishing an antioxidant activity scale by means <strong>of</strong> a standard method. Chemical<br />

methods commonly used for antioxidant characterization can be classified regarding<br />

<strong>the</strong>ir oxidation reaction mechanisms, involving a hydrogen atom transfer (HAT) or an<br />

electron transfer (ET) reaction. Most HAT-based assays monitor competitive reactions<br />

and <strong>the</strong> quantification is derived from <strong>the</strong> kinetic curves such as ORAC or TRAP<br />

assays, while <strong>the</strong> ET based assays involves <strong>the</strong> reduction <strong>of</strong> a specific oxidant (FRAP,<br />

ABTS + or DPPH).<br />

In this paper, we propose a methodology to evaluate antioxidant activity based on an<br />

electrochemical assay, which enables to classify antioxidants through <strong>the</strong>ir reducing<br />

power at fixed potentials. Diluted solutions <strong>of</strong> different antioxidants were electrolyzed<br />

via potentiostatic control, at different potentials. The antioxidant concentration decrease<br />

and <strong>the</strong> amount <strong>of</strong> charge used in <strong>the</strong> oxidation were determined. The amount <strong>of</strong> charge<br />

that <strong>the</strong> antioxidant is able to receive for a fixed conversion is used as a measure <strong>of</strong> <strong>the</strong><br />

antioxidant capacity. In this study we compare <strong>the</strong> antioxidant power <strong>of</strong> known<br />

antioxidants like trolox and caffeic, ascorbic and gallic acids.<br />

September, 811, 2010. ISEL - Lisbon 70


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 05<br />

Evaluation <strong>of</strong> gallic acid antioxidant activity based on its<br />

extensive oxidation promoted by electrochemical methods<br />

Raquel Oliveira, Juliana Marques, Fátima Bento, Dulce Geraldo, Paula<br />

Bettencourt<br />

Departament <strong>of</strong> Chemistry, Universidade do Minho, 4710-057<br />

juliana.g.marques@hotmail.com<br />

Cellular oxidative stress and oxidative degradation <strong>of</strong> foods are associated to <strong>the</strong><br />

occurrence <strong>of</strong> oxidative processes on a large scale involving reactive oxygen species<br />

(ROS) such as O 2 , H 2 O 2 , O 2 •- and HO • . The promoted oxidation reactions may involve<br />

free radicals that start chain reactions, causing large scale destruction <strong>of</strong> molecules and<br />

biological systems (such as cells). The antioxidants action on <strong>the</strong> prevention <strong>of</strong> oxidative<br />

damage is widely recognized and is associated to <strong>the</strong>ir ability to remove free radicals<br />

and to inhibit <strong>the</strong> oxidation <strong>of</strong> o<strong>the</strong>r molecules through <strong>the</strong>ir own oxidation.<br />

The identification <strong>of</strong> <strong>the</strong> activity <strong>of</strong> recognized antioxidants or <strong>of</strong> new molecules is<br />

carried out by different methods, mostly chemical, which allow characterizing <strong>the</strong><br />

reactions <strong>of</strong> <strong>the</strong>se compounds with various reactive species. The use <strong>of</strong> syn<strong>the</strong>tic radicals<br />

such as ABTS •+ (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate)), DPPH • (2,2-<br />

diphenyl-1-picrylhydrazyl) or DMPD •+ (N,N-dimethyl-p-phenylenediamine) is common<br />

in chemical assays despite <strong>the</strong>ir lack <strong>of</strong> meaning in biological or chemical natural<br />

samples. The generation <strong>of</strong> ROS is <strong>of</strong> fundamental importance in order to carry out<br />

relevant activity tests.<br />

Electrochemical methods, such as cyclic voltammetry have been extensively used to<br />

characterize antioxidants, through <strong>the</strong> estimation <strong>of</strong> <strong>the</strong>ir standard reduction potentials,<br />

E 0 . Despite <strong>the</strong> importance <strong>of</strong> this <strong>the</strong>rmodynamic parameter, <strong>the</strong> kinetic<br />

characterization <strong>of</strong> reactions <strong>of</strong> antioxidants is crucial because it determines <strong>the</strong>ir ability<br />

to respond in time.<br />

In this paper, we present a study on <strong>the</strong> gallic acid response to a large scale oxidative<br />

attack promoted by electrochemical means. By adjusting <strong>the</strong> anode potential, <strong>the</strong> assay<br />

enables to test <strong>the</strong> antioxidant behavior against oxidants <strong>of</strong> different strength. This is an<br />

advantage toward chemical assays based on a chemical oxidant characterized by a fixed<br />

redox potential, E 0 . Ano<strong>the</strong>r advantage <strong>of</strong> <strong>the</strong> electrochemical oxidative attack is <strong>the</strong><br />

ease monitoring <strong>of</strong> <strong>the</strong> oxidation reaction rate, which is assessed directly from <strong>the</strong><br />

current, in opposition to <strong>the</strong> chemical assays that require <strong>the</strong> direct monitoring <strong>of</strong> <strong>the</strong><br />

oxidant or <strong>of</strong> a probe in a competitive assay.<br />

Acknowledgments: Fundação para a Ciência e a Tecnologia (SFRH/BD/64189/2009).<br />

September, 811, 2010. ISEL - Lisbon 71


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 06<br />

Thiol monolayers on bismuth electrodes for organic matter<br />

fouling prevention in <strong>the</strong> voltammetric<br />

stripping analysis <strong>of</strong> heavy metals<br />

María de la Gala Morales, Eduardo Pinilla Gil, Lorenzo Calvo Blázquez<br />

Department <strong>of</strong> Analytical Chemistry, University <strong>of</strong> Extremadura,<br />

Av. de Elvas, s/n 06006 Badajoz, Spain<br />

mgalamor@gmail.com<br />

Stripping voltammetric measurements <strong>of</strong> heavy metals are frequently hampered by<br />

electrode fouling due to adsorption <strong>of</strong> organic compound naturally occurring in a variety<br />

<strong>of</strong> real samples (e.g. ambient and residual waters or biological fluids). A strategy to<br />

manage this problem is electrode protection by an isolating layer permeable to <strong>the</strong> small<br />

ionic analytes but not to <strong>the</strong> much larger interfering organic compounds. Disorganized<br />

monolayers <strong>of</strong> thiols with short alkyl chains and bulky end group have been proven<br />

useful for gold electrode protection against model surfactants [1] and humic acid [2].<br />

Thiol monolayers deposition on bismuth electrodes, a widely used environmentally<br />

friendly alternative to mercury electrodes, has been studied and <strong>the</strong>ir general<br />

electrochemical behaviour described [3], but no data is available about <strong>the</strong> applicability<br />

<strong>of</strong> thiol protected bismuth electrodes for <strong>the</strong> determination <strong>of</strong> heavy metals in presence<br />

<strong>of</strong> organic surfactants. In this work, we have explored <strong>the</strong> voltammetric stripping<br />

behaviour <strong>of</strong> Zn(II), Cd(II) and Pb(II) on a homemade bismuth disk electrode before and<br />

after deposition <strong>of</strong> a disorganized monolayer <strong>of</strong> different thiols, using Triton X-100 as a<br />

model organic interfering compound. Chemical and instrumental parameters were<br />

explored for obtaining <strong>the</strong> optimal metal ions response in <strong>the</strong> µg/L range. We found that<br />

mercaptoacetic acid effectively protects <strong>the</strong> electrode against fouling by relatively high<br />

Triton X-100 concentration, in <strong>the</strong> range 100 to 200 mg/L without significantly affecting<br />

<strong>the</strong> Pb(II) response, which is almost completely suppressed when <strong>the</strong> bare bismuth<br />

electrode is exposed to <strong>the</strong> surfactant. These preliminary results are promising for <strong>the</strong><br />

possible application <strong>of</strong> voltammetric sensors based on bismuth working electrode<br />

surfaces for <strong>the</strong> direct determination <strong>of</strong> heavy metals in untreated real samples.<br />

Acknowledgments: This work is supported by <strong>the</strong> Spanish Ministry <strong>of</strong> Science and Innovation<br />

(project CTQ2008-06657/BQU).<br />

References<br />

[1] Herzog, G; Arrigan, D.W. Anal. Chem., 2003, 75, 319<br />

[2] Herzog, G; Beni, V.; Dillon, P.H.; Barry, T.; Arrigan, D.W. Anal. Chim. Acta, 2004, 511, 137<br />

[3] Adamovski, M.; Zajac, A.; Gründler, P.; Flechsig, G.U. Electrochem. Commun., 2006, 8, 932<br />

September, 811, 2010. ISEL - Lisbon 72


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 07<br />

Electrochemiluminescence <strong>of</strong> luminol/H 2 O 2 system catalyzed<br />

by ferrocenes derivatives in solution on I T O electrode<br />

Diogo Ramadas 1,2 , Ana S. Viana 2 , A.C. Cascalheira 1<br />

1 Lumisense,Lda, Edifício ICAT, Campo Grande, 1749-016 Lisboa, Portugal<br />

2 CQB, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa,<br />

Campo Grande, 1749-016 Lisboa, Portugal<br />

drsousa@fc.ul.pt<br />

Luminol is one <strong>of</strong> <strong>the</strong> earliest known syn<strong>the</strong>tic compounds exhibiting<br />

chemiluminescence and has been extensively studied regarding its analytical<br />

applications. The employment <strong>of</strong> electrochemiluminescence (ECL) <strong>of</strong> luminol systems<br />

onto analytical determinations suffers from a continuous decrease <strong>of</strong> <strong>the</strong> light signal<br />

during consecutive electrode perturbation, which results on poor reproducibility [1]. The<br />

decrease in <strong>the</strong> signal has been attributed to <strong>the</strong> electrode fouling/passivation due to<br />

deposition <strong>of</strong> poisoning compounds, products <strong>of</strong> <strong>the</strong> ECL reaction. The use <strong>of</strong> ferrocene<br />

derivatives as catalysts in <strong>the</strong> ECL <strong>of</strong> luminol/H 2 O 2 system was investigated on several<br />

authors in various electrode materials [2-4]. Most <strong>of</strong> those studies concern <strong>the</strong> use <strong>of</strong><br />

ferrocene derivatives as labels for biomolecules and optical ECL detection. However,<br />

since <strong>the</strong>se derivatives can also function as mediators for <strong>the</strong> ECL reaction it can be<br />

envisaged that <strong>the</strong>y can prevent <strong>the</strong> electrode fouling and consecutively increase <strong>the</strong><br />

stability <strong>of</strong> ECL systems based on <strong>the</strong> luminol reaction.<br />

In this study, we compare <strong>the</strong> ECL response <strong>of</strong> an alkaline solution <strong>of</strong> luminol and H 2 O 2<br />

in <strong>the</strong> presence <strong>of</strong> three different ferrocene derivatives (ferrocene monocarboxylic acid,<br />

ferrocene dicarboxylic acid, ferrocene carboxaldehyde) onto a ITO electrode, by linear<br />

voltammetry or potential pulse application. The obtained results indicate that ferrocene<br />

monocarboxylic acid is <strong>the</strong> most promising derivative, since it catalyzes <strong>the</strong> reaction by<br />

120 mV; <strong>the</strong> light emission <strong>of</strong> <strong>the</strong> system without ferrocene starts at 360mV (vs. SCE)<br />

whereas in <strong>the</strong> presence this mediator can be detected at 240mV (vs. SCE). The recorded<br />

currents corroborate <strong>the</strong> optical results revealing that <strong>the</strong> onset <strong>of</strong> <strong>the</strong> optical signal<br />

corresponds to <strong>the</strong> beginning <strong>of</strong> <strong>the</strong> oxidation <strong>of</strong> <strong>the</strong> ferrocene derivatives. A systematic<br />

studied has been also performed in order to study <strong>the</strong> influence <strong>of</strong> <strong>the</strong>: ratio<br />

concentration <strong>of</strong> Ferrocene/Luminol, pH, and buffer nature on <strong>the</strong> reproducibility and<br />

intensity <strong>of</strong> <strong>the</strong> optical signal.<br />

Acknowledgments: Diogo Ramadas acknowledge Fundação para Ciência e Tecnologia, for<br />

financial support, project SFRH / BDE / 33797 / 2009<br />

References<br />

[1] C. A. Marquettc and L.J. Blum. Anal. Chim. Acta , 1999, 381, p. 1<br />

[2] R. Wilson and D. Schiffrin. J. Electroanal. Chem., 1998, 448, p. 125<br />

[3] R. Wilson and D. Schiffrin. Anal. Chem., 1996, 68, p. 1254<br />

[4] C. E. Taylor, Stephen E. Creager, J.Electroanal.Chem., 2000, 485, p. 114<br />

September, 811, 2010. ISEL - Lisbon 73


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 08<br />

Estudio ciclovoltamperométrico de la Nimodipina sobre<br />

electrodos de carbono vítreo modificados con nanotubos de<br />

carbono.<br />

Juan A rturo Squella, Luis J. Núñez-Vergara, Manuel López López<br />

Laboratorio de Bioelectroquímica. Facultad de Ciencias Químicas y Farmacéuticas. Universidad de<br />

Chile. Sergio Livingstone 1007. Independencia. Santiago.<br />

asquella@ciq.uchile.cl<br />

La nimodipina (Figure 1) es una 4-meta-nitr<strong>of</strong>enil-1,4-dihidropiridina, que tiene<br />

actividad farmacológica como bloqueador de los<br />

canales de calcio al interior de la célula y se usa en la<br />

terapia cardiovascular. Desde el punto de vista<br />

electroquímico se han aprovechado sus posibilidades<br />

tanto para reducirse ( anillo nitrobencenoide) como para<br />

oxidarse (anillo1,4-dihidropiridínico) en diferentes<br />

electrodos convencionales. Sin embargo no se ha<br />

investigado su comportamiento en electrodos modificados con nanotubos de carbono.<br />

En este trabajo se presenta el comportamiento electroquímico de la nimodipina en<br />

electrodos de carbono vítreo y en electrodos de carbono vítreo modificados con<br />

nanotubos de carbono. Se trabajó con nanotubos de multipared oxidados los que fueron<br />

dispersados en diferentes medios como: H 2 O, 2% Nafion en Etanol y DMF. Se estudió<br />

el efecto de distintos tiempos de acumulación y concentración de la dispersión sobre la<br />

respuesta en corriente para la reducción de la nimodipina.<br />

Se obtuvo una relación directa entre la corriente de pico para la reducción del grupo<br />

nitro y la concentración de la nimodipina con un límite de detección de 8 x 10 -7 M.<br />

El comportamiento en el electrodo de carbono vítreo resultó distinto al obtenido sobre el<br />

mismo electrodo recubierto con los nanotubos de carbono. En el electrodo sin recubrir<br />

se destaca el pico de reducción debido a la reducción del grupo nitro a hidroxilamina, ya<br />

sea en el primer barrido o en los siguientes. Por otra parte, en el electrodo recubierto se<br />

produjo una fuerte adsorción del producto de la reducción del nitro compuesto<br />

generando un par redox entre los derivados nitroso e hidroxilamina que permanece<br />

fuertemente adsorbida y es la única que se observa en los barridos sucesivos. Se<br />

cuantificó la dependencia de las corrientes catódicas y anódicas y su variación con la<br />

velocidad de barrido encontrándose un comportamiento que da cuenta de un par redox<br />

nitroso-hidroxilamina inmovilizado en la superficie del electrodo.<br />

Agradecimientos: <br />

permitió la estancia de MLL y Proyecto F ONDECYT 1090120.<br />

Referencias<br />

[1] J.A.Squella., J. C. Sturm., R. Lenac & Luis J. Núñez-Vergara. Anal. Lett., 1992, 25, 281.<br />

September, 811, 2010. ISEL - Lisbon 74


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 09<br />

Iron (II) and Ru<strong>the</strong>nium (II) Cyclopentadienyl Derivative<br />

Complexes: new potential antitumor agents<br />

Milan N. Chhaganlal 1 , M. H. Garcia 1 , M. P. Robalo 2 , V. Moreno 3<br />

1 CCMM, FCUL, Campo Grande, 1749-016 Lisboa, Portugal<br />

2<br />

ADEQ/ISEL, R. Cons.elheiro Emídio Navarro, 1, 1959-007 Lisboa<br />

3 DQI, Univ Barcelona, Martí y Franquès 1-11, 08028, Barcelona, Spain<br />

milan001@gmail.com<br />

The inspiring results already obtained in <strong>the</strong> search for new ru<strong>the</strong>nium (II) complexes<br />

based anticancer drugs [1], stimulated <strong>the</strong> research for complexes <strong>of</strong> different metals that<br />

could give similar properties. We recently report significant effect <strong>of</strong> toxicity in tumor<br />

-heteroaromatic sigma<br />

coordinated ligands [2,3]. This presentation reports our studies in six new<br />

organometallic derivatives belonging to <strong>the</strong> family <strong>of</strong> ru<strong>the</strong>nium and iron piano stool<br />

5 -C 5 H 5 )(PP)L] + , with PP= dppe or 2PPh 3 ,<br />

M = Ru (II) or Fe (II) and L = 9-cyanoanthracene or 2-cyanonaphthalene. The<br />

compounds have been characterized by NMR ( 1 H, 13 C, 31 P), UV-Vis, elemental analyses<br />

(% C, H, N) and cyclic voltammetry. The electrochemical responses <strong>of</strong> <strong>the</strong> metals<br />

centres are here presented.<br />

[FeCpDppe(2-­‐NC-­‐Naphthalene)][PF 6 ]<br />

1,5<br />

1<br />

0,5<br />

0<br />

-­‐0,5<br />

-­‐1<br />

E (V) vs SCE<br />

Figure 1- Cyclic voltammogram <strong>of</strong> compound [FeCp(dppe)(2-NC-Naph)][PF 6 ]<br />

in aceto-nitrile at sweep rate <strong>of</strong> 200 mV/s.<br />

Acknowledgments: Milan N. Chhaganlal thanks M. H. Garcia for <strong>the</strong> help and during <strong>the</strong><br />

syn<strong>the</strong>sis and characterization and also M. P. Robalo for <strong>the</strong> support with <strong>the</strong> cyclic voltammetry.<br />

References<br />

[1] Dyson, P.J. Allardyce, C. S.; Dorcier, A.; Scolaro, C.; Appl. Organomet Chem., 2005, 19, 1.<br />

[2] Garcia M.H., Morais T.S., Florindo P., Piedade M.F.M., Moreno V., Ciudad C., Noe V.,<br />

J.Inorg.Chem. 2009, 103, 354.<br />

[3] Moreno V., Lorenzo J., Aviles F.X., Garcia M.H., Ribeiro J.P., Morais T.S., Florindo P., Robalo<br />

M.P., Bioinorg. Chem Appl. 2010, in press<br />

September, 811, 2010. ISEL - Lisbon 75


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 10<br />

Cytotoxicity Studies and DN A Interaction <strong>of</strong> New Ru<strong>the</strong>nium<br />

(II) Cyclopentadienyl Complexes with Nitrogen Coordinated<br />

Ligands<br />

Tânia S. Morais 1 , M.H. Garcia 1 , M.P. Robalo 2 , A.Valente 1 , V. Moreno 3 , M.<br />

Font-Bardia 4 , T. Calvet 4 , J. Lorenzo 5 , F. X. Avilés 5<br />

1<br />

CCMM, FCUL, Campo Grande, 1749-016 Lisboa, Portugal;<br />

2<br />

ADEQ/ISEL, R. Cons. Emídio Navarro, 1, 1959-007 Lisboa;<br />

3 DQI, Univ Barcelona, Martí y Franquès 1-11, 08028, Barcelona, Spain;<br />

4 CMDM, Univ. Barcelona, Martí y Franquès s/n, 08028, Barcelona, Spain; 5 IBB, Univ. Aut.<br />

Barcelona, 08193, Bellaterra, Barcelona, Spain<br />

tsmorais@fc.ul.pt<br />

Ru<strong>the</strong>nium complexes have been <strong>the</strong> most widely studied non-Platinum anti-cancer<br />

candidates. The search in this field both in coordination and organometallic chemistry<br />

has been certainly stimulated by <strong>the</strong> successful results already obtained with some<br />

ru<strong>the</strong>nium coordination compounds [1,2].<br />

We recently report significant effect <strong>of</strong> toxicity in LoVo and MiaPaca cells <strong>of</strong> new<br />

-heteroaromatic sigma coordinated ligands<br />

[3]. This presentation reports our studies in some new organometallic derivatives<br />

belonging to <strong>the</strong> family <strong>of</strong> piano stool ru<strong>the</strong>nium cationic compounds, <strong>of</strong> general<br />

formula [Ru( 5 -C 5 H 5 )(PP)L] + , with PP=phosphanes and L=N-heteroaromatic ligand. An<br />

attempt <strong>of</strong> correlation <strong>of</strong> <strong>the</strong> redox potentials <strong>of</strong> Ru (II) /Ru (III) with cytoxicity <strong>of</strong> <strong>the</strong>se<br />

compounds will be done. Also some results will be presented showing our preliminary<br />

studies by cyclic voltammetric <strong>of</strong> solutions <strong>of</strong> <strong>the</strong> new compounds incubated with DNA.<br />

The stability <strong>of</strong> Ru II /Ru III showed by <strong>the</strong> electrochemical studies suggests <strong>the</strong> possible<br />

existence <strong>of</strong> Ru(III) analogues <strong>of</strong> this compounds which potential interest might be <strong>the</strong>ir<br />

use as bioreductive prodrugs.<br />

Figure 1. Cyclic voltammogram <strong>of</strong><br />

compound [RuCp(PPh 3 -bipy)]<br />

[CF 3 SO 3 ] in dichloromethane at<br />

sweep rate <strong>of</strong> 200 mV/s.<br />

Acknowledgments: The authors thank to F CT (Project PTDC/QUI/66148/2006) for finantial<br />

support; Tânia S. Morais thanks F CT for his Ph.D Grant (SFRH/BD/45871/2008).<br />

References<br />

[1] Dyson, P.J.; Sava, G.; Dalton Trans., 2006, 1929.<br />

[2] Galanski, M.; Arion, V.B; Jakupec, M.A.; Keppler, B.K.; Curr. Pharm. Des., 2003, 9, 2078.<br />

[3] Garcia, M.H.; Morais, T.S.; Florindo, P.; Piedade, M.F.M.; Moreno, V.; Ciudad, C; Noe, V.; J.<br />

Inorg. Biochem., 2009, 103, 354.<br />

September, 811, 2010. ISEL - Lisbon 76


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 11<br />

Acid dissociation constants for several potential<br />

anti-tubercular drugs:<br />

isoniazid and thiobenzanilide derivatives<br />

M. C ristina Ventura, 1,2 A. Catarina Bastos, 1 M. João Sarmento, 1 João Manso, 1<br />

Susana Borges, 1 Vanessa Miranda, 1 Susana Santos, 1 Filomena Martins 1<br />

1<br />

Faculdade de Ciências de Lisboa, Departamento de Química e Bioquímica, Centro de Química e<br />

Bioquímica (CQB), Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal<br />

2 Instituto Superior de Educação e Ciências, Alameda das Linhas de Torres,<br />

179, 1750 Lisboa, Portugal<br />

mcventura@fc.ul.pt<br />

According to <strong>the</strong> most recent WHO data [1], tuberculosis (TB) kills 1.8 million people<br />

every year and one-third <strong>of</strong> <strong>the</strong> world's population is currently infected with <strong>the</strong><br />

Mycobacterium tuberculosis (M.tb) bacillus. Moreover, 9.4 million new TB cases were<br />

reported in 2008 from which 1.4 million refer to people co-infected with HIV.<br />

Isoniazid (INH) is one <strong>of</strong> <strong>the</strong> most powerful first-line drugs in multi-<strong>the</strong>rapeutic<br />

regimens but an increasing number <strong>of</strong> M.tb INH-resistant strains have been reported [2].<br />

The identification <strong>of</strong> INH derivatives, or derivatives <strong>of</strong> o<strong>the</strong>r families, with antitubercular<br />

activity comparable to that <strong>of</strong> INH but which retain <strong>the</strong>ir activity against a<br />

panel <strong>of</strong> INH-resistant strains, would obviously be <strong>of</strong> invaluable importance [3].<br />

In <strong>the</strong> process <strong>of</strong> screening and pre-formulation <strong>of</strong> potential new drugs, it is essential <strong>the</strong><br />

knowledge <strong>of</strong> several physicochemical properties, namely <strong>the</strong>ir acid dissociation<br />

constants (pKa) which affect <strong>the</strong> passive transport across biological membranes and<br />

<strong>the</strong>refore <strong>the</strong> activity in <strong>the</strong> living organism. However, many <strong>of</strong> <strong>the</strong>se compounds are<br />

scarcely soluble in water, making it necessary to determine <strong>the</strong>ir pKa values ei<strong>the</strong>r in<br />

organic solvents or in aqueous mixtures and <strong>the</strong>n extrapolate to water. The rationale <strong>of</strong><br />

<strong>the</strong> effect <strong>of</strong> pK<br />

can provide useful information regarding <strong>the</strong> feasibility <strong>of</strong> <strong>the</strong>se compounds as drug-like<br />

candidates.<br />

In this work we performed solubility and stability tests by UV-Vis spectrometry, at 25.0<br />

ºC, for several isoniazid and thiobenzanilide derivatives, some <strong>of</strong> which designed and<br />

syn<strong>the</strong>sized on <strong>the</strong> basis <strong>of</strong> QSAR studies. For each compound, pKa values were<br />

determined by potentiometry in 4/5 methanol/water mixtures, also at 25.0 ºC. From<br />

<strong>the</strong>se values aqueous pKa values were computed by extrapolation using <strong>the</strong> Yasuda<br />

Shedlovsky method. Bioavailability was assessed on <strong>the</strong> basis <strong>of</strong> estimated ionization<br />

degrees at physiological pH.<br />

Acknowledgments: This work was funded under project PTDC/QUI/67933/2006. ACB gratefully<br />

acknowledges a BII grant from F CT/F CUL and MJS a grant from UL/Fundação Amadeu Dias,<br />

both in 2008/2009.<br />

References<br />

[1] WHO Report 2009; Global Tuberculosis Control, Epidemiology, Strategy, Financing, Geneve,<br />

2009.<br />

[2] Suarez, J.; Ranguelova, K.; Schelvis, J.P.M.; Magliozzo, R.S. J. Biol. Chem., 2009, 284, 16146.<br />

[3] Ventura, C.; Martins, F. J. Med. Chem., 2008, 51, 612.<br />

September, 811, 2010. ISEL - Lisbon 77


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PB 12<br />

Bacterial cellulose: A new material for cell immobilization in<br />

biosensors<br />

Manuel J. Matos 1,2 , Nelson A. F. Silva 2 , Amin Karmali 2 , Edison Pecoraro 3<br />

1 Instituto de Telecomunicações, Pólo de Lisboa, Portugal<br />

2 CIEQB-ISEL - Instituto Superior de Engenharia de Lisboa, Portugal<br />

3 Instituto de Telecomunicações, Pólo de Aveiro, Portugal<br />

mmatos@deq.isel.ipl.pt<br />

A biosensor is an analytical device capable <strong>of</strong> quantifying <strong>the</strong> amount <strong>of</strong> a given analyte<br />

by means <strong>of</strong> a transduction process <strong>of</strong> a biochemical signal that results from an<br />

interaction between a biological recognition element and <strong>the</strong> analyte itself.<br />

A particular a concerns <strong>the</strong><br />

immobilization <strong>of</strong> <strong>the</strong> biological element, which can be made directly on <strong>the</strong> surface <strong>of</strong><br />

<strong>the</strong> transducing element or by means <strong>of</strong> an auxiliary support which, <strong>the</strong>n, is placed in its<br />

immediate vicinity. Encapsulation matrices, polymeric membranes or sol-gel technology<br />

are examples <strong>of</strong> <strong>the</strong>se immobilization methods. However, <strong>the</strong>se matrices or<br />

immobilization supports are mostly syn<strong>the</strong>tic, which, may result in a biologic<br />

incompatibility between <strong>the</strong> recognition element and <strong>the</strong> immobilization support. This<br />

aspect may lead to some limitations such as reduction <strong>of</strong> biological activity, premature<br />

<br />

To overcome this limitation, our group was able to successfully immobilize living<br />

microorganisms (whole bacterial cells) on a new material that consists <strong>of</strong> a biological<br />

substance resulting from <strong>the</strong> metabolism <strong>of</strong> o<strong>the</strong>r microorganisms, processed in order to<br />

fulfill our main immobilization purposes. This material, referred to as bacterial cellulose<br />

or biocellulose, allowed us to achieve very promising results in living cells<br />

immobilization [1, 2].<br />

In this presentation we compare some analytical characteristics <strong>of</strong> an electrochemical<br />

biosensor with potentiometric transduction, used for acrylamide detection, when using<br />

biocellulose and o<strong>the</strong>r traditional matrices, such as polymeric membranes, for <strong>the</strong><br />

immobilization <strong>of</strong> whole cells <strong>of</strong> Pseudomonas aeruginosa [3]. Parameters such as<br />

linear rangewere<br />

considered.<br />

References<br />

[1] Iguchi, M.; Yamanaka, S.; Budhiono, A.; J. Mat. Sci, 2000, 35, 261.<br />

[2] Pecoraro, E.; D. M. Manzani; Y. M. Messaddeq; S. J. L. R. Ribeiro; Monomers, Oligomers,<br />

Polymers and Composites from Renewable Resources, Ed. by Naceur Belgacem and<br />

Alessandro Gandini, Elsevier Science, 2008.<br />

[3] Silva, N.; Gil, D.; Karmali, A.; Matos, M.; Biocat Biotransf, 2009, 27, 143.<br />

September, 811, 2010. ISEL - Lisbon 78


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PC 01<br />

A Conducting Polymer / Self-Assembled Monolayer Modified<br />

Electrode for <strong>the</strong> Determination <strong>of</strong> Ascorbic Acid<br />

José Carlos A. Mesquita 1 , Sónia Maria A. Fernandes 1,2 , Jorge M. G. Teixeira 2<br />

1 Centro de Química da Madeira. LQCMM/CQM, Universidade da Madeira,<br />

Campus da Penteada, 9000-390 Funchal<br />

2 Departamento de Química da Universidade de Évora, Colégio Luís Verney, 7000 Évora<br />

jcm@uma.pt<br />

Self-assembled monolayers (SAMs) have become a convenient way <strong>of</strong> surface<br />

modification in order to obtain highly organized structures with well-defined properties,<br />

in particular through <strong>the</strong> incorporation <strong>of</strong> appropriate terminate functional groups [1, 2].<br />

The technique <strong>of</strong> electrostatic self-assembly layer-by-layer proposed by Decher et al in<br />

<strong>the</strong> 90s, which allows obtaining multilayer thin films, also enables <strong>the</strong> self-assembly <strong>of</strong><br />

conducting polymers [1]. However, several authors electropolymerize directly<br />

conducting polymers on SAMs [3] with particularly <strong>the</strong> intention <strong>of</strong> obtaining polymer<br />

layers with increased adherence.<br />

In this work, it is compared <strong>the</strong> voltammetric behaviour <strong>of</strong> <strong>the</strong> polyaniline (PANI)<br />

electrodeposited on 3-mercapto-1-propanesulfonic acid (MPS) self-assembled on a<br />

carbon electrode (C) with that <strong>of</strong> <strong>the</strong> PANI chemically syn<strong>the</strong>sized self-assembled by<br />

electrostatic interaction equally on MPS. Complementarily, <strong>the</strong> cyclic voltammetric<br />

study <strong>of</strong> <strong>the</strong> PANI deposited on MPS self-assembled on carbon provided valuable<br />

information about <strong>the</strong> modified electrodes thus obtained.<br />

Additionally, it is verified by cyclic voltammetry that with <strong>the</strong> C/MPS/PANI modified<br />

electrode it is possible to well define <strong>the</strong> oxidation <strong>of</strong> <strong>the</strong> acid ascorbic (AA), besides not<br />

arise any fur<strong>the</strong>r oxidation <strong>of</strong> this chemical species. Fur<strong>the</strong>rmore, it is observed with<br />

C/MPS/PANI modified electrodes a good correlation <strong>of</strong> <strong>the</strong> acid ascorbic voltammetric<br />

current with <strong>the</strong>ir concentration. What gives a positive perspective for <strong>the</strong> use <strong>of</strong> this<br />

kind <strong>of</strong> modified electrode in <strong>the</strong> determination <strong>of</strong> AA.<br />

Acknowledgments: Sónia Fernandes acknowledges Secretaria Regional da Educação da Madeira<br />

for <strong>the</strong> grant. We gratefully acknowledge <strong>the</strong> NMR Portuguese Networks (REDE/1517/RMN/2005).<br />

The support from F CT (Pluriannual base funding) and CS Madeira is also gratefully<br />

acknowledged.<br />

References<br />

[1] Paterno, L.G.; Mattoso, L.H.C.; Oliveira Jr. O.N. Quim. Nova, 2001, 24, 228.<br />

[2] Love, J.C.; Estr<strong>of</strong>f, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides G.M. Chem. Rev., 2005, 105,<br />

1103.<br />

[3] Mazur, M.; Krysinski, P.; Jackowska K. Thin Solid Films, 1998, 330, 167.<br />

September, 811, 2010. ISEL - Lisbon 79


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PC 02<br />

Carbon paper-supported Pd nano-materials for <strong>the</strong> oxygen<br />

reduction reaction<br />

Rosa Rego, 1 C ristina Oliveira 1 , Ana Maria Rego 2<br />

1 Departamento de Química, Centro de Química - Vila Real, Universidade de Trás-os-Montes e Alto<br />

Douro, Apartado 1013, 5001-801 Vila Real, Portugal<br />

2 Centro de Química-Física Molecular and IN, DEQB, Instituto Superior Técnico, Technical<br />

University <strong>of</strong> Lisbon, Av. Rovisco Pais 1049-001 Lisboa, Portugal<br />

mcris@utad.pt<br />

Most challenges related with polymer electrolyte membrane fuel cells (PEMFC)<br />

comprises <strong>the</strong> development <strong>of</strong> electrodes materials with high electroactivity, surface<br />

area, life time and low cost. For <strong>the</strong>se reasons, <strong>the</strong> processes <strong>of</strong> syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong><br />

electrocatalyst and deposition onto a gas diffusion layer have become a matter <strong>of</strong> basic<br />

and applied research [1].<br />

One promising method to minimize electrocatalyst particles size, increase its<br />

is <strong>the</strong> electroless deposition<br />

process [2-4]. Using this deposition methodology <strong>the</strong> catalyst can be directly deposited<br />

on a commercial gas diffusion layer (GDL), such as a carbon paper, producing well<br />

dispersed clusters <strong>of</strong> nanoparticles. When <strong>the</strong>se clusters are used as electrodes in a fuel<br />

cell, not only <strong>the</strong> surface area becomes large, but also <strong>the</strong> gas and <strong>the</strong> electrolyte easily<br />

permeates across, gaining straight access to <strong>the</strong> catalyst. This methodology will be<br />

applied to <strong>the</strong> preparation <strong>of</strong> Pd cathode catalysts on carbon paper impregnated with an<br />

hydrophobic material. Its activity towards oxygen reduction reaction in acid and alkaline<br />

media, will be evaluated envisaging <strong>the</strong> application <strong>of</strong> this material to a PEMFC. The<br />

new nano-Pd materials will be also characterized by SEM/EDS, TEM, DRX and XPS<br />

techniques.<br />

References<br />

[1] Martín, A. J.; Chaparro, A. M.; Galhardo, B.; Folgado, M. A.; Daza, L. J. <strong>of</strong> Power Sources,<br />

2009, 192, 14.<br />

[2] Fujii, T.; Ito, M. Fuel Cells, 2006, 5, 356.<br />

[3] Beard, K. D.; Schaal, M. T.; Van Zee, J. W.; Monnier, J. R. Appl. Catal. B: Environmental,<br />

2007, 72, 262.<br />

[4] Beard, K. D.; Van Zee, J.W.; Monnier, J. R. Appl. Catal. B: Environmental, 2009, 88, 185.<br />

September, 811, 2010. ISEL - Lisbon 80


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PC 03<br />

Formation <strong>of</strong> mixed self-assembled monolayers <strong>of</strong> mono- and<br />

dithiols on Au(111)<br />

Rafael C. González-Cano, Rafael Madueño, Manuel Blázquez, Teresa Pineda<br />

Dpto. Química Física y Termodinámica Aplicada, Universidad de Córdoba, Córdoba, SPAIN<br />

tpineda@uco.es<br />

Alkanedithiolate self-assembled monolayers (SAMs) can form on Au(111) singlecrystal<br />

electrodes by <strong>the</strong> spontaneous formation <strong>of</strong> a strong gold-sulfur bond with one <strong>of</strong><br />

<strong>the</strong> SH terminal groups and <strong>the</strong> attractive van der Waals forces between adjacent alkyl<br />

chains. The control <strong>of</strong> <strong>the</strong> organization <strong>of</strong> <strong>the</strong>se architectures is <strong>of</strong> great technological<br />

importance, and <strong>the</strong> formation <strong>of</strong> well-organized layers is needed. In <strong>the</strong>se layers, <strong>the</strong><br />

second unreacted thiol moieties should<br />

be exposed to <strong>the</strong> outer surface [1,2].<br />

To obtain compact dithiol layers <strong>of</strong><br />

standing-up molecules, <strong>the</strong> use <strong>of</strong> a<br />

mixture <strong>of</strong> monothiol and dithiol<br />

derivatives at <strong>the</strong> appropriate relative<br />

concentrations that results in an<br />

almost pure dithiol film, have been<br />

reported [3]. In this work, we report<br />

on <strong>the</strong> formation <strong>of</strong> a mixed layer <strong>of</strong><br />

octanedithiol (ODT) and octanethiol<br />

(OT). The formation process is carried<br />

out under electrochemical control.<br />

Thus, an exploration <strong>of</strong> <strong>the</strong> different<br />

experimental conditions <strong>of</strong> ODT/OT<br />

molar ratio, electrochemical<br />

deposition potential and deposition<br />

time is described.<br />

Figure 1. Cyclic voltammograms for <strong>the</strong> oxidative deposition <strong>of</strong> ODT and OT layer in<br />

0.1 M NaOH solution on Au(111) single crystal electrode.<br />

In Figure 1, <strong>the</strong> oxidative deposition <strong>of</strong> ODT and OT in alkaline solutions are shown. It<br />

can be deduced that <strong>the</strong> different peak potentials will drive <strong>the</strong> formation <strong>of</strong> a mixed<br />

layer depending on <strong>the</strong> ratio <strong>of</strong> molecules employed.<br />

Acknowledgments: Project CTQ2007/62723, Junta de Andalucía and Universidad de Córdoba.<br />

References<br />

[1] García Raya, D.; Madueño, R.; Sevilla, J.M.; Blázquez, M.; Pineda, T.; Electrochim. Acta,<br />

2008, 53, 8026.<br />

[2] García Raya, D.; Madueño, R.; Blázquez, M.; Pineda, T.; J. Phys. Chem. C, 2010, 114, 3568.<br />

[3] Jiang, W. R.; Zhitenev, N.; Bao, Z. N.; Meng, H.; Abusch-Magder, D.; Tennant, D.; Garfunkel,<br />

E. Langmuir 2005, 21, 8751.<br />

September, 811, 2010. ISEL - Lisbon 81


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PC 04<br />

Electrochemical control on <strong>the</strong> formation <strong>of</strong> mixed 11-<br />

mercaptoundecanoic acid and octanethiol self-assembled<br />

monolayers on Au(111)<br />

Zoilo González-Granados, Rafael Madueño, Manuel Blázquez, Teresa Pineda<br />

Dpto. Química Física y Termodinámica Aplicada, Universidad de Córdoba, Córdoba, SPAIN<br />

tpineda@uco.es<br />

Self assembled monolayers (SAMs) <strong>of</strong> terminal-functionalized alkanethiols are less<br />

organized structures than <strong>the</strong>ir alkanethiol partner monolayers. The bigger size <strong>of</strong> <strong>the</strong><br />

terminal group and/or <strong>the</strong> repulsive interactions between equally charged groups are<br />

mostly responsible for this disorder. One strategy that can be followed in order to have a<br />

better organized monolayer is <strong>the</strong> dilution <strong>of</strong> <strong>the</strong> functional groups by using a mixed<br />

monolayer with a determined ratio <strong>of</strong> <strong>the</strong> alkanethiol. In this sense, <strong>the</strong> mixed<br />

monolayers can show ei<strong>the</strong>r a homogeneous<br />

distribution <strong>of</strong> <strong>the</strong> molecules with different<br />

chemical nature or a phase separated behaviour.<br />

Any <strong>of</strong> <strong>the</strong>se properties are useful depending on <strong>the</strong><br />

applications.<br />

In this work, we present a study <strong>of</strong> <strong>the</strong> mixed<br />

monolayer formed from 11-mercaptoundecanoic<br />

acid (MUA) and octanethiol (OT) at different<br />

MUA/OT molar ratios. Taking advantage <strong>of</strong> <strong>the</strong><br />

different electrochemical behaviour <strong>of</strong> <strong>the</strong>se two<br />

molecules on an Au(111) single crystal electrode<br />

(Figure 1), we prepare <strong>the</strong>se monolayers under<br />

electrochemical control from an alkaline aqueous<br />

solution [1].<br />

Figure 1. Cyclic voltammetry <strong>of</strong> 1 mM MUA and 1<br />

mM OT in 0.1 M NaOH aqueous solution on a<br />

Au(111) single crystal electrode.<br />

The differences between <strong>the</strong> oxidation (deposition)<br />

and reduction (desorption) potentials for <strong>the</strong>se two<br />

monolayers can serve as a way <strong>of</strong> quantification <strong>of</strong> <strong>the</strong> composition <strong>of</strong> <strong>the</strong> mixed MUA-<br />

OT layer obtained not only by potentiodynamic but also by potentiostatic methods.<br />

Acknowledgments: Project CTQ2007/62723, Junta de Andalucía and Universidad de Córdoba.<br />

References<br />

[1] García Raya, D.; Madueño, R.; Blázquez, M.; Pineda, T.; J. Phys. Chem. C, 2010, 114, 3568.<br />

September, 811, 2010. ISEL - Lisbon 82


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PD 01<br />

In-situ study <strong>of</strong> corrosion morphology <strong>of</strong> a duplex stainless<br />

steel in a concentrated LiBr solution and in an impure<br />

phosphoric acid solution by confocal laser scanning<br />

microscopy (C LSM)<br />

R. Leiva-García 1 , M.J. Muñoz-Portero 1 , J. García-Antón 1<br />

1<br />

Univ. Politécnica de Valencia, Ingeniería Electroquímica y Corrosión (IEC), Dep. Ingeniería<br />

Química y Nuclear, Camino de Vera s/n, 46022 Valencia, Spain.<br />

jgarciaa@iqn.upv.es<br />

Corrosion has been mainly studied using large-scale experiments. However, corrosion<br />

mechanisms occur on a smaller scale. Therefore, it can be useful to develop smaller<br />

scale methods and experimental methodologies. In this way, it will be possible to study<br />

reduced surfaces. The aim <strong>of</strong> this work is <strong>the</strong> study <strong>of</strong> <strong>the</strong> corrosion morphology <strong>of</strong> a<br />

duplex stainless steel (UNS 1.4462) in a concentrated aqueous LiBr solution (992 g/L)<br />

and in an impure phosphoric acid solution, containing chlorides and sulfates.<br />

The electrochemical techniques used were cyclic potentiodynamic curves and<br />

galvanodynamic curves. Tests were carried out in a minicell developed by this research<br />

group. This cell can be put in <strong>the</strong> stage <strong>of</strong> a confocal laser scanning microscope. In this<br />

way, <strong>the</strong> in-situ observation <strong>of</strong> <strong>the</strong> corrosion process at microscopic scale is possible. All<br />

<strong>the</strong> tests were made at 25 ºC.<br />

The LiBr solution is an aggressive solution that provokes localized corrosion in <strong>the</strong><br />

duplex stainless steel. During <strong>the</strong> potentiodynamic curves, pits appear in <strong>the</strong> electrode<br />

surface when <strong>the</strong> pitting potential is reached. These pits grow until affect <strong>the</strong> entire<br />

electrode surface. When this growth is observed at higher magnifications (200x and<br />

500x), <strong>the</strong> formation <strong>of</strong> new small pits is observed in <strong>the</strong> unaffected area (covered with<br />

<strong>the</strong> corrosion product) closed to <strong>the</strong> corrosion front. Then, this corrosion front reaches<br />

<strong>the</strong> pits and <strong>the</strong> observed surface ends completely damaged. In <strong>the</strong> case <strong>of</strong> <strong>the</strong><br />

galvanodynamic curves, a pit appears in <strong>the</strong> electrode surface when <strong>the</strong> pitting potential<br />

point is reached and it goes growing in a sequential way with <strong>the</strong> increase <strong>of</strong> <strong>the</strong> current<br />

density.<br />

With regard to <strong>the</strong> impure phosphoric acid solution, <strong>the</strong> potentiodynamic and<br />

galvanodynamic tests indicate that corrosion <strong>of</strong> duplex stainless steel is generalized in<br />

this medium. The images obtained at different magnifications (100x - 500x) show how<br />

<strong>the</strong> grain boundary <strong>of</strong> <strong>the</strong> tested stainless steel goes being revealed with <strong>the</strong> increase <strong>of</strong><br />

<strong>the</strong> current density. Despite <strong>of</strong> <strong>the</strong> presence <strong>of</strong> impurities, <strong>the</strong>ir concentration is not<br />

critical to produce a localized corrosion attack.<br />

Therefore, <strong>the</strong> developed minicell is useful to study <strong>the</strong> morphological differences<br />

among different kinds <strong>of</strong> corrosion attack at microscopic scale.<br />

Acknowledgments: We wish to express our gratitude to MICINN (CTQ2009-07518), to F EDER, to<br />

MAEC (PCI Mediterraneo C/8196/07, C/018046/08, D/023608/09) for <strong>the</strong>ir financial support and<br />

to Dr. Asunción Jaime for her translation assistance.<br />

September, 811, 2010. ISEL - Lisbon 83


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PD 02<br />

Copper corrosion in soils contaminated with chloride ions<br />

Carla Barradas Dias 1 , M. M. M. Neto 1,2 , I. T. E. Fonseca 1<br />

1 CCMM, Departamento de Química e Bioquímica da Universidade de Lisboa, Campo Grande<br />

Ed C8,1749-016 Lisboa, Portugal<br />

2 UIQA, Instituto Superior de Agronomia, TU Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal<br />

carlabarradasdias@gmail<br />

Soils are, in general, very complex matrices; physical conditions (pH, porosity, humidity<br />

degree, oxygenation and conductivity, among o<strong>the</strong>rs) and <strong>the</strong> presence <strong>of</strong> different ions<br />

in soils may induce corrosion on buried metallic structures and pieces leading to its<br />

deterioration. Toxic species released during <strong>the</strong> corrosion processes can affect soils<br />

causing serious contamination problems. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> deterioration <strong>of</strong> metals<br />

such as copper and copper alloys used in buried electricity earthing systems may give<br />

rise to safety problems.<br />

Thus, studies on <strong>the</strong> behaviour <strong>of</strong> metallic samples, buried in soils with different degrees<br />

<strong>of</strong> agressivity, are an important topic in materials as well as in environmental sciences.<br />

Following previous studies 1, we have carried on working in this type <strong>of</strong> subject.<br />

The present communication reports a study performed with a set <strong>of</strong> copper samples<br />

buried, during a 3 month period, in soil samples with different degrees <strong>of</strong> aggressivity,<br />

particularly, with different chloride contents (Cl - : 0.01 to 0.5 M). The initial soil<br />

sample was characterized and <strong>the</strong> o<strong>the</strong>r modified soil samples were prepared by <strong>the</strong><br />

addition <strong>of</strong> different amounts <strong>of</strong> chloride ions.<br />

Copper coupons were characterized before <strong>the</strong> test and after being removed from <strong>the</strong> soil<br />

samples in which <strong>the</strong>y have been buried. The analysis was performed by visual<br />

observation and different techniques, namely optical microscopy, gravimetry, scanning<br />

electron microscopy (SEM) and X-Rays diffraction spectroscopy (DRX).<br />

Ano<strong>the</strong>r set <strong>of</strong> experiments was performed with a copper electrode immersed in<br />

solutions made with different chloride concentrations, using <strong>the</strong> soil washing water as<br />

solvent (Cl - : 0.01 to 0.5 M), at constant pH <strong>of</strong> 6.4 (pH value <strong>of</strong> <strong>the</strong> original soil<br />

sample). The effect <strong>of</strong> acidifying <strong>the</strong> medium was also studied; studies were performed<br />

at pH 6.4, 5.8 and 4.8.<br />

Acknowledgments: CCMM (Centro de Ciências Moleculares e Materiais) and UIQA (Unidade de<br />

Investigação de Química Ambiental) are grant aided by F CT (Fundação para a Ciência e<br />

Tecnologia).<br />

References<br />

[1] Afonso, F. S.; Neto, M. M. M.; Mendonça, M. H.; Pimenta, G.; Proença, L.; Fonseca, I. T. E., J<br />

Solid State Electrochem., 2009, 13, 1757.<br />

September, 811, 2010. ISEL - Lisbon 84


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PD 03<br />

Estudo da eficiência de duas técnicas na remoção de cloretos<br />

em amostras de uma bala de canhão de um naufrágio do<br />

séc. X V III<br />

João Carlos Coelho 1,2 , M. D. Carvalho 1 , I. T. E. Fonseca 1<br />

1 CCMM, Departamento de Química e Bioquímica da Universidade de Lisboa, Campo Grande<br />

Ed C8,1749-016 Lisboa, Portugal<br />

2 Divisão de Arqueologia Náutica e Subaquática, Instituto de Gestão do Património Arquitectónico e<br />

Arqueológico IP, Av. da Índia, 136, 1300-300 Lisboa, Portugal<br />

e-mail: jcoelho@igespar.pt<br />

No estudo da corrosão de artefactos arqueológicos em metal, tendo como objectivo o<br />

desenvolvimento de tratamentos e metodologias para a sua conservação, têm sido<br />

utilizados métodos electroquímicos, em conjugação com outras técnicas de análise. No<br />

caso específico de artefactos em ferro provenientes de contextos arqueológicos<br />

aquáticos, nomeadamente marinhos, a remoção dos iões cloreto constitui a principal<br />

intervenção, tendo como objectivo final impedir o prosseguimento do processo de<br />

corrosão e remover os produtos de corrosão formados durante ao período de exposição<br />

do0 artefacto.<br />

Nesta comunicação serão apresentados resultados de um estudo que visa proceder à<br />

aplicação de tratamentos de conservação de artefactos em ferro arqueológico, usando<br />

diferentes técnicas, tais como: redução electrolítica, redução galvânica, redução com<br />

sulfito alcalino, imersão em água desionizada e imersão em soluções alcalinas, de modo<br />

a avaliar a sua eficácia, tanto ao nível de estabilização/remoção de cloretos, como<br />

também de redução de produtos de corrosão nas camadas superficiais.<br />

O material utilizado são amostras retiradas de uma bala de canhão em ferro fundido de<br />

meados do século <strong>XVI</strong>II, inserida no contexto arqueológico de um navio almirante<br />

francês, de nome Océan, que naufragou junto à costa sul de Portugal, em 1759.<br />

Os ensaios foram efectuados tanto em amostras mantidas húmidas, desde o momento da<br />

sua recolha, como em amostras secas propositadamente, em condições controladas.<br />

O conjunto de amostras, antes e após a aplicação dos métodos de tratamento (remoção<br />

de cloretos), é analisado por voltametria cíclica, difracção de raios-X (XRD),<br />

microscopia electrónica de varrimento e microanálise de raios-X (SEM/EDS).<br />

Serão apresentados resultados obtidos através da aplicação do método de redução<br />

electrolítica e de simples imersão em soluções alcalina, com monitorização do potencial<br />

em circuito aberto (OCP). A eficiência dos dois métodos na extracção de cloretos é<br />

calculada com base na análise de cloretos nas respectivas soluções de imersão<br />

prolongada das amostras, utilizando um eléctrodo selectivo de iões cloreto.<br />

Agradecimentos: CCMM (Centro de Ciências Moleculares e Materiais) é suportado<br />

financeiramente pela F CT (Fundação para a Ciência e Tecnologia).<br />

September, 811, 2010. ISEL - Lisbon 85


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PD 04<br />

Electrochemical characterization <strong>of</strong> polypyrrole-based<br />

conducting fabrics in different pH media<br />

Javier Molina, Javier Fernández, Ana Isabel del Río, José Bonastre,<br />

Francisco Cases<br />

Departamento de Ingeniería Textil y Papelera, EPS de Alcoy, Universidad Politécnica de Valencia,<br />

Plaza Ferrándiz y Carbonell s/n, 03801 Alcoy, Spain<br />

jamopue@doctor.upv.es<br />

Conducting fabrics <strong>of</strong> polyester covered with polypyrrole have been electrochemically<br />

characterized at different pHs (1, 7 and 13). The stability <strong>of</strong> <strong>the</strong> conducting fabrics in<br />

different pHs is fundamental in views <strong>of</strong> its application in electronic textiles or<br />

electrocatalysis. In <strong>the</strong> study, two counter ions have been employed: AQSA (organic)<br />

and PW 12 O 3- 40 (inorganic). The electrochemical techniques that have been employed for<br />

<strong>the</strong> electrochemical characterization have been cyclic voltammetry (CV) and scanning<br />

electrochemical microscopy (SECM). It has been demonstrated <strong>the</strong> influence <strong>of</strong> <strong>the</strong> scan<br />

rate in <strong>the</strong> form <strong>of</strong> <strong>the</strong> voltammograms obtained. High scan rates (50 mV·s -1 ) did not<br />

allow <strong>the</strong> observation <strong>of</strong> <strong>the</strong> redox processes and a resistive response was obtained. On<br />

<strong>the</strong> o<strong>the</strong>r hand, low scan rates (1mV·s -1 ) allowed <strong>the</strong> apparition <strong>of</strong> <strong>the</strong> redox peaks. The<br />

charge transfer is produced across <strong>the</strong> polymer chains since polyester is an insulating<br />

material. Lower pHs produced a higher and more characteristic electrochemical<br />

response due to <strong>the</strong> influence <strong>of</strong> protonation on <strong>the</strong> polypyrrole activity [1].<br />

SECM allows <strong>the</strong> possibility <strong>of</strong> studying zonal electroactivity at its open circuit<br />

potential. Approach curves were obtained by SECM for <strong>the</strong> samples <strong>of</strong> PPy/AQSA and<br />

3-<br />

PPy/PW 12 O 40 treated at different pHs. Positive feedback was obtained for all <strong>the</strong><br />

conducting fabrics samples, so <strong>the</strong> fabrics were electroactive. The degree <strong>of</strong> positive<br />

feedback varied on <strong>the</strong> nature and <strong>the</strong> treatment <strong>of</strong> <strong>the</strong> polypyrrole layer. An increase in<br />

<strong>the</strong> pH <strong>of</strong> <strong>the</strong> solution caused <strong>the</strong> loss <strong>of</strong> part <strong>of</strong> <strong>the</strong> counter ions as XPS measurements<br />

have revealed and <strong>the</strong> layer electroactivity was affected. The organic counter ion was<br />

more stable than <strong>the</strong> inorganic one at pH 13. This is due to a reaction <strong>of</strong> decomposition<br />

that suffers <strong>the</strong> PW 12 O 3- 40 at pH>8.3 [2]. The PW 12 O 3- 40 decomposed into PO 3- 4 and<br />

WO 2- 4 [2].<br />

Acknowledgments: Authors thank to <strong>the</strong> Spanish Ministerio de Ciencia y Tecnología and European<br />

Union Funds (F EDER) (contract CTM2007-66570-C02-02) and Universidad Politécnica de<br />

Valencia (Programa de apoyo a la investigación y desarrollo de la UPV (PAID-05-08)) for <strong>the</strong><br />

financial support. J. Molina and A.I. del Río are grateful <br />

(Generalitat Valenciana) and <strong>the</strong> Spanish Ministerio de Ciencia y Tecnología respectively for <strong>the</strong><br />

FPI fellowship.<br />

References<br />

[1] Krzyszt<strong>of</strong> M. Electroanalysis, 2006, 18, 1537.<br />

[2] Zu Z.; Tain R.; Rhodes C. Canadian Journal <strong>of</strong> Chemistry, 2003, 81, 1044.<br />

September, 811, 2010. ISEL - Lisbon 86


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PD 05<br />

Influence <strong>of</strong> Molybdenum on electronic structure <strong>of</strong> passive<br />

films on stainless steels<br />

M.A. Catarino, 1 M.I. Godinho, 1 L. Freire, 2 M. da Cunha Belo, 2<br />

A.M.P. Simões, 2 M.J. Ferreira, 1 M.F. Montemor 2<br />

1 ISEL, Área Departamental de Engenharia Química, Av. Conselheiro Emídio Navarro, 1,<br />

1959-007, Lisboa, Portugal<br />

2 ICEMS Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais,<br />

1049-001, Lisboa, Portugal<br />

acatarino@deq.isel.ipl.pt<br />

The study concerns <strong>the</strong> passive state <strong>of</strong> AISI type 304 and 316 stainless steels created in<br />

aqueous solutions <strong>of</strong> different pH, in <strong>the</strong> alkaline range (13-9), at room temperature<br />

without and with chloride additions. Experimental work is carried out by capacitance<br />

measurements using <strong>the</strong> Mott-Schottky method.<br />

The objective is to establish <strong>the</strong> influence <strong>of</strong> molybdenum which is a very important<br />

alloying element in <strong>the</strong> case <strong>of</strong> <strong>the</strong> 316 stainless steel.<br />

It has been demonstrated that molybdenum decreases <strong>the</strong> doping density <strong>of</strong> <strong>the</strong><br />

constitutive oxides <strong>of</strong> <strong>the</strong> passive films formed in <strong>the</strong> neutral borate/boric solutions<br />

( pH 9) [1].<br />

Now, <strong>the</strong> results obtained with <strong>the</strong> solutions under study show that <strong>the</strong> capacitance<br />

behaviour <strong>of</strong> both stainless steels can be related to <strong>the</strong> existence <strong>of</strong> a diphasic passive<br />

films formed by an inner chromium rich oxide layer <strong>of</strong> p-type semi-conductivity and an<br />

outer iron rich oxide layer <strong>of</strong> n-type. From <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> slopes <strong>of</strong> <strong>the</strong> Mott-<br />

Schottky plots, it can be concluded that <strong>the</strong> doping densities are not so high for films<br />

formed on 316 stainless steel, this means that molybdenum increases <strong>the</strong> thickness <strong>of</strong> <strong>the</strong><br />

space charge layer at film-solution interface and probably also modifies <strong>the</strong> depletion or<br />

accumulation <strong>of</strong> charges at metal-film interface.<br />

Fur<strong>the</strong>r, molybdenum can affect <strong>the</strong> electrical potential barrier situated inside <strong>the</strong><br />

passive film where <strong>the</strong> transition from p-type to n-type conduction occurs, like <strong>the</strong> o<strong>the</strong>r<br />

two interfaces. This special junction (n-p) is a source <strong>of</strong> structural defects and influence<br />

migration processes.<br />

The electronic band structure model proposed to explain electron distribution considers<br />

that <strong>the</strong> passive film is very highly doped but can be described by <strong>the</strong> Boltzmann<br />

statistics. The Fermi level is placed in <strong>the</strong> Urbach tail where localized energy states<br />

could intervene in <strong>the</strong> electronic transfer <strong>of</strong> charges.<br />

Acknowledgments: Project PTDC/ECM/69132/2006.<br />

References<br />

[1] Hakiki, N.E.; Da Cunha Belo, M.; Simões, A.M.P.; Ferreira, M.G.S. J. Electrochem. Soc., 1998,<br />

145, 3821.<br />

September, 811, 2010. ISEL - Lisbon 87


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PD 06<br />

Corrosion behaviour <strong>of</strong> quaternary bronzes in slightly<br />

passivating environments<br />

Mariano Pérez, Maurizia Calvisi, Gemma Mª. González-Mesa<br />

Departamento de Química Física. Universidad de La Laguna. Tenerife. España<br />

mjperez@ull.es<br />

This communication show <strong>the</strong> first results <strong>of</strong> a work on corrosion/protection<br />

<strong>of</strong> bronze materials. This work has been developed from <strong>the</strong> factory ingots (first<br />

foundry) <strong>of</strong> quaternary bronze materials and from <strong>the</strong> so called chimney residuals<br />

resulting from a second cast bronze materials used for filling <strong>the</strong> sculpture molds.<br />

The deviation <strong>of</strong> compositions and crystalline structure <strong>of</strong> both first and second foundry<br />

bronzes have been studied by SEM/EDS and DRX and compared to <strong>the</strong> ingots factory<br />

specifications.<br />

Metal samples shaped as planar disks, as received from <strong>the</strong> factory (EB), were<br />

kept in natural atmosphere, not specially corrosive (indoors), for 10-12 months. Then<br />

<strong>the</strong>y were characterized by SEM-EDX, noticing <strong>the</strong> topographic and composition<br />

variations due to this oxidation period respect to <strong>the</strong>ir initial status.<br />

Following <strong>the</strong> results <strong>of</strong> <strong>the</strong> previous observations <strong>the</strong> redox characterization<br />

<strong>of</strong> <strong>the</strong>se materials were carried out with <strong>the</strong> abovementioned shaped disk samples as<br />

working electrodes, by cyclic voltammetry in a slightly passivating environment,<br />

aqueous sodium tetraborate solution (pH 9.3), to detect components peaks in <strong>the</strong> records<br />

made and trying to assign <strong>the</strong>m to redox couples <strong>of</strong> <strong>the</strong> metal components <strong>of</strong> <strong>the</strong>se<br />

alloys.<br />

In parallel, <strong>the</strong> same type <strong>of</strong> voltammetric records were carried out with metal<br />

samples <strong>of</strong> <strong>the</strong> main alloy components, that is, <strong>the</strong> components <strong>of</strong> <strong>the</strong> studied quaternary<br />

bronze alloys, namely, copper, tin, zinc and lead.<br />

Correlation <strong>of</strong> redox characteristics and corrosion behaviour versus <strong>the</strong><br />

crystalline structure <strong>of</strong> <strong>the</strong>se quaternary alloys are attempted [1].<br />

Acknowledgments: enterprise and materials<br />

supplier.2.SEM/EDS and XRD SEGAI Services from ULL. 3 Pr<strong>of</strong>. L. Galindo. Depto. Quimica<br />

Analítica. ULL.<br />

References<br />

[1] <br />

September, 811, 2010. ISEL - Lisbon 88


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PD 07<br />

Complementary application <strong>of</strong> localized and electrochemical<br />

techniques to reveal self-healing ability in small defects<br />

M. Taryba 1 , D. Snihirova 1 , S. Lamaka 1 , M.F. Montemor 1 , M.G.S.Ferreira 1,2<br />

1<br />

ICEMS, Instituto Superior Técnico, Technical University <strong>of</strong> Lisbon, Portugal<br />

2 CICECO, Dep.Ceramics and Glass Eng., University <strong>of</strong> Aveiro, Aveiro, Portugal<br />

maryna.taryba@ist.utl.pt<br />

Data for characterization <strong>of</strong> self-healing ability <strong>of</strong> anticorrosion coatings applied on<br />

galvanized steel samples was provided by Scanning Vibrating Electrode Technique<br />

(SVET), Scanning Ion-selective Electrode Technique (SIET), Scanning Electron<br />

Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) and<br />

Electrochemical Impedance Spectroscopy (EIS). The analyzed coatings contained<br />

nanoreservoirs filled with different corrosion inhibitors. SVET system allowed for<br />

locating cathodic and anodic activity, SIET technique characterized acid-base equilibria<br />

<strong>of</strong> <strong>the</strong> corrosion process, SEM/EDS measurements supplied information about <strong>the</strong><br />

composition <strong>of</strong> corrosion products and <strong>the</strong>ir distribution, EIS was used to estimate<br />

general barrier properties <strong>of</strong> <strong>the</strong> coatings under consideration. The research aims to show<br />

<strong>the</strong> advantages <strong>of</strong> complementary use <strong>of</strong> localized and conventional electrochemical<br />

techniques in terms <strong>of</strong> <strong>the</strong>ir application for better understanding and description <strong>of</strong><br />

corrosion and self-healing mechanisms.<br />

Acknowledgments: -LA-2008-214261 is gratefully<br />

acknowledged.<br />

September, 811, 2010. ISEL - Lisbon 89


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PD 08<br />

Gold Electrodeposition from Ionic Liquids:<br />

an Alternative to Conventional Aqueous Baths<br />

A.I.de Sá 1 , C.M. Rangel 1,2 , S. Quaresma 2 , S. Eugénio 2 , R. Vilar 2<br />

1 Laboratório Nacional de Energia e Geologia, Paço do Lumiar 22,<br />

Unidade de Pilhas de Combustível e Hidrogénio 1649-038 Lisboa, Portugal<br />

2<br />

Departamento de Materiais, Instituto Superior Técnico,<br />

Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal<br />

carmen.rangel@ineti.pt<br />

Ionic liquids have been proven to be suitable as electrolytes for <strong>the</strong> electrodeposition <strong>of</strong><br />

different metals as well as semiconductors materials [1]. In this work, an alternative bath<br />

for gold electroplating based on 1-butyl-1-methylpyrrolidinium dicyanamide (BMP-<br />

DCA) is proposed. The selection was based on <strong>the</strong> physical and chemical properties <strong>of</strong><br />

<strong>the</strong> ionic liquid, including its viscosity, conductivity and strong complexing capability<br />

[2]. The bath was prepared by adding HAuCl 4 .3H 2 O to <strong>the</strong> as received-ionic liquid,<br />

experiments were performed under laboratory atmospheric conditions. The water uptake<br />

<strong>of</strong> <strong>the</strong> ionic liquid was followed by Karl-Fischer titration and its effect on<br />

conductivity and on <strong>the</strong> electrochemical pr<strong>of</strong>ile was evaluated. Cyclic voltammograms<br />

were recorded using glassy carbon (see figure 1), nickel and copper as electrodes in<br />

order to characterize <strong>the</strong> gold reduction processes on <strong>the</strong> different substrates. Results<br />

suggested a two step reduction, under diffusion control. Nanocrystalline gold thin films<br />

were obtainable under potentiostatic control (-1 V, 1500 s) on copper and nickel<br />

electrodes at temperatures from 20 to 80ºC. The influence <strong>of</strong> temperature on <strong>the</strong> kinetics<br />

and morphology <strong>of</strong> gold deposits will be discussed. Characterization <strong>of</strong> <strong>the</strong> deposits was<br />

performed by XRD, SEM and TEM.<br />

i mA cm -2<br />

8.0E-04<br />

E / V<br />

-1.6 1<br />

-6.0E-04<br />

Fig. 1 Typical cyclic voltammogram (100 mVs -1 ) obtained on glassy carbon in 0.020 M<br />

HAuCl 4 .3H 2 O + BMP-DCA at 298 K.<br />

Acknowledgements<br />

This work was financed by Fundação para a Ciência e Tecnologia (F CT), under contract nº<br />

PTDM/ CTM/68847/2006. S. Quaresma and S. Eugénio also acknowledge F CT for <strong>the</strong> provision <strong>of</strong><br />

grants.<br />

References<br />

[1] Abedin S.Z.E, and Endres F., Chemphyschem, 2006, 7, 58<br />

[2] Deng M-J, Chen P-Y, Leong T-I, Sun I-W, Chang J-K and Tsai W-T, Electrochem. Commun.,<br />

2008, 10, 213.<br />

September, 811, 2010. ISEL - Lisbon 90


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PD 09<br />

Effect <strong>of</strong> chloride and sulphate ions on <strong>the</strong> electrochemical<br />

behaviour <strong>of</strong> an austenitic stainless steel, <strong>the</strong> H A Z and <strong>the</strong><br />

welded metal in phosphoric acid medium at different<br />

temperatures<br />

Blasco-Tamarit, E.; García-García, D.M.; Ibáñez-Ferrándiz, M.V.;<br />

García-Antón, J.<br />

Ingeniería Electroquímica y Corrosión (IEC). Departamento de Ingeniería Química y Nuclear.<br />

E.T.S.I.Industriales. Universidad Politécnica de Valencia. P.O. Box 22012, E-46071 Valencia.<br />

Spain.<br />

jgarciaa@iqn.upv.es<br />

Industrial phosphoric acid solutions are chemically complex and <strong>the</strong>ir analysis changes<br />

from one plant to ano<strong>the</strong>r, depending on <strong>the</strong> quality <strong>of</strong> phosphate ores and <strong>the</strong> process<br />

utilized. Phosphoric acid produced according to <strong>the</strong> wet process, in which <strong>the</strong> phosphate<br />

ores are attacked by sulphuric acid, is <strong>the</strong> most important <strong>of</strong> such chemicals. During <strong>the</strong><br />

wet process, impurities as chlorides and sulphides are incorporated to <strong>the</strong> phosphoric<br />

acid, which becomes this acid in <strong>the</strong> most aggressive industrial phosphoric acid. So that,<br />

severe corrosion problems on <strong>the</strong> equipments used in this industry take place. In this<br />

sense, <strong>the</strong> austenitic stainless steels are a good choice to be used in phosphoric media<br />

due to <strong>the</strong>ir high corrosion resistance.<br />

The objective <strong>of</strong> <strong>the</strong> this work was to study <strong>the</strong> effect <strong>of</strong> <strong>the</strong> impurities (chlorides and<br />

sulphates) on <strong>the</strong> electrochemical behaviour <strong>of</strong> a highly alloyed austenitic stainless steel<br />

(UNS N08031) used as base metal, <strong>the</strong> welded metal obtained by TIG (Tungsten Inert<br />

Gas) welding using a Nickel-base alloy (UNS N06059) as filler metal, and <strong>the</strong> Heat<br />

Affected Zone (HAZ) <strong>of</strong> <strong>the</strong> base metal. The materials have been tested in two solutions:<br />

pure 5.5 M phosphoric acid solution and 5.5 M phosphoric acid solution polluted with<br />

379.2 ppm <strong>of</strong> chloride ions and 2wt% <strong>of</strong> H 2 SO 4 . Tests were developed at 25 ºC, 40ºC,<br />

60ºC and 80ºC.<br />

Open Circuit Potential tests and potentiodynamic anodic polarization curves were<br />

carried out to obtain information about <strong>the</strong> electrochemical behaviour <strong>of</strong> <strong>the</strong> materials.<br />

Corrosion potentials and corrosion current densities were obtained from Tafel analysis.<br />

The critic potentials and <strong>the</strong> passivation current densities <strong>of</strong> <strong>the</strong> studied materials were<br />

also analysed.<br />

The most important influence <strong>of</strong> impurities was observed on <strong>the</strong> critic potential obtained<br />

from <strong>the</strong> potentiodynamic curves. More active values <strong>of</strong> critic potential were obtained in<br />

<strong>the</strong> polluted solution than in <strong>the</strong> pure solution. This fact means that <strong>the</strong> presence <strong>of</strong><br />

impurities makes <strong>the</strong> rupture <strong>of</strong> <strong>the</strong> passive film easier.<br />

Acknowledgments: We wish to express our gratitude to Programa de Apoyo a la Investigación y<br />

Desarrollo de la Universidad Politécnica de Valencia (PAID-06-09 and to <strong>the</strong> Ministerio de<br />

Asuntos Exteriores y Cooperación <strong>of</strong> Spain (PCI Mediterráneo C/8196/07, Ref. C/018046/08, and<br />

D/023608/09).<br />

September, 811, 2010. ISEL - Lisbon 91


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 01<br />

Some aspects <strong>of</strong> <strong>the</strong> electrochemical reduction <strong>of</strong> <strong>the</strong> herbicide<br />

imazamethabenz acid on mercury electrodes<br />

Sara Pintado Benzal, 1 Mercedes Ruiz Montoya and José Miguel Rodríguez<br />

Mellado<br />

1<br />

Departamento de Química Física y Termodinámica Aplicada. Universidad de Córdoba. Campus de<br />

Rabanales edificio Marie Curie 2ª planta (España)<br />

q02pibes@uco.es<br />

The knowledge <strong>of</strong> <strong>the</strong> electrochemical behaviour <strong>of</strong> pollutants can contribute to <strong>the</strong><br />

development <strong>of</strong> methods able to eliminate such compounds or, at least, to decrease <strong>the</strong>ir<br />

toxicity. O<strong>the</strong>r imidazolinone herbicides such as imazapyr, imazethapyr or imazaquin<br />

have been studied by <strong>the</strong> authors [1]. Imazamethabenz acid differs from <strong>the</strong>se<br />

compounds in <strong>the</strong> aromatic part (a benzoic acid rest) that is non-reducible in aqueous<br />

media (scheme 1). So, <strong>the</strong> reducible part <strong>of</strong> <strong>the</strong> molecule must be <strong>the</strong> imidazolinone ring<br />

as found for imazamethabenz methyl [2]<br />

(a) (b) (c)<br />

Scheme 1: Structures <strong>of</strong> (a) imazapyr, (b) imazaquin, and (c) imazamethabenz acid<br />

Polarographic and voltammetric studies have been made on mercury electrodes from<br />

strongly acidic media (0.12.7 M H 2 SO 4 ) to pH 12. The overall reduction process<br />

involves <strong>the</strong> uptake <strong>of</strong> two electrons, <strong>the</strong> following species being reduced [2, 3]:<br />

C H 3<br />

H<br />

O N<br />

N +<br />

CH CH3<br />

H<br />

CH 3<br />

O<br />

R 1<br />

R 2<br />

C<br />

OH<br />

-2H +<br />

2H +<br />

C H 3<br />

H<br />

O N<br />

N<br />

CH CH3<br />

CH 3<br />

O<br />

R 1<br />

R 2<br />

C<br />

O<br />

-<br />

- H +<br />

H +<br />

R 1<br />

O N - R 2<br />

H 3 C N<br />

CH CH3 C -<br />

CH 3<br />

O O<br />

In strongly acidic media (pH


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 02<br />

Electrochemical and Spectroelectrochemical Study <strong>of</strong><br />

Alkyl-Substituted Heptathienoacenes<br />

C. Capel Ferrón a,b , B. Vercelli b , G. Zotti b ,<br />

Mingqian He c , Weijun Niu c , V. Hernández a , J. T. López Navarrete a<br />

a<br />

Department <strong>of</strong> Physical Chemistry, Málaga University, 29071 Málaga (Spain)<br />

b<br />

Institute for Energetics and Interphases-IENI CNR, C.so Stati Uniti, 4, 35127 Padova (Italy)<br />

c Corning Incorporated, SP-FR-6, Corning, New York 14830<br />

capel@uma.es<br />

Conjugated organic molecules such as pentacene have been widely used as organic<br />

field-effect transistor (OFET) materials. Oligothiophenes with complete ring fusion, are<br />

<strong>of</strong> particular interest due in part to <strong>the</strong>ir fully planar structure which avoids<br />

conformational disorder and more efficient molecular packing than usual<br />

oligothiophenes, <strong>the</strong>y adopt face-to- face packing motifs in contrast to face-to-edge or<br />

herringbone packing commonly found in -linked oligothiophenes.<br />

Here we consider a series a serie <strong>of</strong> capped heptathienoacenes. [1]<br />

S<br />

S<br />

S<br />

S S<br />

2D-7T<br />

S<br />

S<br />

H 3 C S S S CH 3<br />

C 10 H 21 S S S S C 10 H 21<br />

2D M-7T<br />

C 10 H 21 C10 H 21<br />

S<br />

C 10 H 21 S S S C 10 H 21<br />

C 10 H 21 S S S S C 10 H 21<br />

4D-7T<br />

Si<br />

S S S<br />

S S<br />

T IPS-7T-T IPS<br />

S<br />

Si<br />

The occurrence <strong>of</strong> -dimerization in <strong>the</strong>se flat thienoacenes upon oxidation has been<br />

checked with <strong>the</strong> 7T compounds bearing scarcely hindering C 10 H 21 - or CH 3 -moieties.<br />

The spectroelectrochemistry <strong>of</strong> 2D-7T, 2MD-7T and 4D-7T displays a broad band at ca.<br />

700 nm assigned to <strong>the</strong> formation <strong>of</strong> -dimers, however <strong>the</strong> UV-Vis-NIR spectrum <strong>of</strong><br />

TIPS-7T-TIPS upon oxidation at 700 mV exhibits two bands around 575 nm and 1028<br />

nm, typical <strong>of</strong> insolated radical cations. The formation <strong>of</strong> -dimers in this oligomer is<br />

hindered by <strong>the</strong> bulky TIPS groups incorporated in its terminal alpha positions. [2]<br />

References<br />

[1] Mingqian He and Feixia Zhang , JOC, 2007, 72, 442-451.<br />

[2] J. Aragó; M. Viruela; E. Ortí; R. Malavé Osuna; B.Vercelli; G. Zotti; V. Hernández; J. T.<br />

López Navarrete; J. T. Henssler; A. J. Matzger; Y. Suzuki; and Shigehiro Yamaguchi, Chem.<br />

Eur. J., 2010, DOI: 10.1002/chem.200903343<br />

September, 811, 2010. ISEL - Lisbon 93


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 03<br />

Evaluation <strong>of</strong> <strong>the</strong> antioxidant capacity <strong>of</strong> imidazoimidazole<br />

phenolic derivatives by cyclic voltammetry<br />

F. Gomes, A.P. Bettencourt, C. Correia, M.A. Carvalho, M.F. Proença<br />

Departamento de Química, Universidade do Minho, 4710-057, Braga, Portugal<br />

figs8@hotmail.com<br />

The human organisms are exposed to reactive species (ROS) and <strong>the</strong> action <strong>of</strong> free<br />

radicals can potentiate redox reactions that can cause several diseases [1,2]. The use <strong>of</strong><br />

compounds with antioxidant activity is expected to be useful for <strong>the</strong> prevention and<br />

treatment <strong>of</strong> <strong>the</strong>se diseases [1,2]. Therefore, <strong>the</strong>re has been a growing interest in finding<br />

novel antioxidants in order to meet <strong>the</strong> requirements <strong>of</strong> pharmaceutical industries.<br />

It is also essential to have a simple and fast method to measure <strong>the</strong> antioxidant capacity<br />

<strong>of</strong> new compounds. So, several methods have been developed and used to evaluate <strong>the</strong><br />

capacity <strong>of</strong> a compound to act as an antioxidant, including chemical and electrochemical<br />

methods [3].<br />

Electrochemical approaches for evaluating antioxidant capacity used have been<br />

controlled-potential techniques [4, 5].<br />

In this work several novel phenolic compounds based on an imidazoimidazole structure<br />

with potential antioxidant capacity were syn<strong>the</strong>sized and <strong>the</strong>ir antioxidant activity<br />

evaluated by cyclic voltammetry. Cyclic voltammetry has been used to measure <strong>the</strong> ease<br />

<strong>of</strong> oxidation <strong>of</strong> <strong>the</strong> syn<strong>the</strong>sized phenolic compounds and <strong>the</strong> anodic peak potential is<br />

employed as a predictor <strong>of</strong> antioxidant capacity.<br />

The effect <strong>of</strong> <strong>the</strong> nature <strong>of</strong> <strong>the</strong> substituent R and <strong>the</strong> position <strong>of</strong> hydroxyl groups in <strong>the</strong><br />

substituent R 2 on <strong>the</strong> oxidation potentials <strong>of</strong> <strong>the</strong> compounds is evaluated. The<br />

antioxidant activities estimated by means <strong>of</strong> <strong>the</strong> anodic peak potentials were compared<br />

with data obtained for Trolox, a commercial derivative <strong>of</strong> vitamin E with high<br />

antioxidant activity routinely used as reference compound.<br />

R<br />

N<br />

NH<br />

R 1<br />

N<br />

N<br />

CONH 2<br />

Figure 1 - Imidazoimidazole structure<br />

Acknowledgments: F. Gomes acknowledges to F CT for <strong>the</strong> Integration into Research Grant,<br />

Centro de Química, Universidade do Minho.<br />

References<br />

[1] Valko, M.; Rhodes, C. J.; Moncola, J.; Izakovic, M.; Mazur, M. Chemico-Biological Interac.<br />

2006, 160, 1.<br />

[2] Halliwell, B. Biochem. Pharmacol. 1995, 49, 1341.<br />

[3] Huang, D. ; Ou, B.; Prior, R.L., J. Agric. Food Chem. 2005, 53,1841.<br />

[4] Blasco, A.J.; Crevillén, A.G.; González, M.C.; Escarpa, A. Electroanalyis 2007, 19, 2275.<br />

[5] Bortolomeazz, R.; Sebastianutto, N.; Toniolo, R.; Pizzariello, A. Food Chem. 2007, 100, 1481.<br />

September, 811, 2010. ISEL - Lisbon 94


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 04<br />

Complexes for N L O : Cyclic Voltammetry Study<br />

Ana M. Santos 1,2 , Paulo J. Mendes 2 , Tiago J. L. Silva 1 , M. H. Garcia 1 , M. P.<br />

Robalo 3<br />

1 FCUL, Campo Grande, 1049-001 Lisboa, Portugal<br />

2 Centro de Química de Évora, R. Romão Ramalho 59, 7000-671 Évora, Portugal<br />

3<br />

ADEQ/ISEL, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa<br />

margaridaggs@gmail.com<br />

Organometallic compounds continue to attract considerable interest owing to <strong>the</strong>ir<br />

application in <strong>the</strong> field <strong>of</strong> nonlinear optics (NLO) [1]. For second-order nonlinear optics,<br />

strongly asymmetric systems are needed, which led to <strong>the</strong> development <strong>of</strong> typical push<br />

pull systems in which <strong>the</strong> metal centre, bound to a highly polarizable conjugated<br />

backbone, acts as an electron donor (D) or acceptor (A) group. This is <strong>the</strong> case <strong>of</strong> <strong>the</strong><br />

5 -monocyclopentadienylmetal complexes presenting benzene- or<br />

thiophene-based conjugated ligands coordinated to <strong>the</strong> metal centre through nitrile or<br />

acetylide linkages which revealed to be much more efficient donor groups for secondorder<br />

NLO purposes than <strong>the</strong> traditional organic donor groups [2,3]. Recently, a new<br />

promising approach has emerged that is <strong>the</strong> concept <strong>of</strong> switchable second-order<br />

nonlinear optical (SONLO) properties [4]. This makes possible to achieve a switch in<br />

<strong>the</strong> SONLO response between two forms since <strong>the</strong>y have great difference in <strong>the</strong><br />

magnitude <strong>of</strong> <strong>the</strong> corresponding first hyperpolarizabilities. The hyperpolarizability can<br />

be altered, for instance, by reducing <strong>the</strong> donor capacity <strong>of</strong> <strong>the</strong> donor moiety (D) by<br />

oxidation. Thus, <strong>the</strong> presence <strong>of</strong> redox-active metal centers toge<strong>the</strong>r with a<br />

hyperpolarizable conjugated framework provides good opportunities for modulation <strong>of</strong><br />

molecular NLO responses, and is hence a primary justification for <strong>the</strong> study <strong>of</strong> <strong>the</strong>se<br />

systems.<br />

The cyclic voltammetry (CV) plays a role in this field. Besides <strong>the</strong> information about <strong>the</strong><br />

electron richness <strong>of</strong> redox-active centres and <strong>the</strong> correlation with spectroscopic<br />

properties, CV can give an insight on <strong>the</strong> reversibility/stability <strong>of</strong> oxidized and reduced<br />

species. In our ongoing work on <strong>the</strong> study <strong>of</strong> organometallic compounds with molecular<br />

5 -monocyclopentadienyliron(II) and<br />

nickel(II) complexes with substituted thiophene-based ligands in view <strong>of</strong> <strong>the</strong> potential<br />

use <strong>of</strong> <strong>the</strong>se systems as switchable SONLO molecules.<br />

Acknowledgments: We thank to COMPETE/F EDER for financial support (F COMP-01-0124-<br />

F EDER-007433).<br />

References<br />

[1] Goovaerts, E; Wenseleers W.; Garcia, M.H.; Cross G.H. Handbook <strong>of</strong> Advanced Electronic and<br />

Photonic Materials, Ed. H.S. Nalwa, 2001, 9, 127.<br />

[2] Powell, C.M.; Humphrey, M. G. Coord. Chem. Rev. 2004, 248, 725.<br />

[3] Garcia, M.H.; Mendes, P. J.; Robalo, M.P.; Duarte, M.T.; Lopes, N. J. Organomet. Chem. 2009,<br />

694, 2888.<br />

[4] Asselberghs, I.; Clays, K.; Persoons, A; Ward M.; McCleverty, J. J. Mater. Chem. 2004, 14,<br />

2831.<br />

September, 811, 2010. ISEL - Lisbon 95


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 05<br />

Electrochemical studies <strong>of</strong> Cu I -scorpionate complexes<br />

Riccardo Wanke, 2 Luísa M.D.R.S. Martins, 1,2 Armando J.L. Pombeiro 2<br />

1 Área Departamental de Engenharia Química, ISEL, R. Conselheiro Emídio Navarro, 1959-007<br />

Lisboa, Portugal. 2 Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av.<br />

Rovisco Pais, 1049-001 Lisboa, Portugal<br />

lmartins@deq.isel.ipl.pt<br />

Metal complexes <strong>of</strong> scorpionate ligands, in particular <strong>of</strong> tris(pyrazolyl)borates (Tp),<br />

constitute one <strong>of</strong> <strong>the</strong> most extensively studied classes in inorganic, organometallic and<br />

bioinorganic chemistries.<br />

The study we now report aimed at <strong>the</strong> syn<strong>the</strong>sis and investigation <strong>of</strong> <strong>the</strong> coordination<br />

ability <strong>of</strong> a new C-scorpionate that could combine flexibility and water solubility with<br />

<strong>the</strong> sterically demanding features <strong>of</strong> <strong>the</strong> 3-substituted tris(pyrazolyl) ligands. For <strong>the</strong>se<br />

purposes, we designed <strong>the</strong> new sterically hindered tris(1-pyrazolyl)methane sulfonate<br />

[SO 3 C(pz Ph ) 3 ] - , (Tpms Ph ) - derivative, bearing a phenyl group at <strong>the</strong> 3-position <strong>of</strong> <strong>the</strong><br />

pyrazolyl rings (Fig. 1). When ligating a metal centre, such a bulky species would be<br />

tion position(s) <strong>of</strong> <strong>the</strong><br />

complex.<br />

A series <strong>of</strong> copper(I) complexes bearing<br />

(Tpms Ph ) - has been prepared 1 and <strong>the</strong><br />

electrochemical behaviour has been studied<br />

by cyclic voltammetry and controlled<br />

potential electrolysis at Pt electrodes,<br />

namely for complexes such as<br />

[Cu(Tpms Ph )(MeCN)] (1) and<br />

[Cu(Tpms Ph )(PTA)] (2) (PTA = 1,3,5-<br />

triaza-7-phosphaadamantane).<br />

Complexes 1 and 2 display an irreversible<br />

process ascribed to <strong>the</strong> Cu(I) to Cu(II)<br />

Fig.1<br />

oxidation.<br />

The electrochemical behaviour <strong>of</strong> <strong>the</strong> above complexes has been interpreted in terms <strong>of</strong><br />

<strong>the</strong> electronic properties <strong>of</strong> <strong>the</strong> ligands and confirms <strong>the</strong> observed 1 solution 1 H-NMR<br />

and solid state X-ray diffraction data. For instance, for 2 <strong>the</strong> higher electron withdrawing<br />

effect <strong>of</strong> <strong>the</strong> ligated phosphine (i.e. PTA) hampers <strong>the</strong> oxidation <strong>of</strong> metal center and<br />

favours <strong>the</strong> N,N,N-coordination mode <strong>of</strong> <strong>the</strong> scorpionate ligand, whereas at 1, Tpms Ph<br />

adopts <strong>the</strong> less electron releasing N,N,O-mode.<br />

Acknowledgements: This work has been partially supported by <strong>the</strong> Foundation for Science and<br />

Technology (F CT), Portugal, and its PPCDT <br />

References<br />

[1] Wanke, R.; Smolénski, P.; Guedes da Silva, M. F. C.; Martins, L. M. D. R. S., Pombeiro, A. J.<br />

L., Inorg. Chem., 2008, 47, 10158.<br />

September, 811, 2010. ISEL - Lisbon 96


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 06<br />

Electrochemical behaviour <strong>of</strong> C-functionalized or substitutedpyrazolyl<br />

scorpionate cobalt complexes<br />

Telma F.S. Silva, 1 Luísa M.D.R.S. Martins, 1,2 Armando J.L. Pombeiro 1<br />

1 Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1049-<br />

001 Lisboa, Portugal. 2 Área Departamental de Engenharia Química, ISEL, R. Conselheiro Emídio<br />

Navarro, 1959-007 Lisboa, Portugal.<br />

tsilva@dem.isel.ipl.pt<br />

Scorpionates have become well-established as ligands in coordination and<br />

organometallic chemistry, and <strong>the</strong>ir complexes have made important contributions in<br />

numerous different areas, such as modeling <strong>of</strong> metallo-enzymes and catalysis. 1<br />

In pursuit <strong>of</strong> our interest on <strong>the</strong> coordination chemistry <strong>of</strong> C-scorpionates towards<br />

several transition metals, 2 we now report <strong>the</strong> electrochemical study <strong>of</strong> our recently<br />

obtained half- or full-sandwich cobalt complexes 1-4 prepared by reaction <strong>of</strong> cobalt(II)<br />

chloride with LiSO 3 C(pz) 3 , HC(pz Ph ) 3 or OHCH 2 C(pz) 3 (pz = pyrazolyl):<br />

[Co{HC(pz) 3 }(OSO 2 OH)(OCH 3 ) 2 ] 1, [CoCl 2 {3Ph-pzH} 3 ] 2 2, [Co{3Ph-pzH} 4 ]Cl 2 3 or<br />

[Co{OHCH 2 C(pz) 3 } 2 ].[Co{OHCH 2 C(pz) 3 }(H 2 O) 3 ](Cl) 2 .2H 2 O 4.<br />

All <strong>the</strong> studies have been carried<br />

out by cyclic voltammetry (CV) at<br />

a Pt-disc electrode or controlled<br />

potential electrolysis (CPE) at a<br />

Pt-gauze electrode, in a 0.2 M<br />

Bu 4 NBF 4 /NCMe or DMSO<br />

solution.<br />

The electrochemical behaviours<br />

are discussed in terms <strong>of</strong> electron<br />

richness <strong>of</strong> <strong>the</strong> Co centres and <strong>the</strong><br />

electronic properties <strong>of</strong> <strong>the</strong><br />

ligands.<br />

Fig.1 - Cyclic voltammograms <strong>of</strong> 4, initiated by <strong>the</strong><br />

anodic sweep, at a Pt disc electrode, in a 0.20 M<br />

n Bu 4 N[BF 4 /NCMe solution, in <strong>the</strong> scan rate range<br />

50 - 400 Vms -1 .<br />

Acknowledgments: This work has been partially supported by <strong>the</strong> Fundação para a Ciência e a<br />

Tecnologia (F CT), Portugal, and its PCDT (F EDER funded) programme. TFSS is grateful to F CT<br />

for a PhD grant (no. SFRH/BD/48087/2008).<br />

References<br />

[1] C. Pettinari, Scorpionates II: Chelating Borate Ligands - Dedicated to Swiatoslaw Tr<strong>of</strong>imenko,<br />

Imperial College Press, World Scientific Pub., 2008.<br />

[2] a) T.F.S. Silva, K.V. Luzyanin, M.V. Kirillova, M.F. Guedes da Silva, L.M.D.R.S. Martins,<br />

A.J.L. Pombeiro, Adv. Synth. Catal., 2010, 352, 171. b) T.F.S. Silva, E.C.B.A. Alegria,<br />

L.M.D.R.S. Martins, A.J.L. Pombeiro, Adv., Synth. Cat., 2008, 350, 706. c) R. Wanke, P.<br />

Smolenski, M.F.C. Guedes da Silva, L.M.D.R.S. Martins, A.J.L. Pombeiro, Inorg. Chem., 2008,<br />

47, 10158.<br />

September, 811, 2010. ISEL - Lisbon 97


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 07<br />

Electrochemical behaviour <strong>of</strong> novel scorpionate and pyrazole<br />

dioxovanadium complexes<br />

Telma F.S. Silva, 1 Konstantin V. Luzyanin, 1 Luísa M.D.R.S. Martins, 1,2<br />

Armando J.L. Pombeiro 1<br />

1 Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1049-<br />

001 Lisboa, Portugal. 2 Área Departamental de Engenharia Química, ISEL, R. Conselheiro Emídio<br />

Navarro, 1959-007 Lisboa, Portugal.<br />

tsilva@dem.isel.ipl.pt<br />

The coordination chemistry <strong>of</strong> vanadium, in particular with multidentate ligands, is<br />

receiving much attention namely on account <strong>of</strong> its involvement in various biological and<br />

catalytic processes, and <strong>the</strong> search for novel V complexes with pharmacological and<br />

catalytic significance is a matter <strong>of</strong> a high current interest. 1<br />

In view <strong>of</strong> <strong>the</strong> significance <strong>of</strong> V-chemistry with poly(pyrazolyl)borate ligands towards<br />

mimicking biocatalytic behaviours and also in pursuit <strong>of</strong> our interest on transition metal<br />

complexes bearing scorpionate ligands, we have embarked upon <strong>the</strong> syn<strong>the</strong>ses <strong>of</strong><br />

oxovanadium complexes with such ligands and with those <strong>of</strong> <strong>the</strong> related<br />

tris(pyrazolyl)methane family, 2 namely <strong>the</strong> dioxovanadium(V) complexes [VO 2 (3,5-<br />

Me 2 Hpz) 3 ][BF 4 ] 1 (pz = pyrazolyl), [VO 2 {SO 3 C(pz) 3 ] 2, [VO 2 {HB(3,5-Me 2 pz) 3 }] 3 or<br />

[VO 2 {HC(pz) 3 }][BF 4 ] 4, and <strong>the</strong> oxovanadium(IV) complex [VO{HB(pz) 3 }{H 2 B(pz) 2 }]<br />

5.<br />

We are now reporting <strong>the</strong> results <strong>of</strong> our study <strong>of</strong><br />

<strong>the</strong> redox behaviour, by cyclic voltammetry and<br />

controlled potential electrolysis (at a platinum<br />

electrode, 25 ºC, in a 0.2 M<br />

[ n Bu 4 N][BF 4 ]/CH 2 Cl 2 or DMSO solution), <strong>of</strong> <strong>the</strong><br />

obtained vanadium complexes, which allowed us<br />

to get an insight into <strong>the</strong> net electron-donor<br />

ability <strong>of</strong> such ligands and in <strong>the</strong> redox<br />

V(V)/V(IV) or V(IV)/V(III) interplay, essential<br />

for <strong>the</strong> vanadium versatility as a catalyst.<br />

Acknowledgments: This work has been partially supported by <strong>the</strong> Fundação para a Ciência e a<br />

Tecnologia (F CT), Portugal, and its PPCDT (F EDER funded) programme. TFSS is grateful to<br />

F CT for a PhD grant (no. SFRH/BD/48087/2008).<br />

References<br />

[1] A.S. Tracey, G.R. Willsky, E.S. Takeuchi, Vanadium Chemistry, Biochemistry,<br />

Pharmacology and Practical Applications, CRC Press, 2007.<br />

[2] Silva, T.F.S.; Luzyanin, K.V.; Kirillova, M.V.; Guedes da Silva, M.F.; Martins, L.M.D.R.S.;<br />

Pombeiro, A.J.L., Adv. Synth. Catal., 2010, 352, 171.<br />

September, 811, 2010. ISEL - Lisbon 98


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 08<br />

Electrochemical behaviour <strong>of</strong> para-substituted<br />

3-(phenylhydrazo)pentane-2,4-diones<br />

Maximilian N. Kopylovich, a K amran T. Mahmudov, a M. Fátima C.Guedes da<br />

Silva, a,b Luísa M. D. R. S. Martins, a,c Maxim L. Kuznetsov, a Telma F. S. Silva, a<br />

João J. R. Fraústo da Silva, a Armando J. L. Pombeiro a<br />

a Centro de Química Estrutural, Complexo I, IST, TU Lisbon, Av. Rovisco Pais, 1049001 Lisboa,<br />

Portugal. b Universidade Lusófona de Humanidades e Tecnologias, ULHT Lisbon, Campo Grande<br />

376, 1749-024 Lisboa, Portugal. c Área Departamental de Engenharia Química, ISEL, R.<br />

Conselheiro Emídio Navarro, 1959-007 Lisboa, Portugal<br />

kamran_chem@mail.ru<br />

The electrochemical behaviour <strong>of</strong> unsubstituted 3-(phenylhydrazo)pentane-2,4-dione<br />

(H L 1 ) and its para-substituted chloro (H L 2 ), carboxy (H L 3 ), fluoro (H L 4 ) and nitro<br />

species (H L 5 ) were studied using cyclic voltammetry and <strong>the</strong> results were interpreted by<br />

<strong>the</strong>oretical calculations at <strong>the</strong> DFT/HF hybrid level. The substituent at <strong>the</strong> aromatic ring<br />

has a stronger influence on <strong>the</strong> oxidation potential (E p/2 ox ) than on <strong>the</strong> reduction one<br />

(E p/2 Red ), in accord with <strong>the</strong> HOMO and LUMO compositions, <strong>the</strong> former with an<br />

important contribution <strong>of</strong> <strong>the</strong> aromatic component and <strong>the</strong> latter being essentially<br />

localized at <strong>the</strong> o<strong>the</strong>r part <strong>of</strong> <strong>the</strong> molecule. Theoretical studies can account for <strong>the</strong><br />

irreversibility <strong>of</strong> <strong>the</strong> redox processes and allow to propose conceivable mechanisms<br />

involving single-electron anodically induced dimerization and two-electron cathodically<br />

induc<br />

Trends between <strong>the</strong> Hammett's p , normal n p, inductive I , resonance R ,<br />

negative p and positive p<br />

+<br />

polar conjugation and Taft's o p substituent constants and<br />

reduction and oxidation potentials were recognized. A good fit was found for p .<br />

p<br />

<br />

2<br />

E p/2<br />

ox<br />

/ V<br />

1.4<br />

1.0<br />

0.6<br />

0.2<br />

<br />

<br />

p = 4.55E ox p/2 r 2 = 0.903, n = 5<br />

<br />

<br />

<br />

1.05 1.10 1.15 1.20 1.25 1.30<br />

Fig.1- Plot <strong>of</strong> <strong>the</strong> p substituent constant versus E p/2<br />

ox<br />

for HL 1-5 .<br />

The obtained correlations or trends should be used to tune various properties <strong>of</strong><br />

HL such as acidity, coordination ability, biological activity, etc., what can be <strong>of</strong><br />

interest for both fundamental studies and practical applications.<br />

Acknowledgements: This work has been partially supported by <strong>the</strong> Foundation for Science and<br />

Technology (F CT<br />

September, 811, 2010. ISEL - Lisbon 99


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 09<br />

Redox behavior <strong>of</strong> dinuclear iron(II) and ru<strong>the</strong>nium(II)<br />

complexes as potential molecular wires<br />

A. Catarina Sousa 1 , Vanda Pacheco 1 , M. Paula Robalo 1,2<br />

1 Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto<br />

Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007, Lisboa, Portugal;<br />

2 Centro de Química Estrutural, Complexo I, IST, Av. Rovisco Pais, 1049-01 Lisboa, Portugal<br />

acsousa@deq.isel.ipl.pt<br />

Molecular wires comprising mixed-valence bimetallic units or remote redox-active<br />

organometallic groups linked by conjugated bridging organic chains could be exploited<br />

in molecular electronics and optoelectronic devices 1 .<br />

e -<br />

Metal centre<br />

Organic spacer<br />

Metal centre<br />

Our recent work in this field has been <strong>the</strong> design and development <strong>of</strong> transition metal<br />

complexes, with a special emphasis on <strong>the</strong> half sandwich iron(II) and ru<strong>the</strong>nium(II)<br />

compounds, with nitrile or alkynyl organic ligands, which can be used as building<br />

blocks <strong>of</strong> molecular wires, allowing electronic communication between redox-active<br />

terminal end groups through delocalized bonds.<br />

Since <strong>the</strong> cyclic voltammetry can be used as a tool to evaluate <strong>the</strong> efficiency <strong>of</strong> this<br />

electronic interaction between <strong>the</strong> metal centres, we report in this communication, <strong>the</strong><br />

electrochemical behavior <strong>of</strong> several mono and dinuclear iron(II) and ru<strong>the</strong>nium(II)<br />

-CH 2 - C-<br />

C(H)=C(H)- -C 6 H 4 - <br />

([CpFe(dppe)] + , [CpFe(CO) 2 ] + , [CpRu(dppe)] + .<br />

The cyclic voltammograms <strong>of</strong> <strong>the</strong> studied compounds were performed in 1 x 10 -3 M<br />

dichloromethane and acetonitrile solutions, using tetrabutylammonium hexafluorophosphate<br />

(TBAPF 6 ) as supporting electrolyte (0.2 M) at different scan rates (20-1000<br />

mV/s).<br />

The obtained results are discussed in terms <strong>of</strong> <strong>the</strong> electron richness <strong>of</strong> <strong>the</strong> metal centres<br />

and electronic properties <strong>of</strong> <strong>the</strong> organic ligands upon coordination, which can be related<br />

to <strong>the</strong> metal-to-ligand bonding ability. Fur<strong>the</strong>rmore, <strong>the</strong> ability <strong>of</strong> <strong>the</strong> different organic<br />

spacers in <strong>the</strong> electronic communication between <strong>the</strong> metal centres was also evaluated.<br />

Acknowledgements: We thank Fundação para a Ciência e a Tecnologia (F CT/MCTES) for partial<br />

financial support (project PTDC/QUIM/65379/2006) and IPL (project IPL/16/2003).<br />

References<br />

[1] a) Paul, F., Lapinte, C., Coord. Chem. Rev., 1998, 178-180, 431-509; b) Ceccon, A. Santi, S.,<br />

Orian, L., Bisello, A., Coord. Chem. Rev., 2004, 248, 683-724.<br />

September, 811, 2010. ISEL - Lisbon 100


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 10<br />

Investigation <strong>of</strong> 4-dimethoxymethyl- and 4-formyl-substituted<br />

1,4-dihydropyridine redox reactions.<br />

Anna Lielpetere, Inguna Goba, Baiba Turovska<br />

Latvian Institute <strong>of</strong> Organic Syn<strong>the</strong>sis, Aizkraukles 21, Riga, Latvia<br />

anna.lielpetere@gmail.com<br />

A little attention has yet been paid to <strong>the</strong> chemistry <strong>of</strong> formyl-substituted<br />

dihydropyridines [1,2] and <strong>the</strong>re are no electrochemical investigations <strong>of</strong> <strong>the</strong>m. In <strong>the</strong><br />

work <strong>the</strong> syn<strong>the</strong>sis and anodic oxidation <strong>of</strong> symmetrical and asymmetrical substituted<br />

1,4-DHP bearing chemically active formyl- or its protective acetal group has been<br />

studied. In acetonitrile <strong>the</strong> anodic oxidation <strong>of</strong><br />

H R<br />

H R<br />

X<br />

X<br />

Y<br />

X <strong>the</strong> studied compounds proceed in one<br />

irreversible step Figure 1, Figure 2. During <strong>the</strong><br />

H C N C H H 3<br />

3<br />

3 C N C H 3<br />

controlled potential electrolysis all studied<br />

H<br />

H<br />

compounds lost <strong>the</strong> substituent at C-4, while <strong>the</strong><br />

X = C N, C O C H 3 , C O O C H 3 X = C O C H 3 , C O O C H 3 ; Y = C N<br />

products <strong>of</strong> <strong>the</strong>ir chemical oxidation<br />

R = C H(O C H 3 ) 2 , C H O R = C H(O C H 3 ) 2 , C H O<br />

(2,3-dicyano-5,6-dichloro-p-benzoquinone) were<br />

corresponding 4-substituted pyridines.<br />

N C<br />

H 3 C O<br />

H<br />

O C H 3<br />

C H<br />

C O C H 3<br />

-e<br />

H 3 C N C H 3<br />

H<br />

H 3 C O O C H 3<br />

H C H<br />

H<br />

N C<br />

C O C H 3 N C<br />

C O C H 3<br />

. + +<br />

H 3 C N C H 3<br />

H 3 C N C H 3<br />

H<br />

Fig. 1. Anodic oxidation <strong>of</strong> 1,4-DHP<br />

Fig. 2. Anodic oxidation <strong>of</strong> 1,4-DHP<br />

in MeCN/0.1 M NaClO 4 in MeCN/0.1 M NaClO 4<br />

H<br />

ClO 4<br />

-<br />

N C<br />

H 3 C<br />

H<br />

. +<br />

N<br />

H<br />

O<br />

C H<br />

C O C H 3<br />

.. ..<br />

C H 3<br />

-e<br />

N C<br />

H 3 C<br />

H<br />

N<br />

H<br />

O<br />

C H<br />

C O C H 3<br />

C H 3<br />

H 3 C O O C H 3<br />

H C H<br />

N C<br />

C O C H 3<br />

..<br />

H 3 C N C H 3<br />

H<br />

N C<br />

H 3 C<br />

O<br />

H C H<br />

C O C H 3<br />

..<br />

N C H 3<br />

H<br />

4-Formyl-substituted 1,4-DHP are stable compounds at <strong>the</strong> room temperature, while in<br />

<strong>the</strong> solution aldehyde group at C-4 in dihydropyridine molecule could easy be oxidized<br />

to <strong>the</strong> acid or reduced with subsequent intramolecular condensation with <strong>the</strong> substituent<br />

at C-3 or C-5.<br />

Acknowledgments: We are grateful to <strong>the</strong> Latvian Science Foundation (Grant 2010_09.1558) for<br />

<strong>the</strong>ir support <strong>of</strong> this research.<br />

References<br />

[1] Grau M. A., Illescas B., Martinez Torres M. L., Fernandez-Gadea J., Martin N. Tetrahedron<br />

Letters, 2002, 43, 4133.<br />

[2] Li A. H., Moro S., Melman N., Ji X. D., Jacobson K. A. J. Med. Chem., 1998, 41, 3186.<br />

September, 811, 2010. ISEL - Lisbon 101


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 11<br />

Redox properties <strong>of</strong> antitumor active organotin(I V) complexes<br />

containing 1-(4-chlorophenyl)-1-cyclopentanecarboxylato<br />

ligands<br />

Elisabete C.B.A. Alegria, a,e Xianmei Shang a,b , Xianggao Meng c ,<br />

Qingshan Li d , M. Fátima C. Guedes da Silva, a, f Armando J.L. Pombeiro a<br />

a Centro de Química Estrutural, IST, TU Lisbon, Av. Rovisco Pais, 1049001 Lisbon, Portugal.<br />

b Tongji School <strong>of</strong> Pharmacy, Huazhong University <strong>of</strong> Science and Technology, 13 Hangkong<br />

Road, Wuhan 430030, China.<br />

c Department <strong>of</strong> Chemistry, Central China Normal University, Wuhan, 430079, China.<br />

d School <strong>of</strong> Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001,China.<br />

e Área Departamental de Engenharia Química, ISEL, R. Conselheiro Emídio Navarro, 1959-007<br />

Lisboa, Portugal.<br />

f Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande, 376, 1749-024<br />

Lisboa, Portugal<br />

ebastos@deq.isel.ipl.pt<br />

Investigations on metal-based drugs have become very popular<br />

with ru<strong>the</strong>nium(III) and platinum(IV) compounds [1], since various metal-complexes<br />

exist in inert high oxidation states in aqueous solution [e.g., Ru(III), Pt(IV)], and are<br />

more labile in reduced oxidation states [e.g., Ru(II), Pt(II)]. It is widely believed that<br />

reduction processes may influence <strong>the</strong> anticancer activity <strong>of</strong> many Pt(IV) and Ru(III)<br />

complexes [2,3].<br />

Encouraged by <strong>the</strong> reduction mechanism <strong>of</strong> o<strong>the</strong>r metal-based antitumor complexes like<br />

Pt(IV) or Ru(III) and considering <strong>the</strong> widely studied and reviewed [4] anticancer activity<br />

<strong>of</strong> organotin(IV) compounds, we are interest to find how reduction potentials are related<br />

with <strong>the</strong> biological activity <strong>of</strong> organotin(IV) complexes.<br />

We now report <strong>the</strong> electrochemical behaviours, at a Pt electrode and in aprotic media <strong>of</strong><br />

<strong>the</strong> organotin(IV) complexes [Me 2 Sn(L) 2 ] (1), [Et 2 Sn(L) 2 ] (2), [ n Bu 2 Sn(L) 2 ] (3),<br />

[ n Oct 2 Sn(L) 2 ] (4), [Ph 2 Sn(L) 2 ] (5) and [PhOSnL] 6 (6), resulting from reaction <strong>of</strong> 1-(4-<br />

chlorophenyl)-1-cyclopentanecarboxylic acid (H L) with <strong>the</strong> corresponding diorganotin<br />

oxide or dichloride. Such behaviours are discussed in terms <strong>of</strong> <strong>the</strong> electronic properties<br />

<strong>of</strong> <strong>the</strong> Sn centres and <strong>the</strong>ir ligands. Possible correlation between <strong>the</strong> redox potential and<br />

in vitro cytotoxic activities <strong>of</strong> those six complexes against four different cell lines [a<br />

human promyelocyticfina leukemic cell line (HL-60), a human hepatocellular carcinoma<br />

cell line (Bel-7402) and a human nasopharyngeal carcinoma cell line (KB)] will be<br />

discussed.<br />

Acknowledgments: This work has been supported by <strong>the</strong> Foundation for Science and Technology<br />

(F CT) (grant No. SFRH/BPD/44773/2008) and <strong>the</strong> IPL/41/2003 project.<br />

References<br />

[1] E. Reisner, V.B. Arion, B.K. Keppler, A.J.L. Pombeiro, Inorg. Chim. Acta, 2008, 361, 1569.<br />

[2] E. Reisner, V.B. Arion, A. Eichinger, N. Kandler, G. Geister, A.J.L. Pombeiro and B.K.<br />

Keppler, Inorg. Chem., 2005, 44, 6704-6716.<br />

[3] A.J.L. Pombeiro, Eur. J. Inorg. Chem., 2007, 1473.<br />

[4] L. Pellerito, L. Nagy. Coord. Chem. Rev. 2002, 224, 111.<br />

September, 811, 2010. ISEL - Lisbon 102


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 12<br />

Syn<strong>the</strong>sis and electrochemical studies <strong>of</strong> molecular wires<br />

based on dinuclear Pd and Ru OPE and O T E rods.<br />

João Figueira 1 , José Carlos Mesquita 1 , Kari Rissanen 2 , João Rodrigues 1<br />

1 Centro de Química da Madeira, LQCMM/MMRG, Universidade da Madeira,<br />

Campus da Penteada, 9000-390 Funchal, PORTUGAL<br />

2 Nanoscience Center, Department <strong>of</strong> Chemistry, University <strong>of</strong> Jyväskyla,<br />

P.O. Box 35, 40014 JYU, FINLAND<br />

jfig@uma.pt<br />

Highly conjugated molecules have been <strong>of</strong> great interest for <strong>the</strong>ir potential applications<br />

in fields such as nanoelectronics [1] or optoelectronics [2]. As such, organometallic rods<br />

with robust and redox capable metal centers can <strong>of</strong>fer excellent properties and attractive<br />

advantages over <strong>the</strong>ir organic counterparts as well as <strong>the</strong> currently available wires by<br />

increasing energy throughput and decreasing production costs. Organic bridges, such as<br />

OPE (oligo(phenylene ethynelene)s) and OTE (oligo(thiophenylene ethynelene)s)<br />

derivatives [3] can be used to tune <strong>the</strong> electronic communication between metal centers.<br />

In this work we present <strong>the</strong> syn<strong>the</strong>sis and <strong>the</strong> CV studies <strong>of</strong> a family <strong>of</strong> trans-<br />

[Pd(PEt 3 ) 2 Cl 2 ] and trans-[RuCl 2 (dppe) 2 ] rods based on <strong>the</strong>se OPEs (1,4-diethynyl-2,5-<br />

dialcoxybenzene and 4,4'-(2,5-dialcoxy-1,4-phenylene)bis(ethyne-2,1-diyl)bis(ethynylbenzene)<br />

derivatives) and OTEs (2,5-bis(4-ethynylphenyl)thiophene derivatives) bridges<br />

as potential molecular wires.<br />

Figure 1. Cyclic voltammogram <strong>of</strong> <strong>the</strong> Ru rod <strong>of</strong> 1,4-diethynyl-2,5-heptoxybenzene at<br />

100mV s -1 vs Ag/AgCl in CH 2 Cl 2 with NBu 4 PF 6 0.1M.<br />

Acknowledgments: We gratefully acknowledge <strong>the</strong> support <strong>of</strong> F CT trough NMR and MS<br />

Portuguese Networks (REDE/1517/RMN/2005, REDE/1508/REM/2005), Pluriannual base funding<br />

(QUIM-Madeira-674), JF Ph.D. grant (SFRH/BD/29325/2006) and Research Project<br />

PTDC/CTM/098451/2008. CS Madeira is also gratefully acknowledged for <strong>the</strong>ir support.<br />

References:<br />

[1] a) Tour, M. J., Molecular Electronics, Commercial Insights, Chemistry, Devices, Architecture<br />

and Programming. Singapore: World Scientific Publishing Co. Pte. Ltd., 2003; b) Rodrigues, J.;<br />

An Organometallic Approach to Molecular Electronics, Proceedings <strong>of</strong> FAME EU FP6<br />

Network <strong>of</strong> Excellence, Funchal, Portugal, 2007, 247.<br />

[2] Ornelas C.; Gandum, C.; Mesquita, J.; Rodrigues, J.; Garcia, M. H.; Lopes, N.; Robalo, M. P.;<br />

Nättinen, K.; Rissanen, K.; Inorg. Chim. Acta, 2005, 358, 2482.<br />

[3] Figueira, J.; Rodrigues, J.; Russo, L.; Rissanen, K., Acta Cryst., 2008, C64, o33.<br />

September, 811, 2010. ISEL - Lisbon 103


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 13<br />

Electrochemical studies on luminescent bis-calix[4]arenebased<br />

poly(p-phenylene ethynylene) copolymers<br />

M. Paula Robalo, Hugo S. Pinto, Alexandra I. Costa, José V. Prata<br />

Área Departamental de Engenharia Química and Centro de Investigação de Engenharia Química e<br />

Biotecnologia, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa,<br />

R. Conselheiro Emídio Navarro, 1, 1959-007, Lisboa, Portugal.<br />

mprobalo@deq.isel.ipl.pt<br />

Considerable research efforts have been directed in <strong>the</strong> last decade towards <strong>the</strong><br />

development <strong>of</strong> a diversity <strong>of</strong> conjugated polymers with tailored electronic and<br />

photophysical properties, owing to <strong>the</strong>ir potential application in electroluminescent<br />

devices (EL), such as photovoltaic cells and polymer LEDs. Efficiency <strong>of</strong> EL devices is<br />

intimately related to <strong>the</strong> oxidation and reduction potentials <strong>of</strong> <strong>the</strong> emitting polymer<br />

layers and cyclic voltammetry (CV) is a powerful technique to evaluate this efficiency.<br />

In <strong>the</strong> present communication, we report on <strong>the</strong> electrochemical studies <strong>of</strong> several<br />

related poly(p-phenylene ethynylene) (p-PPE) copolymers: C A L I X-p-PPE [1],<br />

containing non-substituted phenylene ethynylene groups linking <strong>the</strong> bis-calix[4]arene<br />

units (1) and <strong>the</strong> same incorporating 2,5-dialkoxy-p-phenylene ethynylene linkers [2]<br />

with variable chain lengths (2a-c). Some structurally related monomers and model<br />

compounds were also studied (e.g. tetrapropyl-calix[4]arene, end-capped biscalix[4]arene<br />

and T BP-p-PPE) in order to correlate <strong>the</strong> redox processes found in <strong>the</strong><br />

copolymers with <strong>the</strong> different structural components.<br />

The electrochemical data <strong>of</strong> <strong>the</strong> polymers and related model compounds was also used<br />

to determine <strong>the</strong> HOMO/LUMO energy levels as well <strong>the</strong>ir electrochemical bandgaps<br />

(E g EC ).<br />

III<br />

O O O O<br />

C 3 H 7 C 3 H 7 C 3 H 7<br />

R 1<br />

C 3 H 7 C 3 H C 7 3 H<br />

n<br />

7<br />

O O O O R 2<br />

I<br />

II<br />

1: R 1 = R 2 = H<br />

2: R 1 = R 2 = OR 3<br />

a R 3 = OCH 2 CH 2 CH 3<br />

b R 3 = OCH 2 (CH 2 ) 4 CH 3<br />

c R 3 = OCH 2 (CH 2 ) 8 CH 3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

E vs SCE (V)<br />

-­‐0,5<br />

-­‐1<br />

-­‐1,5<br />

Figure 1 Cyclic voltammogram for C A L I X-p-PPE (1) in<br />

dichloromethane at 100 mV.s -1 .<br />

-­‐2<br />

Acknowledgments: We thank Fundação para a Ciência e a Tecnologia/MCTES for partial<br />

financial support (project PTDC/QUIM/66663/2006). A. I. Costa thanks Instituto Superior de<br />

Engenharia de Lisboa for a doctoral fellowship..<br />

References<br />

[1] Costa, A. I.; Ferreira, L.F.V.; Prata, J.V., J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 6477.<br />

[2] Pinto, H.S., MSc <strong>the</strong>sis, ISEL, 2010.<br />

September, 811, 2010. ISEL - Lisbon 104


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 14<br />

Ru<strong>the</strong>nium(II) and Iron(II) Complexes bearing<br />

low band-gap thiophenic ligands as possible N L O switches<br />

Tiago J. L. Silva 1 , Paulo J. G. Mendes 2 , M. Helena Garcia 1 ,<br />

M. Paula Robalo 3<br />

1 Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-001 Lisboa, Portugal<br />

2 Centro de Química de Évora, R. Romão Ramalho 59, 7000-671 Évora, Portugal<br />

3<br />

ADEQ/ISEL, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa<br />

tjsilva@fc.ul.pt<br />

Over <strong>the</strong> past decade, <strong>the</strong>re was growth <strong>of</strong> interest in discovering new conducting<br />

molecules due to <strong>the</strong>ir potential applications in electrochromic devices, sensors, OLED's<br />

and more recently molecular switches. Non-Linear Optics (NLO) phenomenons, namely<br />

Second-Harmonic Generation (SHG), is one <strong>of</strong> <strong>the</strong> recently topics in molecular<br />

<br />

electrochemically changed in or<br />

switch, upon a redox process.<br />

Monocyclopentadienyliron (II) and ru<strong>the</strong>nium (II) complexes, combined with thiophene<br />

ues and<br />

have been widely studied for NLO [2]. Regarding <strong>the</strong> switching properties, oxidation in<br />

<strong>the</strong> transition metal, from M (II) to M (III) (M=Fe, Ru), can drastically reduce <strong>the</strong> NLO<br />

properties <strong>of</strong> <strong>the</strong>se molecules and <strong>the</strong>refore it provides a way to electrochemically<br />

on<strong>of</strong>f<br />

In this communication, monocyclopentadienyliron (II) and ru<strong>the</strong>nium (II) complexes<br />

bearing thiophene ligands (Figure 1) with low band-gaps will be electrochemically<br />

tested as possible molecules for NLO switching. The electrochemical results will be<br />

correlated with spectroscopic data and <strong>the</strong> NLO properties predicted by DFT<br />

calculations, in order to anticipate <strong>the</strong> potentialities <strong>of</strong> <strong>the</strong> new compounds as molecular<br />

switches.<br />

Figure 1 Elucidating picture <strong>of</strong> <strong>the</strong> studied ru<strong>the</strong>nium complexes<br />

Acknowledgments: We thank to COMPETE/F EDER for financial support (F COMP-01-0124-<br />

F EDER-007433).<br />

References<br />

[1] Coe, Benjamin, Acc. Chem. Res., 2006, 39, 383<br />

[2] a) Garcia, M. H., et al, J.Organomet. Chem., 2009, 694, 433. b) Mendes, P. et al, J. Mol.<br />

Struct.: THEOCHEM, 2010, 946, 33. c) Mendes, P. et al, J. Mol. Struct.: THEOCHEM, 2009,<br />

900, 110.<br />

September, 811, 2010. ISEL - Lisbon 105


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 15<br />

Electrocrystallization <strong>of</strong> (D T-T T F) 2 [M(mnt) 2 ] on<br />

microelectrodes<br />

Rafaela A. L. Silva, 1 Mónica Afonso, 1 Manuel Matos 2,3 , Dulce Belo, 1<br />

Manuel Almeida 1<br />

1 Dept. Chemistry, ITN / CFMCUL Estrada Nacional 10, P-2686-953 Sacavém, Portugal<br />

2<br />

IT, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal,<br />

3 ISEL, Av. Emídio Navarro, P-1959-007 Lisboa, Portugal<br />

rafaela@itn.pt<br />

The charge transfer salts based on <strong>the</strong> organic donor dithiotetrathiafulvalene (DT-TTF)<br />

and transition metal bis-maleonitrile-dithiolate M(mnt) 2 with M =Au, Ni, Cu, Pt and Pd,<br />

are members <strong>of</strong> a general family <strong>of</strong> compounds with formula (DT-TTF) 2 [M(mnt) 2 ]<br />

presenting strongly paired stacks <strong>of</strong> partially oxidized donor molecules (DT-TTF) + 2 [1].<br />

The compounds <strong>of</strong> this family with diamagnetic anions (M=Cu, Au) have attracted<br />

special interest because <strong>the</strong>y were <strong>the</strong> first examples <strong>of</strong> organic spin ladder systems<br />

[2,3].<br />

The study <strong>of</strong> <strong>the</strong>se materials requires both high quality large single crystals and<br />

techniques able to characterize <strong>the</strong> electronic properties in ra<strong>the</strong>r small samples.<br />

Crystals <strong>of</strong> <strong>the</strong>se compounds can be obtained by electrocrystallization conditions typical<br />

for charge transfer salts; <strong>the</strong> DT-TTF donor in a organic solvent is electrochemically<br />

oxidized in <strong>the</strong> presence <strong>of</strong> [M(mnt) 2 ] - anions to form <strong>the</strong> compound as crystals<br />

growing on <strong>the</strong> anode.<br />

In order to obtain large single crystals <strong>of</strong> high quality we have performed a study aimed<br />

at to optimize <strong>the</strong> electrocrystallization conditions. Using dichloromethane solutions and<br />

Pt as electrodes we were able to obtain good single crystals as large as 5x1x0.1 mm 3 .<br />

In order to make possible <strong>the</strong> measurement <strong>of</strong> electrical transport properties in smaller<br />

crystals <strong>of</strong> <strong>the</strong>se compounds it was developed a technique <strong>of</strong> electrocrystallization on<br />

micropatterned electrodes. This technique using pulsed currents was able to provide<br />

small crystals directly connected to microelectrodes which can be used directly to<br />

electrical measurements.<br />

Acknowledgments: Work supported by F CT under contract PTDC/QUI-QUI/101788/2008.<br />

References<br />

[1] Ribera, E.; Rovira, C.; Veciana, J.; Tarrés, J.; Canadell, E.; Rousseau, R.; Molins, E.; Mas, M.;<br />

Schoefel, J-P.; Pouget, J.-P.; Morgado, J.; Henriques, R. T.; Almeida, M.; Chemistry an<br />

European Journal, 1999, 5, (7) 2025-2039.<br />

[2] Rovira, C.; Veciana, J.; Ribera, E.; Tarrés, J.; Canadell, E.; Rousseau, R.; Mas, M.; Molins, E.;<br />

Almeida, M.; Henriques, R. T.; Morgado, J.; Schoefel, J-P.; Pouget, J.-P.; Angewandte Chemie,<br />

International Edition in English, 1997, 36, 2324-2326.<br />

[3] Ribas, X.; Mas-Torrent, M.; Pérez-Benítez, A.; Dias, J. C.; Alves, H.; Lopes, E. B.; Henriques, R.<br />

T.; Molins, E.; Santos, I. C.; Wurst, K.; Foury-Leylekian, P.; Almeida, M.; Veciana, J.; Rovira,<br />

C.; Organic spin-Advanced Functional Materials, 2005, 15, 1023-<br />

1035.<br />

September, 811, 2010. ISEL - Lisbon 106


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society PE 16<br />

An electrochemical study <strong>of</strong> Schiff-base oxovanadium(I V)<br />

complexes<br />

F . Bishehsari, A. Rouhollahi, S. Rayati<br />

#4, No.72, Sartip Fakoori Ave., Kargar Shomali Str., Tehran, Iran<br />

Faranak.bsh@gmail.com<br />

The interest in coordination chemistry <strong>of</strong> vanadium has increased because <strong>of</strong> its catalytic<br />

and medicinal importance [1-2]. The electrochemical behavior <strong>of</strong> three newly<br />

syn<strong>the</strong>sized Schiff base VO(IV) complexes with electron donating groups were<br />

investigated, in acetonitrile (An) in <strong>the</strong> presence <strong>of</strong> tetrabutylammonium perchlorate as<br />

supporting electrolyte at <strong>the</strong> surface <strong>of</strong> GC electrode by cyclic voltammetry and<br />

chronopotentiometry (Figure 1).<br />

For all <strong>the</strong> VO(IV) compounds, one reversible oxidation wave has been found and <strong>the</strong><br />

diffusion coefficients (D) were obtained. The effect <strong>of</strong> scan rate was evaluated.<br />

R = Me, X = H, Y = OMe<br />

Figure 1 - Cyclic voltammogram for [VOR 1 ] =<br />

2.0010 -6 mol cm -3 at different sweep rates<br />

(0.01, 0.05, 01, 0.2 Vs -1 )<br />

References<br />

[1] Butler, A.; Clague, M. J.; Meister, G. E. Chem. Rev, 1994, 94, 62<br />

[2] Crans, D. C. J. Inorg. Biochem, 2000, 80, 123.<br />

September, 811, 2010. ISEL - Lisbon 107


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Authors Index<br />

September, 811, 2010. ISEL - Lisbon 109


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

A<br />

Abrantes, L.M. OC 1<br />

Afonso, M. OC 6 PE 15<br />

Alegria, E.C.B.A. OE 2 PE 11<br />

Almeida, I. OC 4<br />

Almeida, M. OC 6 PE 15<br />

Almeida, M.G. OB 4<br />

Alves, S. PA 1<br />

Anunciação, M.F. OB 1<br />

Ascensão, C. PA 4<br />

Avilés, F.X. PB 10<br />

B<br />

Ball, Sarah OA 3<br />

Barrera-Niebla, M.J. OC 2 OC 5<br />

Barros, A.A. OB 1 PB 1<br />

Barros, M.C.F. PA 5<br />

Bastos, A.C. PB 11 PD 2<br />

Becker, D. OA 8<br />

Belo, D. PE 15<br />

Belo, M.C. PD 5<br />

Benedicto, E.C.P. PA 10<br />

Benimeli, M.J. PA 7<br />

Benjumea, D.M. PA 8<br />

Bento, F. PB 4 PB 5<br />

Bento, M.F. KN 4<br />

Bettencourt, A.P. PE 3<br />

Bettencourt, P. PB 4 PB 5<br />

Bishehsari, F. PE 16<br />

Blandón, L. PA 8 PA 9<br />

Bláquez, L.C. PB 6<br />

Blasco-Tamarit, E PD 9<br />

Blásquez, M. PL 2 PC 3 PC 4<br />

Bonastre, J. PA 7 PD 4<br />

Borges, S. PB 11<br />

C<br />

Calvet, T. PB 10<br />

Calvisi, M. PD 6<br />

Campos , M. OA 3<br />

Carvalho, M.A. PE 3<br />

Carvalho, M.D. PA 6 PD 3<br />

Carvalho, M.F.N.N. OE 4<br />

September, 811, 2010. ISEL - Lisbon 110


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Cascalheira, A.C. PB 7<br />

Cases, F. PA 7 PD 4<br />

Castela, A.S. OD 2<br />

Catarino, M.A. PD 5<br />

Chhaganlal, M.N. PB 9<br />

Ciríaco, L. PA 2 PA 3 PA 4<br />

Ciro, G. PA 8<br />

Coelho, J.C. PD 3<br />

Conceição, A. OA 4<br />

Cordeiro, J.R. OB 5<br />

Correia, C. PE 3<br />

Correia, J.P. OC 1<br />

Costa, A.I. PE 13<br />

Costa, D. O. PA 11<br />

Cruz, M. PB 1<br />

D<br />

Dias, C.B. PD 2<br />

Duarte, R.G. OA 5 OD 2<br />

Duval, E. PA 7<br />

E<br />

Esteso, M.A. PA 5 PA 11<br />

Eugénio, S. PD 8<br />

F<br />

Fernandes, J.S. PL 3<br />

Fernandes, S.M.A. PC 1<br />

Fernandes, T.A. OE 4<br />

Fernández, J. PD 4<br />

Ferreira, A.A. PD 2<br />

Ferreira, M.G. OD 2<br />

Ferreira, M.G.S. KN 3 OA 5 OD 1 PD 2 PD 5 PD 7<br />

Ferron, C.C. OE 1 PE 2<br />

Figueira, J. PE 12<br />

Filipe, R. OA 2<br />

Fonseca, I.T.E. PD 2 PD 3<br />

Font-Bardia, M. PB 10<br />

Freire, C. KN 1<br />

Freire, L. PD 5<br />

Freitas, M KN 2<br />

G<br />

Galvão, A.M. OE 4<br />

García, L. PA 9<br />

September, 811, 2010. ISEL - Lisbon 111


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Garcia, M.H. PB 9 PB 10 PE 4 PE 14<br />

García-Antón, J. PD 1 PD 9<br />

García-García, D.M. PD 9<br />

García-Raya, D. PL 2<br />

Geraldo, M.D. KN 4 PB 4 PB 5<br />

Gil, D.M.A. OB 2<br />

Gil, E.P. PB 6<br />

Goba, I. PE 10<br />

Godinho, M.I. PD 5<br />

Gomes, A. PA 6<br />

Gomes, F. PE 3<br />

Gonçalves, E. OA 4<br />

Gonçalves, L.M. OB 1 PB 1<br />

Gonçalves, M.L. PA 1 PB 3<br />

González-Cano, R.C. PC 3<br />

González-Granados, Z. PC 4<br />

González-Mesa, G. PD 6<br />

Gruber, J. OB 5 PB 2<br />

H<br />

Haukka, M. OE 3<br />

He, M. PE 2<br />

Hernández, M.R.G. OC 2 OC 5<br />

Hernández, V. OE 1 PE 2<br />

Hernández-Luis, F. PA 8 PA 9<br />

I<br />

Ibáñez-Ferrándiz, M.V. PD 9<br />

Ilharco, L.M. OA 5<br />

Inestrosa, E.P. OE 1<br />

Isaacs, H.S. OD 1<br />

Jorge, M.E.M. PA 6<br />

K<br />

Karmali, A. OB 3 PB 12<br />

Kopylovich, M.N. OE 3 PE 8<br />

Kuznetsov, M.L. OE 2 PE 8<br />

L<br />

Lamaka, S.V. OD 1 PD 7<br />

Leitão, R.E. OA 2<br />

Leiva-García, R. PD 1<br />

Li, Q. PE 11<br />

Li, R.W.C. OB 5 PB 2<br />

Lielpetere, A. PE 10<br />

September, 811, 2010. ISEL - Lisbon 112


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Lippi, Renata OB5 PB 2<br />

Lobo, V.M.M. PA 5<br />

Lopes, A. KN 5 PA 2 PA 3 PA 4<br />

López, M.L. PB 8<br />

Lorenzo, J. PB 10<br />

Ludvík, J. PL 5<br />

Luzyanin, K.V. OE 3 PE 7<br />

M<br />

Madueño, R. PL 2 PC 3 PC 4<br />

Mahmudov, K.T. OE 3 PE 8<br />

Manso, J. PB 11<br />

Marques, A. OC 7<br />

Marques, J. PB 4 PB 5<br />

Martins, F. OA 2 PB 11<br />

Martins, L.M.D.R.S. OE 2 PE 5 PE 6 PE 7 PE 8<br />

Matos, M.J. OB 3 OC 6 PB 12 PE 15<br />

Medina, D.M.G. OC 2 OC 5<br />

Melato, A.I. OC 1<br />

Mellado, J.M.R. PE 1<br />

Mendes, P.J.G. PE 4 PE 14<br />

Meng, X. PE 11<br />

Mérida, L.C.F. OC 2 OC 5<br />

Mesquita, J.C.A. PC 1 PE 12<br />

Miranda, V. PB 11<br />

Molina, J. PA 7 PD 4<br />

Montemor, M.F. OD 1 PD 5 PD 7<br />

Montenegro, J.M. OE 1<br />

Montoya, M.R. PE 1<br />

Morais, T.S. PB 10<br />

Morales, M.G. PB 6<br />

Moreira, L. OA 2<br />

Moreno, V. PB 10 PB 9<br />

Morín, M.J.G. OC 2 OC 5<br />

Moura, I. PB 3<br />

Moura, J.J.G. OB 4 PB 3<br />

Muñoz-Portero, M.J. PD 1<br />

N<br />

Nabais, C. PA 1<br />

Navarrete, J.T.L. OE 1 PE 2<br />

Neto, M.M.M. PD 2<br />

Nieto, F.J.R OA 8<br />

Niu, W. PE 2<br />

Nunes, N. OA 2<br />

Núñez-Vergara, Luis J. PB 8<br />

September, 811, 2010. ISEL - Lisbon 113


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

O<br />

Oliveira, C. OC 3 PC 2<br />

Oliveira, M.C. PA 10<br />

Oliveira, R. PB 4 PB 5<br />

P<br />

Pacheco, J.G. OB 1<br />

Pacheco, J.P. PB 1<br />

Pacheco, M.J. PA 2 PA 3 PA 4<br />

Pacheco, V. PE 9<br />

Paiva, T.I. KN 6<br />

Pang, S.C. OA 7<br />

Pauleta, S.R. PB 3<br />

Pecoraro, E. PB 12<br />

Pereira, F. OB 4<br />

Pereira, M.I.S. PA 6<br />

Pérez, M. PD 6<br />

Pettigrew, G.W. PB 3<br />

Pimpão, M. OB 4<br />

Pineda, T. PL 2 PC 3 PC 4<br />

Pintado, S. PE 1<br />

Pinto, H.S. PE 13<br />

Pombeiro, A.J.L. OE 2 OE 3 PE 5 PE 6 PE 7 PE 8 PE 11<br />

Potter, R. OA 3<br />

Prata, J.V. PE 13<br />

Proença, M.F. PE 3<br />

Q<br />

Quaresma, S. PD 8<br />

Quereshi, M.S. OB 6<br />

R<br />

Ramadas, D. PB 7<br />

Rangel, C.M. KN 6 PA 6 PD 8<br />

Rayati, S. PE 16<br />

Rebelo, M.J.F. OB 2<br />

Rego, A.M. PC 2<br />

Rego, A.M.B. OA 5<br />

Rego, R. OC 3 PC 2<br />

Reis, M. OA 2<br />

Ribeiro, A.C.F. PA 5 PA 11<br />

Río, A.I. PA 7 PD 4<br />

Rissanen, K. PE 12<br />

Robalo, M.P. PB 9 PB 10 PE 4 PE 9 PE 13 PE 14<br />

September, 811, 2010. ISEL - Lisbon 114


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

Rocha, M.M. OB 3<br />

Rocha, R. OA 1<br />

Rodrigues, A.S. PA 2<br />

Rodrigues, J. PE 12<br />

Rodrigues, J.A. PB 1<br />

Rodrigues, J.M. OB 1<br />

Rouhollahi, A. PE 16<br />

S<br />

Sá, A.I. PD 8<br />

Salgado, J.R.C. OA 5<br />

Sánchez, N. PA 9<br />

Santos, A. C. PA 11<br />

Santos, A.M. PE 4<br />

Santos, C.I.A.V. PA 5 PA 11<br />

Santos, M.M.C. PL 4 PA 1 PB 3<br />

Santos, S. PB 11<br />

Sarmento, M.J. PB 11<br />

Shang, X. PE 11<br />

Silva, J.J.L.F PE 8<br />

Silva, M.F.C.G. OE 2 PE 8 PE 11<br />

Silva, N.A.F. OB 3 PB 12<br />

Silva, R.A. KN 6 PA 6<br />

Silva, R.A.L. OC 6 PE 15<br />

Silva, T.F.S. PE 6 PE 7 PE 8<br />

Silva, T.J.L. PE 4 PE 14<br />

Silveira, C.M. OB 4<br />

Simões, A.M.P. OC 7 OD 3 PD 5<br />

Sirajuddin, OB 6<br />

Snihirova, D. PD 7<br />

Soares, C.O. PA 6<br />

Sobreira, S. PA 3<br />

Sousa, A.C. PE 9<br />

Sousa, P.M.P PB 3<br />

Squella, J.A. PB 8<br />

T<br />

Takahashi, E.S. OB 5<br />

Taryba, M.G. OD 1 PD 7<br />

Teijeiro, C. PA 11<br />

Teixeira, C. OA 6 PA 10<br />

Teixeira, J.M.G. PC 1<br />

Turovska, B. PE 10<br />

September, 811, 2010. ISEL - Lisbon 115


<strong>XII</strong> <strong>Iberian</strong> <strong>Meeting</strong> <strong>of</strong> <strong>Electrochemistry</strong> & <strong>XVI</strong> <strong>Meeting</strong> <strong>of</strong> <strong>the</strong> Portuguese Electrochemical Society<br />

V<br />

Valente, A. PB 10<br />

Valente, I.M. OB 1 PB 1<br />

Vázquez, M.V. PA 8 PA 9<br />

Ventura, M.C. PB 11<br />

Vercelli, B. OE 1 PE 2<br />

Viana, A.S. OC 4 PB 7<br />

Vilar, R. PD 8<br />

Visintin, A. OA 8<br />

W<br />

Wanke, R. PE 5<br />

Wee, B.H. OA 7<br />

Z<br />

Zanello, P. PL 1<br />

Zheludkevich, M.L. KN 3 PD 2<br />

Zotti, G. OE 1 PE 2<br />

September, 811, 2010. ISEL - Lisbon 116


Sponsors

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!