10.11.2014 Views

PORTFOLIO SELECTION Trading off expected return and risk • How ...

PORTFOLIO SELECTION Trading off expected return and risk • How ...

PORTFOLIO SELECTION Trading off expected return and risk • How ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Portfolio Selection 1<br />

<strong>PORTFOLIO</strong> <strong>SELECTION</strong><br />

<strong>Trading</strong> <strong>off</strong> <strong>expected</strong> <strong>return</strong> <strong>and</strong> <strong>risk</strong><br />

• <strong>How</strong> should we invest our wealth?<br />

Two principles:<br />

– we want to maximize <strong>expected</strong> <strong>return</strong><br />

– we want to minimize <strong>risk</strong> = variance


Portfolio Selection 2<br />

• goals somewhat at odds<br />

• <strong>risk</strong>ier assets generally have higher <strong>expected</strong> <strong>return</strong><br />

• investors dem<strong>and</strong> a reward for bearing <strong>risk</strong><br />

– called <strong>risk</strong> premium<br />

• there are optimal compromises between <strong>expected</strong><br />

<strong>return</strong> <strong>and</strong> <strong>risk</strong>


Portfolio Selection 3<br />

• In this chapter<br />

– maximize <strong>expected</strong> <strong>return</strong> with upper bound on<br />

the <strong>risk</strong><br />

– or minimize <strong>risk</strong> with lower bound on <strong>expected</strong><br />

<strong>return</strong>.


Portfolio Selection 4<br />

Key concept: reduction of <strong>risk</strong> by diversification<br />

• Diversification was not always considered favorably in<br />

the past


Portfolio Selection 5<br />

The investment philosophy of Keynes<br />

John Maynard Keynes wrote:<br />

... the management of stock exchange investment<br />

of any kind is a low pursuit ... from which it is a<br />

good thing for most members of society to be free<br />

I am in favor of having as large a unit as<br />

market conditions will allow ... to suppose<br />

that safety-first consists in having a small gamble<br />

in a large number of different [companies] where I<br />

have no information to reach a good judgement,<br />

as compared with a substantial stake in a<br />

company where ones’s information is adequate,<br />

strikes me as a travesty of investment policy


Portfolio Selection 6<br />

• Keynes is advocating stock picking or “fundamental<br />

analysis.”<br />

• semi-strong version of the EMH ⇒ fundamental<br />

analysis does not lead to profit<br />

• Keynes lived before the EMH<br />

– what Keynes would think about diversification<br />

now?<br />

• modern portfolio theory takes different view


Portfolio Selection 7<br />

• this is not to say that Keynes was wrong, but<br />

– Keynes was investing on a long time horizon<br />

– portfolio managers are judged on short-term<br />

successe<br />

– finding bargains is probably more difficult now


Portfolio Selection 8<br />

One <strong>risk</strong>y asset <strong>and</strong> one <strong>risk</strong>-free asset<br />

Start with a simple example:<br />

• one <strong>risk</strong>y asset, which could be a portfolio, e.g., a<br />

mutual fund<br />

– <strong>expected</strong> <strong>return</strong> is .15<br />

– st<strong>and</strong>ard deviation of the <strong>return</strong> is .25<br />

• one <strong>risk</strong>-free asset, e.g., a 30-day T-bill<br />

– <strong>expected</strong> value of the <strong>return</strong> is .06<br />

– st<strong>and</strong>ard deviation of the <strong>return</strong> is 0 by definition<br />

of “<strong>risk</strong>-free.”


Portfolio Selection 9<br />

Problem: construct an investment portfolio<br />

• a fraction w of our wealth is invested in the <strong>risk</strong>y asset<br />

• the remaining fraction 1 − w is invested in the<br />

<strong>risk</strong>-free asset<br />

• then the <strong>expected</strong> <strong>return</strong> is<br />

E(R) = w(.15) + (1 − w)(.06) = .06 + .09w.<br />

• the variance of the <strong>return</strong> is<br />

σ 2 R = w 2 (.25) 2 + (1 − w) 2 (0) 2 = w 2 (.25) 2 .<br />

<strong>and</strong> the st<strong>and</strong>ard deviation of the <strong>return</strong> is<br />

σ R = .25 w.<br />

Would w > 1 make any sense?


Portfolio Selection 10<br />

"Reward" = E(R) = .06+.09w<br />

0.2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

0 0.05 0.1 0.15 0.2 0.25<br />

"Risk" = σ R<br />

= w/4<br />

Plotting the portfolios in “reward-<strong>risk</strong> space”


Portfolio Selection 11<br />

• need to choose w:<br />

– choose the <strong>expected</strong> <strong>return</strong> E(R) , or<br />

– the amount of <strong>risk</strong> σ R<br />

• Once either E(R) or σ R is chosen, w can be<br />

determined.


Portfolio Selection 12<br />

Question: Suppose you want an <strong>expected</strong> <strong>return</strong> of .10?<br />

What should w be?<br />

Answer: .10 = .06 + .09 w ⇒ w = 4/9<br />

Question: Suppose you want σ R = .05. What should w<br />

be?<br />

Answer: .05 = w(.25) ⇒ w = 0.2


Portfolio Selection 13<br />

• More generally, if<br />

– the <strong>expected</strong> <strong>return</strong>s on the <strong>risk</strong>y <strong>and</strong> <strong>risk</strong>-free<br />

assets are µ 1 <strong>and</strong> µ f<br />

– <strong>and</strong> the st<strong>and</strong>ard deviation of the <strong>risk</strong>y asset is σ 1 ,<br />

• then<br />

– the <strong>expected</strong> <strong>return</strong> on the portfolio is<br />

wµ 1 + (1 − w)µ f<br />

– <strong>and</strong> the st<strong>and</strong>ard deviation of the portfolio’s <strong>return</strong><br />

is w σ 1 .


Portfolio Selection 14<br />

• This model of one <strong>risk</strong>-free asset <strong>and</strong> one <strong>risk</strong>y asset<br />

is simple but not useless<br />

• finding an optimal portfolio can be achieved in two<br />

steps.<br />

1. finding the “optimal” portfolio of <strong>risk</strong>y assets,<br />

called the tangency portfolio<br />

2. finding the appropriate mix of the <strong>risk</strong>-free asset<br />

<strong>and</strong> the tangency portfolio determined in step one<br />

• So we now know how to do the second step.<br />

• What we need to learn is how to mix optimally a<br />

number of <strong>risk</strong>y assets<br />

• First, we look at a related example.


Portfolio Selection 15<br />

Example<br />

• From February 2001 issue of PaineWebber’s<br />

Investment Intelligence: A Report for Our Clients<br />

• advantages of holding municipal bonds are touted<br />

• PaineWebber: “The chart at the right shows that a<br />

20% municipal/80% S&P 500 mix<br />

– sacrificed only 0.42% annual after-tax <strong>return</strong><br />

relative to a 100% S&P 500 portfolio<br />

– while reducing <strong>risk</strong> by 13.6% from 14.91% to<br />

12.88%.


Portfolio Selection 16<br />

• PaineWebber’s point is correct<br />

• but chart is cleverly designed to over-emphasize the<br />

reduction in volatility; how?


Portfolio Selection 17<br />

Estimating E(R) <strong>and</strong> σ R<br />

• <strong>risk</strong>-free rate, µ f , will be known<br />

– Treasury bill rates are published in most<br />

newspapers <strong>and</strong> web sites providing financial<br />

information.<br />

• what should we use as the values of E(R) <strong>and</strong> σ R ?<br />

• if <strong>return</strong>s on the asset are stationary<br />

– then can take past <strong>return</strong>s <strong>and</strong> use sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation


Portfolio Selection 18<br />

• stationarity assumption is debatable.<br />

• E(R) <strong>and</strong> σ R could be adjusted subjectively<br />

• related question: how long a time series to use<br />

• long series, say 10 or 20 years, give less variable<br />

estimates<br />

• shorter series (maybe 1 or 2 years) may be more<br />

representative of future.<br />

– but difficult to estimate <strong>expected</strong> <strong>return</strong>s with<br />

accuracy


Portfolio Selection 19<br />

Two <strong>risk</strong>y assets<br />

Risk versus <strong>expected</strong> <strong>return</strong><br />

• two <strong>risk</strong>y assets have <strong>return</strong>s R 1 <strong>and</strong> R 2<br />

• mix them in proportions w <strong>and</strong> 1 − w<br />

• the <strong>return</strong> is R = wR 1 + (1 − w)R 2<br />

• <strong>expected</strong> <strong>return</strong> on the portfolio is<br />

E(R) = wµ 1 + (1 − w)µ 2 = µ 2 + w(µ 1 − µ 2 )<br />

• let ρ 12 be the correlation so that σ R1 ,R 2<br />

= ρ 12 σ 1 σ 2 .<br />

• the variance of the <strong>return</strong> on the portfolio is<br />

σ 2 R = w 2 σ 2 1 + (1 − w) 2 σ 2 2 + 2w(1 − w)ρ 12 σ 1 σ 2 .


Portfolio Selection 20<br />

Example:<br />

If µ 1 = .14, µ 2 = .08, σ 1 = .2, σ 2 = .15, <strong>and</strong> ρ 12 = 0, then<br />

E(R) = µ 2 + w(µ 1 − µ 2 ) = .08 + .06w.<br />

Also, because ρ 12 = 0 in this example<br />

σ 2 R = w 2 σ 2 1 + (1 − w) 2 σ 2 2 + 2w(1 − w)ρ 12 σ 1 σ 2 .<br />

= (.2) 2 w 2 + (.15) 2 (1 − w) 2 .<br />

Using calculus, one can show that the portfolio with the<br />

minimum <strong>risk</strong> is<br />

w = .045/.125 = .36.


Portfolio Selection 21<br />

For this portfolio E(R) = .08 + (.06)(.36) = .1016 <strong>and</strong><br />

σ R = √ (.2) 2 (.36) 2 + (.15) 2 (.64) 2 = .12.


Portfolio Selection 22<br />

Here are values of E(R) <strong>and</strong> σ R for some other values of<br />

w:<br />

w E(R) σ R<br />

0 .080 .150<br />

1/4 .095 .123<br />

1/2 .110 .125<br />

3/4 .125 .155<br />

1 .140 .200


Portfolio Selection 23<br />

"Reward" = E(R)<br />

0.125<br />

0.1<br />

0.075<br />

F<br />

Efficient frontier −−><br />

T<br />

R1<br />

typical portfolio<br />

minimum variance portfolio<br />

R2<br />

0.05<br />

0 0.05 0.1 0.15 0.2 0.25 0.3<br />

"Risk" = σ R


Portfolio Selection 24<br />

Estimating means, st<strong>and</strong>ard deviations, <strong>and</strong><br />

covariances<br />

• estimates of µ 1 <strong>and</strong> σ 1 can be obtained from past<br />

<strong>return</strong>s on first <strong>risk</strong>y asset<br />

• denote this time series by R 1,1 , . . . , R 1,n<br />

• Let R 1 <strong>and</strong> s R1 be the sample mean <strong>and</strong> st<strong>and</strong>ard<br />

deviation of this series.<br />

• Similarly, µ 2 <strong>and</strong> σ 2 can be estimated from past<br />

<strong>return</strong>s on the second <strong>risk</strong>y asset


Portfolio Selection 25<br />

• The covariance σ 12 can be estimated by sample<br />

covariance<br />

n∑<br />

s 12 = n −1 (R 1,t − R 1 )(R 2,t − R 2 ).<br />

t=1<br />

• correlation ρ 12 can be estimated by the sample<br />

correlation<br />

̂ρ 12 = s 12<br />

s 1 s 2<br />

.


Portfolio Selection 26<br />

• Sample correlations <strong>and</strong> covariances can be computed<br />

PROC CORR in SAS<br />

• other estimates based on the CAPM will be<br />

introduced later


Portfolio Selection 27<br />

Combining two <strong>risk</strong>y assets with a <strong>risk</strong>-free asset<br />

Tangency portfolio with two <strong>risk</strong>y assets<br />

• each point on the efficient frontier is (σ R , E(R)) for<br />

some value of w<br />

• if we fix w, then we have a fixed portfolio of the two<br />

<strong>risk</strong>y assets.<br />

• Now let us mix that portfolio of <strong>risk</strong>y assets with the<br />

<strong>risk</strong>-free asset.


Portfolio Selection 28<br />

"Reward" = E(R)<br />

0.125<br />

0.1<br />

0.075<br />

F<br />

Efficient frontier −−><br />

T<br />

R1<br />

typical portfolio<br />

minimum variance portfolio<br />

R2<br />

0.05<br />

0 0.05 0.1 0.15 0.2 0.25 0.3<br />

"Risk" = σ R


Portfolio Selection 29<br />

• the slope of the line connecting the <strong>risk</strong>-free with a<br />

portfolio of <strong>risk</strong>ies is called the Sharpe ratio<br />

• Sharpe’s ratio = “reward-to-<strong>risk</strong>” ratio = ratio of<br />

“excess <strong>expected</strong> <strong>return</strong>” to st<strong>and</strong>ard deviation<br />

• the bigger the Sharpe ratio the better<br />

• The point T has highest Sharpe ratio <strong>and</strong> is called<br />

the tangency portfolio


Portfolio Selection 30<br />

Key result: “efficient” portfolios mix the tangency<br />

portfolio with the <strong>risk</strong>-free asset.<br />

• all efficient portfolios use the same mix of the<br />

two <strong>risk</strong>y assets, namely the tangency portfolio


Portfolio Selection 31<br />

Finding the tangency portfolio<br />

Define<br />

• V 1 = µ 1 − µ f<br />

• V 2 = µ 2 − µ f<br />

• V 1 <strong>and</strong> V 2 are called the “excess <strong>return</strong>s.”<br />

w T =<br />

V 1 σ 2 2 − V 2 ρ 12 σ 1 σ 2<br />

V 1 σ 2 2 + V 2 σ 2 1 − (V 1 + V 2 )ρ 12 σ 1 σ 2<br />

.


Portfolio Selection 32<br />

The tangency portfolio allocates:<br />

• w T to the first <strong>risk</strong>y asset<br />

• (1 − w T ) to the second <strong>risk</strong>y asset<br />

Notation: Let<br />

• R T = <strong>return</strong><br />

• E(R T ) = <strong>expected</strong> <strong>return</strong><br />

• σ T = st<strong>and</strong>ard deviation of the <strong>return</strong><br />

on the tangency portfolio.


Portfolio Selection 33<br />

Example:<br />

• as before µ 1 = .14, µ 2 = .08, σ 1 = .2, σ 2 = .15, <strong>and</strong><br />

ρ 12 = 0<br />

• suppose as well that µ f = .06<br />

• V 1 = .14 − .06 = .08<br />

• V 2 = .08 − .06 = .02.<br />

• Plugging into formula: w T = .693<br />

• Therefore,<br />

E(R T ) = (.693)(.14) + (.307)(.08) = .122,<br />

σ T = √ (.693) 2 (.2) 2 + (.307) 2 (.15) 2 = .146.


Portfolio Selection 34<br />

Let R be the <strong>return</strong> on the portfolio that allocates:<br />

• ω to the tangency portfolio<br />

• 1 − ω to the <strong>risk</strong>-free asset<br />

Then<br />

R = ωR T + (1 − ω)µ f<br />

= µ f + ω(R T − R f )<br />

E(R) = µ f + ω{E(R T ) − µ f }<br />

σ R = ωσ T .


Portfolio Selection 35<br />

Continuation of previous example: What is the<br />

optimal investment with σ R = .05?<br />

Answer:<br />

Since<br />

<strong>and</strong><br />

so that<br />

σ R = ωσ T .<br />

σ T = .146<br />

.05 = σ R = ω σ T = .146 ω<br />

ω = .05/.146 = .343 <strong>and</strong> 1 − ω = .657


Portfolio Selection 36<br />

• So 65.7% of the portfolio should be in the <strong>risk</strong>-free<br />

asset.<br />

• 34.3% should be in the tangency portfolio.<br />

• Thus (.343)(69.3%) = 23.7% should be in the first<br />

<strong>risk</strong>y asset<br />

• (.343)(30.7%) = 10.5 should be in the second <strong>risk</strong>y<br />

asset.


Portfolio Selection 37<br />

Asset Allocation<br />

<strong>risk</strong>-free 65.7%<br />

<strong>risk</strong>y 1 23.7%<br />

<strong>risk</strong>y 2 10.5%<br />

Total 99.9%


Portfolio Selection 38<br />

Now suppose that you want a 10% <strong>expected</strong> <strong>return</strong>.<br />

Compare<br />

• The best portfolio of only <strong>risk</strong>y assets<br />

• the best portfolio of the <strong>risk</strong>y assets <strong>and</strong> the <strong>risk</strong>-free<br />

asset<br />

Answer:<br />

• (best portfolio of <strong>risk</strong>y assets)<br />

* .1 = wµ 1 + (1 − w)µ 2 = w(.14) + (1 − w)(.08)<br />

= .08 + (.14 − .08)w<br />

* or w = (.1 − .08)/(.14 − .08) = .02/.06 = 1/3.<br />

* This is the only portfolio of <strong>risk</strong>y assets with<br />

E(R) = .1, so by default it is best.


Portfolio Selection 39<br />

• Then<br />

σ R =<br />

√<br />

w 2 σ 2 1 + (1 − w) 2 σ 2 2 = √ w 2 (.2) 2 + (1 − w) 2 (.15) 2<br />

= √ (1/9)(.2) 2 + 4/9(.15) 2 = .120.<br />

• (best portfolio of the two <strong>risk</strong>y assets <strong>and</strong> the <strong>risk</strong>-free<br />

asset)<br />

* .1 = E(R) = .06 + .062ω = .06 + .425σ R<br />

* This implies that σ R = .04/.425 = .094<br />

* σ R = ωσ T<br />

* or ω = σ R /σ T = .094/.146 = .644.


Portfolio Selection 40<br />

• combining the <strong>risk</strong>-free asset with the two <strong>risk</strong>y assets<br />

reduces σ R from .120 to .094 while maintaining E(R)<br />

at .1.<br />

• The reduction in <strong>risk</strong> is (.120 − .094)/.094 = 28%.<br />

• Not a bad reduction in <strong>risk</strong>!


Portfolio Selection 41<br />

More on the example: What is the best we can do<br />

combining the <strong>risk</strong>-free asset with only one <strong>risk</strong>y asset?<br />

Assume that we still want to have E(R) = .1<br />

• Second <strong>risk</strong>y asset with the <strong>risk</strong>-free<br />

– Since µ f = .06 < .1 <strong>and</strong> µ 2 = .08 < .1, no portfolio<br />

with only the second <strong>risk</strong>y asset <strong>and</strong> the <strong>risk</strong>-free<br />

asset will have an <strong>expected</strong> <strong>return</strong> of .1.<br />

– Another way to appreciate this fact is to solve<br />

.1 = ω(.08) + (1 − ω)(.06) = .06 + .02ω<br />

to get ω = 2 <strong>and</strong> 1 − ω = −1.


Portfolio Selection 42<br />

• <strong>How</strong>ever, ω <strong>and</strong> 1 − ω must both be between 0 <strong>and</strong> 1<br />

unless one is permitted to sell short or buy on margin<br />

• Selling short means selling an asset one does not yet<br />

owe <strong>and</strong> purchasing it later at delivery time.<br />

• First <strong>risk</strong>y asset with the <strong>risk</strong>-free<br />

* .1 = ω(.14) + (1 − ω)(.06) = .06 + ω(.08) imples<br />

that ω = .04/.08 = 1/2.<br />

* Then σ R = ω(.20) = .10 which is greater than .094


Portfolio Selection 43<br />

The minimum value of σ R under various combinations of<br />

available assets (E(R) fixed at .1):<br />

Available Assets<br />

Minimum σ R<br />

1st <strong>risk</strong>y <strong>and</strong> <strong>risk</strong>-free 0.1<br />

2nd <strong>risk</strong>y <strong>and</strong> <strong>risk</strong>-free –<br />

Both <strong>risk</strong>ies, but no <strong>risk</strong>-free 0.12<br />

All three 0.094


Portfolio Selection 44<br />

Effect of ρ 12<br />

• Correlation effects only the <strong>risk</strong>, not the <strong>expected</strong><br />

<strong>return</strong>.<br />

• Positive correlation between the two <strong>risk</strong>y asets is<br />

bad.<br />

• With positive correlation, the two assets tend to move<br />

together which increases the volatility of the portfolio.<br />

• Conversely, negative correlation is good.<br />

• If the assets are negatively correlated, a negative<br />

<strong>return</strong> of one tends to occur with a positive <strong>return</strong> of<br />

the other


Portfolio Selection 45<br />

• Figure shows the efficient frontier <strong>and</strong> tangency<br />

portfolio when µ 1 = .14, µ 2 = .09, σ 1 = .2, σ 2 = .15,<br />

<strong>and</strong> µ f = .03.<br />

• The value of ρ 12 is varied from .7 to −.7.<br />

• The Sharpe’s ratio of the tangency portfolio <strong>return</strong>s<br />

increases as ρ 12 decreases.


Portfolio Selection 46<br />

0.1<br />

ρ = 0.7<br />

T<br />

*<br />

0.1<br />

ρ = 0.3<br />

T<br />

*<br />

E(R)<br />

E(R)<br />

0.05<br />

F<br />

*<br />

0 0.05 0.1 0.15 0.2<br />

σ R<br />

ρ = 0<br />

0.05<br />

F<br />

*<br />

0 0.05 0.1 0.15 0.2<br />

σ R<br />

ρ = −0.7<br />

0.1<br />

T<br />

*<br />

0.1<br />

T<br />

*<br />

E(R)<br />

E(R)<br />

0.05<br />

F<br />

*<br />

0 0.05 0.1 0.15 0.2<br />

σ R<br />

0.05<br />

F<br />

*<br />

0 0.05 0.1 0.15 0.2<br />

σ R


Portfolio Selection 47<br />

Risk-efficient portfolios with N <strong>risk</strong>y assets<br />

Efficient-set mathematics<br />

Efficient-set mathematics generalizes our previous<br />

analysis with two <strong>risk</strong>y assets to the more realistic case of<br />

many <strong>risk</strong>y assets. This material is taken from<br />

Section 5.2 of Campbell, Lo, <strong>and</strong> MacKinlay.


Portfolio Selection 48<br />

Assume that we have N <strong>risk</strong>y assets <strong>and</strong> that the <strong>return</strong><br />

on the ith <strong>risk</strong>y asset is µ i . Define<br />

⎛ ⎞<br />

R 1<br />

R = ⎝ . ⎠<br />

R N<br />

to be the r<strong>and</strong>om vector of <strong>return</strong>s. Then<br />

⎛ ⎞<br />

µ 1<br />

E(R) = µ = ⎝ . ⎠ .<br />

µ N


Portfolio Selection 49<br />

• Let Ω ij be the covariance between R i <strong>and</strong> R j .<br />

• Also, let σ i = √ Ω ii be the the st<strong>and</strong>ard deviation of<br />

R i .<br />

• Define ρ ij = Ω ij /(σ i σ j ) as the correlation between R i<br />

<strong>and</strong> R j .<br />

• Finally, let Ω be the covariance matrix of R, i.e.,<br />

Ω = COV(R),<br />

– so that the i, jth element of Ω is Ω ij = Cov(R i , R j ).


Portfolio Selection 50<br />

• Let<br />

⎛<br />

ω = ⎝<br />

⎞<br />

ω 1<br />

. ⎠<br />

ω N<br />

be a matrix of portfolio weights <strong>and</strong><br />

• let<br />

⎛<br />

⎞<br />

1 =<br />

⎝<br />

1.<br />

1<br />

be a column of N ones. (Use to simplify notation.)<br />


Portfolio Selection 51<br />

With this notation, we can now write down the problem<br />

succinctly.<br />

• We assume that ω 1 + · · · + ω N = 1 T ω = 1.<br />

• The <strong>expected</strong> <strong>return</strong> on a portfolio with weights ω is<br />

N∑<br />

ω i µ i = ω T µ.<br />

i=1


Portfolio Selection 52<br />

• Suppose there is a target value, µ P , of the <strong>expected</strong><br />

<strong>return</strong> on the portfolio.<br />

• When N = 2 the target, µ P , is achieved by only one<br />

portfolio <strong>and</strong> its ω 1 value solves<br />

µ P = ω 1 µ 1 + ω 2 µ 2 = µ 2 + ω 1 (µ 1 − µ 2 ).


Portfolio Selection 53<br />

• For N ≥ 3, there will be an infinite number of<br />

portfolios achieving the target, µ P .<br />

• The one with the smallest variance is called the<br />

“efficient” portfolio.<br />

• Our goal is to find the efficient portfolio.


Portfolio Selection 54<br />

The variance of the <strong>return</strong> on the portfolio with weights<br />

ω is<br />

N∑ N∑<br />

ω i ω j Ω ij = ω T Ωω. (1)<br />

i=1<br />

j=1<br />

Thus, given a target µ P , the efficent portfolio minimizes<br />

(1) subject to<br />

<strong>and</strong><br />

ω T µ = µ P (2)<br />

ω T 1 = 1. (3)<br />

• This is a quadratic programming (QP) problem.<br />

• QP also allows us to impose the constraints ω i ≥ 0.<br />

– Later


Portfolio Selection 55<br />

We will denote the weights of the efficient portfolio by<br />

ω µP . To find ω µP , form the Lagrangian<br />

Then solve<br />

L = ω T Ωω + δ 1 (µ P − ω T µ P<br />

µ) + δ 2 (1 − ω T 1).<br />

0 = ∂<br />

∂ω L = 2Ωω µ P<br />

− δ 1 µ − δ 2 1. (4)<br />

Now we will look at the details of the derivation of (4).


Portfolio Selection 56<br />

Definition: Here<br />

⎛<br />

∂<br />

∂ω L = ⎜<br />

⎝<br />

⎞<br />

∂ L/∂ ω 1<br />

⎟<br />

. ⎠<br />

∂ L/∂ ω N<br />

means the gradient of L with respect to ω with the other<br />

variables in L held fixed.


Portfolio Selection 57<br />

Fact: For an n × n matrix A <strong>and</strong> an n-dimensional<br />

vector x,<br />

∂<br />

∂x xT Ax = (A + A T )x<br />

(This gives us the first term in (4).)<br />

The solution to (4) is<br />

ω µP = 1 2 Ω−1 (δ 1 µ + δ 2 1) = Ω −1 (λ 1 µ + λ 2 1)<br />

where λ 1 <strong>and</strong> λ 2 are new Lagrange multipliers:<br />

λ 1 = 1 2 δ 1 <strong>and</strong> λ 2 = 1 2 δ 2.


Portfolio Selection 58<br />

Thus,<br />

ω µP = λ 1 Ω −1 µ + λ 2 Ω −1 1,<br />

where λ 1 <strong>and</strong> λ 2 are yet to be determined scalar<br />

quantities. We need to use the constraints to determine<br />

λ 1 <strong>and</strong> λ 2 . Therefore,<br />

µ p = µ T ω µP = λ 1 µ T Ω −1 µ + λ 2 µ T Ω −1 1, (5)<br />

<strong>and</strong><br />

1 = 1 T ω µP = λ 1 1 T Ω −1 µ + λ 2 1 T Ω −1 1. (6)


Portfolio Selection 59<br />

These are equations in λ 1 <strong>and</strong> λ 2 . We will introduce<br />

simpler notation for the coefficients:<br />

A = µ T Ω −1 1 = 1 T Ω −1 µ<br />

B = µ T Ω −1 µ,<br />

C = 1 T Ω −1 1.<br />

Then (5) <strong>and</strong> (6) can be rewritten as<br />

µ P = Bλ 1 + Aλ 2<br />

1 = Aλ 1 + Cλ 2 .<br />

Let D = BC − A 2 be the determinant of this system of<br />

linear equations. The solution is<br />

λ 1 = −A + C µ p<br />

D<br />

<strong>and</strong> λ 2 = B − A µ P<br />

D<br />

.


Portfolio Selection 60<br />

It follows after some algebra that<br />

where<br />

<strong>and</strong><br />

ω µP = g + h µ P , (7)<br />

g = B Ω−1 1 − A Ω −1 µ<br />

, (8)<br />

D<br />

h = C Ω−1 µ − A Ω −1 1<br />

. (9)<br />

D<br />

Notice that g <strong>and</strong> h are fixed vectors, since they depend<br />

on the fixed vector µ <strong>and</strong> the fixed matrix Ω. Also, the<br />

scalars A, C, <strong>and</strong> D are functions of µ <strong>and</strong> Ω so they are<br />

also fixed.


Portfolio Selection 61<br />

The target <strong>expected</strong> <strong>return</strong>, µ P , can be varied over the<br />

range<br />

min µ i ≤ µ P ≤ max µ i.<br />

i=1,...,N i=1,...,N<br />

As µ P varies over this range, we get a locus ω µP of<br />

efficient portfolios called the “efficient frontier.” We can<br />

illustrate the efficient frontier by the following algorithm:<br />

1. Vary µ P along a grid. For each value of µ P on this<br />

grid, compute σ µP by:<br />

(a) computing ω µP = g + h µ P<br />

√<br />

(b) then computing σ µP = ω T µ P<br />

Ωω µP<br />

2. Plot the values (µ P , σ µP )


Portfolio Selection 62<br />

This algorithm is implemented in the MATLAB program<br />

“portfolio02.m” listed below:<br />

bmu = [.08;.03;.05] ;<br />

bOmega = [ .3 .02 .01 ;<br />

.02 .15 .03 ;<br />

.01 .03 .18 ] ;<br />

bone = ones(length(bmu),1) ;<br />

ngrid = 200 ;<br />

muP = linspace(-.02,.2,ngrid) ;<br />

sigmaP = zeros(1,ngrid) ;<br />

omegaP = zeros(length(bmu),ngrid) ;<br />

mu12 = zeros(1,ngrid) ;<br />

sigma12 = mu12 ;<br />

mu13 = zeros(1,ngrid) ;<br />

sigma13 = mu12 ;<br />

mu23 = zeros(1,ngrid) ;<br />

sigma23 = mu12 ;


Portfolio Selection 63<br />

ibOmega = inv(bOmega) ;<br />

A = bone’*ibOmega*bmu ;<br />

B = bmu’*ibOmega*bmu ;<br />

C = bone’*ibOmega*bone ;<br />

D = B*C - A^2 ;<br />

bg = (B*ibOmega*bone - A*ibOmega*bmu)/D ;<br />

bh = (C*ibOmega*bmu - A*ibOmega*bone)/D


Portfolio Selection 64<br />

for i=1:ngrid ;<br />

omegaP(:,i) = bg + muP(i)*bh ;<br />

sigmaP(i) = sqrt(omegaP(:,i)’*bOmega*omegaP(:,i)) ;<br />

mu12(i) = w(i)*bmu(1) + (1-w(i))*bmu(2) ;<br />

sigma12(i) = sqrt(w(i)^2*bOmega(1,1) + 2*w(i)*(1-w(i))*bOmega(1,2) ...<br />

+ (1-w(i))^2*bOmega(2,2)) ;<br />

mu13(i) = w(i)*bmu(1) + (1-w(i))*bmu(3) ;<br />

sigma13(i) = sqrt(w(i)^2*bOmega(1,1) + 2*w(i)*(1-w(i))*bOmega(1,3) ...<br />

+ (1-w(i))^2*bOmega(3,3)) ;<br />

mu23(i) = w(i)*bmu(2) + (1-w(i))*bmu(3) ;<br />

sigma23(i) = sqrt(w(i)^2*bOmega(2,2) + 2*w(i)*(1-w(i))*bOmega(2,3) ...<br />

+ (1-w(i))^2*bOmega(3,3))<br />

end ;


Portfolio Selection 65<br />

fsize = 16 ;<br />

figure(1)<br />

p = plot(sigmaP,muP,sigma12,mu12,’--’,sigma13,mu13, ...<br />

’-.’,sigma23,mu23,’:’) ;<br />

set(p,’linewidth’,6) ;<br />

xlabel(’st<strong>and</strong>ard deviation of <strong>return</strong> (\sigma_P)’,’fontsize’,fsize) ;<br />

ylabel(’<strong>expected</strong> <strong>return</strong> (\mu_P)’,’fontsize’,fsize) ;<br />

text(sqrt(bOmega(1,1)),bmu(1),’1’,’fontsize’,24) ;<br />

text(sqrt(bOmega(2,2)),bmu(2),’2’,’fontsize’,24) ;<br />

text(sqrt(bOmega(3,3)),bmu(3),’3’,’fontsize’,24) ;<br />

set(gca,’fontsize’,fsize) ;<br />

set(gca,’ylim’,[-.02,.2]) ;<br />

set(gca,’xlim’,[.2,2]) ; end ;<br />

print portfolio02SH.ps -depsc ;


Portfolio Selection 66<br />

figure(2)<br />

p2 = plot(muP,omegaP(1,:),muP,omegaP(2,:),’--’,muP,omegaP(3,:),’-.’) ;<br />

set(p2,’linewidth’,6) ;<br />

set(gca,’fontsize’,fsize) ;<br />

grid ;<br />

xlabel(’\mu_P’,’fontsize’,fsize) ;<br />

ylabel(’weight’,’fontsize’,fsize) ;<br />

legend(’w_1’,’w_2’,’w_3’,0) ;<br />

print portfolio02.ps -depsc ;


Portfolio Selection 67<br />

0.08<br />

1<br />

0.07<br />

<strong>expected</strong> <strong>return</strong> (µ P<br />

)<br />

0.06<br />

0.05<br />

0.04<br />

3<br />

0.03<br />

2<br />

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6<br />

st<strong>and</strong>ard deviation of <strong>return</strong> (σ P<br />

)<br />

From portfolio02.m


Portfolio Selection 68<br />

1<br />

0.8<br />

0.6<br />

weight<br />

0.4<br />

0.2<br />

0<br />

w 1<br />

w 2<br />

w 3<br />

−0.2<br />

−0.4<br />

0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08<br />

µ P<br />

From portfolio02.m


Portfolio Selection 69<br />

• If one wants to avoid short selling, then one must<br />

impose the additional constraints that w i ≥ 0 for<br />

i = 1, . . . , N.<br />

• Minimization of portfolio <strong>risk</strong> subject to ω T µ = µ P ,<br />

ω T 1 = 1, <strong>and</strong> these additional nonnegativity<br />

constraints is a quadratic programming problem.<br />

• The program “quadprog” in MATLAB’s<br />

Optimization Toolbox does quadratic programming.<br />

• Figures were produced by the program<br />

“portfolio02QP.m” that uses “quadprog” in<br />

MATLAB.


Portfolio Selection 70<br />

0.08<br />

1<br />

0.07<br />

<strong>expected</strong> <strong>return</strong> (µ P<br />

)<br />

0.06<br />

0.05<br />

0.04<br />

3<br />

0.03<br />

2<br />

no negative wts<br />

unconstrained wts<br />

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6<br />

st<strong>and</strong>ard deviation of <strong>return</strong> (σ P<br />

)<br />

From portfolio02QP.m


Portfolio Selection 71<br />

1<br />

w 1<br />

w 2<br />

w 3<br />

From portfolio02QP.m<br />

weight<br />

0.5<br />

0<br />

0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08<br />

µ P


Portfolio Selection 72<br />

• Now suppose that we have a <strong>risk</strong>-free asset <strong>and</strong> we<br />

want to mix the <strong>risk</strong>-free asset with some efficient<br />

portfolio.<br />

• One can see geometrically that there is a tangency<br />

portfolio; see the figure.<br />

• The optimal portfolio always is a mixture of<br />

the <strong>risk</strong>-free asset with the tangency portfolio.<br />

• This is a remarkable simplification.


Portfolio Selection 73


Portfolio Selection 74<br />

Selling short<br />

• Selling short is a way to profit if a stock price goes<br />

down.<br />

• To sell a stock short, one sells the stock without<br />

owning it.<br />

• Suppose a stock is selling at $25/share <strong>and</strong> you sell<br />

100 shares short.<br />

– This gives you $2,500.<br />

– If the goes down to $17 share, you can buy the 100<br />

shares for $1,700 <strong>and</strong> close out your short position.


Portfolio Selection 75<br />

• Suppose that you have $100 <strong>and</strong> there are two <strong>risk</strong>y<br />

assets.<br />

• With your money you could buy<br />

– $150 worth of <strong>risk</strong>y asset 1 <strong>and</strong><br />

– sell $50 short of <strong>risk</strong>y asset 2.<br />

• the net cost would be exactly $100.<br />

• the <strong>return</strong> on your portfolio would be<br />

(<br />

3<br />

2 R 1 + − 1 )<br />

R 2 .<br />

2<br />

• Your portfolio weights are w 1 = 3/2 <strong>and</strong> w 2 = −1/2.<br />

Values of µ P below min(µ i ) <strong>and</strong> above max(µ i ) are<br />

possible by using short selling.


Portfolio Selection 76<br />

The Interior decorator fallacy<br />

• It is often thought that a stock portfolio should be<br />

tailored to the financial circumstances of a client.<br />

• Bernstein, in Capital Ideas, calls this the “interior<br />

decorator fallacy.”


Portfolio Selection 77<br />

• Example: a woman in her forties married to a<br />

clergyman with a modest income.<br />

• inherited money which she wanted to invest.<br />

Bernstein recommended stocks with good growth<br />

potential but low dividends, e.g., Georgia Pacific,<br />

IBM, <strong>and</strong> Gillette.<br />

• The client was worried that these were too <strong>risk</strong>y<br />

• Bernstein reasoned that even someone with modest<br />

means should benefit from the long-term growth<br />

potential


Portfolio Selection 78<br />

• Another Example: Bernstein recommended electric<br />

utilities, a conservative choice, to a young business<br />

excecutive who wanted a more aggressive portfolio.<br />

• Again, this recommendation was at odds with<br />

conventional wisdom.<br />

• New view: there is a best portfolio (the tangency<br />

portfolio) that is the same for everyone.<br />

• An individual’s circumstances only determines the<br />

appropriate mix between <strong>risk</strong>-free assets <strong>and</strong> the<br />

tangency portfolio. The clergyman’s wife should<br />

invest a higher percentage of her money


Portfolio Selection 79<br />

Back to the math – finding the tangency portfolio<br />

• Now remove the assumption that ω T 1 = 1.<br />

• The quantity 1 − ω T 1 is invested in the <strong>risk</strong>-free<br />

asset. (Does it make sense to have 1 − ω T 1 < 0?).<br />

• The <strong>expected</strong> <strong>return</strong> is<br />

ω T µ + (1 − ω T 1)µ f ,<br />

• The constraint is that <strong>expected</strong> <strong>return</strong> is equal to µ P .


Portfolio Selection 80<br />

• Thus, the Lagrangian function is<br />

• Since<br />

L = ω T Ωω + δ{µ P − ω T µ − (1 − ω T 1)µ f }.<br />

0 = ∂<br />

∂ ω L = 2Ωω + δ(−µ + 1µ f),<br />

the optimal weight vector is<br />

where λ = δ/2.<br />

ω µP = λΩ −1 (µ − µ f 1), (10)


Portfolio Selection 81<br />

• To find λ, we use our constraint:<br />

ω T µ P<br />

µ + (1 − ω T µ P<br />

1)µ f = µ P . (11)<br />

• Rearranging (11), we get<br />

ω T µ P<br />

(µ − µ f 1) = µ P − µ f . (12)<br />

• Therefore, substituting (10) into (12) we have<br />

λ(µ − µ f 1) T Ω −1 (µ − µ f 1) = µ P − µ f ,<br />

or<br />

λ =<br />

µ P − µ f<br />

(µ − µ f ) T Ω −1 (µ − µ f 1) . (13)


Portfolio Selection 82<br />

• Then substituting (13) into (10)<br />

ω µP = c P ω,<br />

where<br />

<strong>and</strong><br />

c P =<br />

µ P − µ f<br />

(µ − µ f 1) T Ω −1 (µ − µ f 1)<br />

ω = Ω −1 (µ − µ f 1). (14)<br />

• (µ − µ f 1) is the vector of “excess <strong>return</strong>s,” that is,<br />

the amount by which the <strong>expected</strong> <strong>return</strong>s on the<br />

<strong>risk</strong>y assets exceed the <strong>risk</strong>-free <strong>return</strong>.<br />

• The excess <strong>return</strong>s measure how much the market<br />

pays for assuming <strong>risk</strong>.


Portfolio Selection 83<br />

• ω is not quite a portfolio because these weights do<br />

not necessarily sum to one.<br />

• The tangency portfolio is a scalar multiple of ω:<br />

ω T =<br />

ω<br />

1 T ω . (15)<br />

• ω T is a portfolio since the weight are forced to sum to<br />

one.


Portfolio Selection 84<br />

• The optimal weight vector ω µP can be expressed in<br />

terms of the tangency portfolio as<br />

ω µP<br />

= c p ω = c p (1 T ω)ω T<br />

• Therefore, c P (1 T ω) tells us how much weight to put<br />

on the tangency portfolio, ω T .<br />

• The amount of weight to put of the <strong>risk</strong>-free asset is<br />

= 1 − c p (ω T 1).<br />

Note that ω <strong>and</strong> ω T do not depend on µ p .


Portfolio Selection 85<br />

• The MATLAB program “portfolio04.m” on the course<br />

web site is an extension of “portfolio02.m.”<br />

• portfolio04.m, which is listed below, also plots of<br />

– the tangency portfolio (T) <strong>and</strong><br />

– the line connecting the <strong>risk</strong>-free asset (F) with the<br />

tangency portfolio.<br />

• We’ll look at the plot first


Portfolio Selection 86<br />

0.08<br />

0.07<br />

<strong>expected</strong> <strong>return</strong><br />

0.06<br />

0.05<br />

0.04<br />

* T<br />

* P<br />

0.03<br />

F<br />

*<br />

0.02<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5<br />

st<strong>and</strong>ard deviation of <strong>return</strong><br />

Efficient frontier <strong>and</strong> tangency portfolio plotted<br />

by the program “portfolio04.m” for N = 3 assets.


Portfolio Selection 87<br />

Input data µ, Ω, <strong>and</strong> µ f . Create 1.<br />

bmu = [.08;.03;.05] ;<br />

bOmega = [ .3 .02 .01 ;<br />

.02 .15 .03 ;<br />

.01 .03 .18 ] ;<br />

muf = .02 ;<br />

bone = ones(length(bmu),1) ;


Portfolio Selection 88<br />

Create grid of µ P values <strong>and</strong> set up storage. Invert Ω.<br />

muP = linspace(min(bmu),max(bmu),50) ;<br />

sigmaP = zeros(1,50) ;<br />

ibOmega = inv(bOmega) ;


Portfolio Selection 89<br />

Create A, B, C, <strong>and</strong> D <strong>and</strong> also the vectors g <strong>and</strong> h.<br />

A = bone’*ibOmega*bmu ;<br />

B = bmu’*ibOmega*bmu ;<br />

C = bone’*ibOmega*bone ;<br />

D = B*C - A^2 ;<br />

bg = (B*ibOmega*bone - A*ibOmega*bmu)/D ;<br />

bh = (C*ibOmega*bmu - A*ibOmega*bone)/D ;


Portfolio Selection 90<br />

Compute ω <strong>and</strong> σ P for each target <strong>expected</strong> <strong>return</strong> on<br />

the portfolio.<br />

for i=1:50 ;<br />

end ;<br />

omegaP = bg + muP(i)*bh ;<br />

sigmaP(i) = sqrt(omegaP’*bOmega*omegaP) ;


Portfolio Selection 91<br />

Compute the minimum variance <strong>return</strong>.<br />

gg = bg’*bOmega*bg ;<br />

hh = bh’*bOmega*bh ;<br />

gh = bg’*bOmega*bh ;<br />

mumin = - gh/hh ;<br />

sdmin = sqrt( gg * ( 1 - gh^2/(gg*hh)) ) ;


Portfolio Selection 92<br />

Compute the tangency portfolio<br />

bomegabar = ibOmega*(bmu - muf*bone) ;<br />

bomegaT = bomegabar/(bone’*bomegabar) ;<br />

sigmaT = sqrt(bomegaT’*bOmega*bomegaT) ;<br />

muT = bmu’*bomegaT ;


Portfolio Selection 93<br />

Compute quantities needed for plotting. “P2” is a typical<br />

portfolio.<br />

fsize = 16 ;<br />

fsize2 = 35 ;<br />

bomegaP2 = [0;.3;.7] ;<br />

sigmaP2 = sqrt(bomegaP2’*bOmega*bomegaP2) ;<br />

muP2 = bmu’*bomegaP2 ;


Portfolio Selection 94<br />

Plot efficient frontier <strong>and</strong> line connecting the <strong>risk</strong>-free<br />

asset <strong>and</strong> the tangency portfolio.<br />

ind = (muP > mumin) ;<br />

% Indicates efficient horizon<br />

ind2 = (muP < mumin) ;<br />

% Indicates locus below efficient horizon<br />

p1 = plot(sigmaP(ind),muP(ind),’-’,sigmaP(ind2),muP(ind2),...<br />

’--’ ,sdmin,mumin,’.’) ;<br />

l1 = line([0,sigmaT],[muf,muT]) ;


Portfolio Selection 95<br />

Annotate the plot.<br />

t1= text(sigmaP2,muP2,’* P’,’fontsize’,fsize2) ;<br />

t2= text(sigmaT,muT,’* T’,’fontsize’,fsize2) ;<br />

t3=text(.01,muf+.006,’F’,’fontsize’,fsize2) ;<br />

t3B = text(0,muf,’*’,’fontsize’,fsize2) ;<br />

set(p1(1:2),’linewidth’,4) ;<br />

set(p1(3),’markersize’,40) ;<br />

set(p1(3),’color’,’red’) ;<br />

set(l1,’linewidth’,4) ;<br />

set(l1,’linestyle’,’--’) ;<br />

xlabel(’st<strong>and</strong>ard deviation of <strong>return</strong>’,’fontsize’,fsize) ;<br />

ylabel(’<strong>expected</strong> <strong>return</strong>’,’fontsize’,fsize) ;


Portfolio Selection 96<br />

Here’s the plot again.<br />

0.08<br />

0.07<br />

<strong>expected</strong> <strong>return</strong><br />

0.06<br />

0.05<br />

0.04<br />

* T<br />

* P<br />

0.03<br />

F<br />

*<br />

0.02<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5<br />

st<strong>and</strong>ard deviation of <strong>return</strong><br />

Efficient frontier <strong>and</strong> tangency portfolio plotted by the<br />

program “portfolio04.m” for N = 3 assets.


Portfolio Selection 97<br />

Is the theory useful?<br />

• This theory of portfolio selection could be used if N<br />

were small. We would need estimates of µ <strong>and</strong> Ω.<br />

• These would be obtained from recent <strong>return</strong>s data.<br />

• Working assumption – future <strong>return</strong>s will be similar<br />

to past <strong>return</strong>s<br />

• Another problem is that the results are very sensitive<br />

to estimation error<br />

– <strong>and</strong> <strong>expected</strong> <strong>return</strong>s are difficult to estimate<br />

accurately


Portfolio Selection 98<br />

• The next section gives an example of using portfolio<br />

theory to allocate capital among eight international<br />

markets.<br />

• With a total of only eight assets, implementing the<br />

theory is feasible.<br />

• <strong>How</strong>ever, suppose that we were considering selecting a<br />

portfolio from all 500 stocks on the S&P index.


Portfolio Selection 99<br />

• Or, even worse, consider all 3000 stocks on the<br />

Russell index. Ugh!<br />

– There would be (3000)(2999)/2 ≈ 4.5 million<br />

covariances to estimate.<br />

– Moreover, Ω would be 3000 by 3000 <strong>and</strong> its inverse<br />

is required.<br />

– most serious difficulty would not be the<br />

computations.<br />

∗ more difficult problems are costs of data<br />

collection <strong>and</strong> poor estimation accuracy


Portfolio Selection 100<br />

• Portfolio theory was an important theoretical<br />

development.<br />

– Markowitz was awarded the Nobel Prize in<br />

economics for this work.<br />

• <strong>How</strong>ever, a practical version of this theory awaited<br />

the work of Sharpe <strong>and</strong> Lintner.<br />

• Sharpe, who was Markowitz’s PhD student, shared<br />

the Nobel Prize with Markowitz.<br />

• Sharpe’s CAPM asserts that the tangency portfolio<br />

is also the market portfolio<br />

– This is a tremendous simplification.


Portfolio Selection 101<br />

Example—Global Asset Allocation<br />

• This example is taken from Efficient Asset<br />

Management by Richard O. Michaud.<br />

• The problem is to allocate capital to eight major<br />

classes of assets:<br />

– U.S. stocks<br />

– U.S. government <strong>and</strong> corporate bonds<br />

– Euros<br />

– the Canadian, French, German, Japanese, <strong>and</strong><br />

U.K. equity markets


Portfolio Selection 102<br />

• The historic data used to estimate <strong>expected</strong> <strong>return</strong>s,<br />

variances, <strong>and</strong> covariances consisted of 216 months<br />

(Jan 1978 to Dec 1995) of index total <strong>return</strong>s in U.S.<br />

dollars for all eight asset classes <strong>and</strong> for U.S. 30-day<br />

T-bills.


Portfolio Selection 103<br />

• The efficient frontier, with all weights constrained to<br />

be non-negative, was found by quadratic<br />

programming <strong>and</strong> is shown in the Figure.


Portfolio Selection 104<br />

• There are three reference portfolios. Michaud states<br />

that<br />

– The index portfolio is roughly consistent with a<br />

capitalization weighted portfolio relative to a world<br />

equity benchmark for the six equity markets.<br />

– The current portfolio represent a typical U.S.-based<br />

investor’s global portfolio asset allocation.<br />

– An equal weighted portfolio is useful as a reference<br />

point.


Portfolio Selection 105<br />

Efficient frontier for the global asset allocation problem.


Portfolio Selection 106<br />

Quadratic programming<br />

• Quadratic programming minimizes over x<br />

subject to<br />

<strong>and</strong><br />

1<br />

2 xT Hx + f T x (16)<br />

Ax ≤ b, (17)<br />

A eq x = b eq . (18)<br />

• N is the dimension of the problem (number of<br />

variables)<br />

• x <strong>and</strong> f are N × 1 vectors <strong>and</strong> H is an N × N matrix.


Portfolio Selection 107<br />

• Also,<br />

– A is m × N <strong>and</strong> b is m × 1 for some m<br />

– A eq is n × N <strong>and</strong> b eq is n × 1 for some n<br />

• In other words, quadratic programming minimizes the<br />

quadratic objective function (16) subject to<br />

– m linear inequality constraints (17) <strong>and</strong><br />

– n linear equality constraints (18).


Portfolio Selection 108<br />

• We can impose nonnegativity constraints on the<br />

weights of a portfolio by solving the minimization<br />

problem above with<br />

* x = ω, H = Ω, f equal to a N × 1 vector of zeros,<br />

* A = −I (the N × N identity matrix), b equal to a<br />

N × 1 vector of zeros,<br />

( ) 1<br />

T<br />

A eq =<br />

µ T ,<br />

* <strong>and</strong><br />

b eq =<br />

( 1<br />

µ P<br />

)<br />

.


Portfolio Selection 109<br />

• Then (16) becomes one-half the variance of the<br />

portfolio’s <strong>return</strong><br />

ω T Ωω/2,<br />

that is, one-half the objective function (1), (17)<br />

becomes the nonnegative constraints ω ≥ 0, <strong>and</strong> (18)<br />

becomes<br />

( 1<br />

T<br />

µ T )<br />

ω =<br />

( 1<br />

µ P<br />

)<br />

.<br />

which is the same as constraints (2) <strong>and</strong> (3).<br />

• Thus, we are solving the same minimization problem<br />

as in “efficient set math” but with the constraint that<br />

all of the ω i be non-negative.


Portfolio Selection 110<br />

• The minimization problem solved by efficient set<br />

math can also be solved by quadratic programming<br />

– just remove the non-negativity constraint<br />

• This is done by redefining<br />

– A to be a vector of zeros <strong>and</strong><br />

– b to be 0.<br />

• With these choices of A <strong>and</strong> b, constraint (17) is that<br />

0 ω i ≤ 0 for all i, which obviously is always satisfied<br />

<strong>and</strong> so has no effect.<br />

• the reason we use a constraint that has no effect is<br />

the MATLAB’s QUADPROG is written so that some<br />

constraint must be input.


Portfolio Selection 111<br />

Here is the documentation for MATLAB’s “quadprog”<br />

illustrating several ways that this program can be used.<br />

• In our applications, e.g., in the program<br />

“portfolio02QP.m,” we call the program “quadprog”<br />

with a comm<strong>and</strong> of the type<br />

“X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB)”.


Portfolio Selection 112<br />

QUADPROG Quadratic programming. X=QUADPROG(H,f,A,b) solves<br />

the quadratic programming problem:<br />

min 0.5*x’*H*x + f’*x subject to: A*x


Portfolio Selection 113<br />

Here is a program to find efficient frontier, minimum<br />

variance portfolio, <strong>and</strong> tangency portfolio with the<br />

constraint of no short selling. First input the data.<br />

bmu = [.08;.03;.05] ;<br />

bOmega = [ .3 .02 .01 ;<br />

.02 .15 .03 ;<br />

.01 .03 .18 ] ;<br />

Then A eq is defined.<br />

Aeq = [ones(1,length(bmu));bmu’] ;<br />

Then we create a grid of 50 µ P values from .03 to .08.<br />

ngrid = 50 ;<br />

muP = linspace(.03,.08,ngrid) ;


Portfolio Selection 114<br />

Then we set up matrices for storage<br />

sigmaP = muP ; % Set up storage<br />

sigmaP2 = sigmaP ;<br />

omegaP = zeros(3,ngrid) ;<br />

omegaP2 = omegaP ;<br />

rf = .04 % This is the <strong>risk</strong>-free rate<br />

Finally, we find the portfolio weights for each value of µ P .<br />

for i = 1:ngrid ;<br />

omegaP(:,i)=quadprog(bOmega,zeros(length(bmu),1),’’,’’, ...<br />

Aeq,[1;muP(i)],zeros(3,1)) ;<br />

end ;


Portfolio Selection 115<br />

We can also find the minimum variance portfolio <strong>and</strong> the<br />

tangency portfolio.<br />

imin=find(sigmaP==min(sigmaP)) ;<br />

ieff = (muP >= muP(imin)) ;<br />

sharperatio = (muP-rf) ./ sigmaP ;<br />

itangency = find(sharperatio == max(sharperatio)) ;<br />

plot(sigmaP(ieff),muP(ieff),sigmaP(itangency),muP(itangency), ...<br />

’*’,sigmaP(imin),muP(imin),’o’,0,rf,’x’) ;<br />

line([0 sigmaP(itangency)],[rf,muP(itangency)])


Portfolio Selection 116<br />

0.08<br />

0.075<br />

0.07<br />

<strong>expected</strong> <strong>return</strong><br />

0.065<br />

0.06<br />

0.055<br />

0.05<br />

0.045<br />

0.04<br />

0 0.1 0.2 0.3 0.4 0.5 0.6<br />

st<strong>and</strong>ard deviation of <strong>return</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!