11.11.2014 Views

A Study on Crystallization of Oxalic Acid in Batch Cooling ... - pierre

A Study on Crystallization of Oxalic Acid in Batch Cooling ... - pierre

A Study on Crystallization of Oxalic Acid in Batch Cooling ... - pierre

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

C. SRINIVASAKANNAN et al., A <str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> Crystallizati<strong>on</strong> <strong>of</strong> <strong>Oxalic</strong> <strong>Acid</strong> …, Chem. Biochem. Eng. Q. 16 (3) 125–129 (2002) 125<br />

A <str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> Crystallizati<strong>on</strong> <strong>of</strong> <strong>Oxalic</strong> <strong>Acid</strong> <strong>in</strong> <strong>Batch</strong> Cool<strong>in</strong>g Crystallizer<br />

C. Sr<strong>in</strong>ivasakannan*, R. Vasanthakumar, K. Iyappan, and P. G. Rao<br />

Chemical Eng<strong>in</strong>eer<strong>in</strong>g Divisi<strong>on</strong>, Central Leather Research Institute,<br />

Chennai 600 020, India<br />

Pr<strong>of</strong>esi<strong>on</strong>al paper<br />

Received: December 19, 2001<br />

Accepted: April 25, 2002<br />

A study <strong>on</strong> batch cool<strong>in</strong>g crystallizer, to assess the effects <strong>of</strong> various cool<strong>in</strong>g modes<br />

<strong>on</strong> the crystal size distributi<strong>on</strong>, is attempted for oxalic acid. The l<strong>in</strong>ear cool<strong>in</strong>g mode is<br />

found to give narrow crystal size distributi<strong>on</strong> and higher crystal size as compared to c<strong>on</strong>trolled<br />

cool<strong>in</strong>g modes. The effect <strong>of</strong> various operat<strong>in</strong>g quantities such as the seed ratio,<br />

type <strong>of</strong> agitator, agitati<strong>on</strong> rates, are carried out with l<strong>in</strong>ear cool<strong>in</strong>g mode. The <strong>in</strong>crease <strong>in</strong><br />

seed ratio is found to reduce the mean crystal size. For turb<strong>in</strong>e type agitator, <strong>in</strong>crease <strong>in</strong><br />

the agitati<strong>on</strong> rate bey<strong>on</strong>d 140 rpm is found to widen the crystal size distributi<strong>on</strong> and<br />

lower the mean crystal size, where as for anchor type agitator, agitati<strong>on</strong> rate bey<strong>on</strong>d 100<br />

rpm is found to decrease mean crystal size.<br />

Key Words:<br />

<strong>Batch</strong> crystallizati<strong>on</strong>, oxalic acid, crystal size distributi<strong>on</strong>.<br />

Introducti<strong>on</strong><br />

<strong>Batch</strong> cool<strong>in</strong>g crystallizers are comm<strong>on</strong>ly used<br />

<strong>in</strong> the producti<strong>on</strong> <strong>of</strong> f<strong>in</strong>e chemicals, pharmaceuticals<br />

and bio-chemicals. Crystallizati<strong>on</strong> from soluti<strong>on</strong><br />

is an <strong>in</strong>dustrially important unit operati<strong>on</strong> due<br />

to its ability to provide high purity separati<strong>on</strong>.<br />

<strong>Batch</strong> processes are preferred, if the producti<strong>on</strong> rate<br />

is low or the equipment must be used to produce<br />

several different products. <strong>Batch</strong> cool<strong>in</strong>g crystallizers<br />

present the advantage <strong>of</strong> be<strong>in</strong>g simple, flexible,<br />

require less <strong>in</strong>vestment and, generally, <strong>in</strong>volve less<br />

process development. 1 However as compared to<br />

c<strong>on</strong>t<strong>in</strong>uous process the batch process yield poor<br />

quality product with smaller crystal size.<br />

The crystal size distributi<strong>on</strong> is an important<br />

quantity <strong>in</strong> the producti<strong>on</strong> <strong>of</strong> high quality product<br />

and for determ<strong>in</strong><strong>in</strong>g the efficiency <strong>of</strong> downstream<br />

operati<strong>on</strong>s, such as filtrati<strong>on</strong> and wash<strong>in</strong>g, reacti<strong>on</strong><br />

with other chemicals, transportati<strong>on</strong> and storage <strong>of</strong><br />

crystals. If the crystals are to be marketed as a f<strong>in</strong>al<br />

product, customer’s acceptance requires <strong>in</strong>dividual<br />

crystals to be str<strong>on</strong>g, n<strong>on</strong>-aggregated, uniform <strong>in</strong><br />

size and n<strong>on</strong>-cak<strong>in</strong>g <strong>in</strong> the package. For these reas<strong>on</strong>s,<br />

crystal size distributi<strong>on</strong> must be under c<strong>on</strong>trol<br />

and it is the prime objective <strong>in</strong> the design and operati<strong>on</strong><br />

<strong>of</strong> crystallizer. A uniform and narrow crystal<br />

size distributi<strong>on</strong> with a large mean crystal size is <strong>of</strong>ten<br />

desired.<br />

In a batch cool<strong>in</strong>g crystallizer, soluti<strong>on</strong> is<br />

cooled for achiev<strong>in</strong>g the supersaturati<strong>on</strong> essential<br />

for crystallizati<strong>on</strong>. 2 Crystallizers <strong>of</strong>ten <strong>in</strong>corporate<br />

*Corresp<strong>on</strong>d<strong>in</strong>g author.<br />

Present Address: Lecturer, School <strong>of</strong> Chemical Eng<strong>in</strong>eer<strong>in</strong>g, University<br />

Sa<strong>in</strong>s Malaysia, 14300 Nib<strong>on</strong>g Tebal, Pulau Penang, Malaysia.<br />

Email: chkannan@eng.usm.my<br />

cool<strong>in</strong>g c<strong>on</strong>trol, s<strong>in</strong>ce unc<strong>on</strong>trolled cool<strong>in</strong>g leads to<br />

poor quality product. 3 This is caused by the formati<strong>on</strong><br />

<strong>of</strong> large number <strong>of</strong> crystal nuclei, which cannot<br />

grow to the desired size, if the cool<strong>in</strong>g rate <strong>in</strong> the<br />

<strong>in</strong>itial stages <strong>of</strong> the process is too high. 4 In order to<br />

get large crystals the temperature should be reduced<br />

slowly <strong>in</strong> the early stages <strong>of</strong> the process and more<br />

rapidly as the temperature <strong>of</strong> the soluti<strong>on</strong> decreases.<br />

3,4 When the batch crystallizer is refrigerated<br />

with coolant <strong>of</strong> c<strong>on</strong>stant flow rate and temperature<br />

leads to wide size distributi<strong>on</strong> and small size<br />

crystals. 9<br />

The earlier research <strong>on</strong> batch crystallizers were<br />

mostly focused <strong>on</strong> the c<strong>on</strong>trol <strong>of</strong> cool<strong>in</strong>g rate and<br />

seed ratios <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> supersaturati<strong>on</strong><br />

with<strong>in</strong> the so-called metastable z<strong>on</strong>e to c<strong>on</strong>trol crystal<br />

size distributi<strong>on</strong>. 2,4–8 Jagadesh et al., 9 have highlighted<br />

the use <strong>of</strong> natural cool<strong>in</strong>g mode, as it does<br />

not require any temperature c<strong>on</strong>trol. Sufficient<br />

seed<strong>in</strong>g can arrest the formati<strong>on</strong> <strong>of</strong> fresh nuclei, result<strong>in</strong>g<br />

from the high levels <strong>of</strong> supersaturati<strong>on</strong> created<br />

under natural cool<strong>in</strong>g mode. A decrease <strong>in</strong><br />

supersaturati<strong>on</strong> levels with <strong>in</strong>crease <strong>in</strong> the seed ratio<br />

simulat<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> c<strong>on</strong>trolled cool<strong>in</strong>g, was reported.<br />

Further a bimodal type <strong>of</strong> crystal size distributi<strong>on</strong><br />

observed <strong>in</strong> all cool<strong>in</strong>g modes was elim<strong>in</strong>ated<br />

at higher seed ratio. The seed ratio required<br />

for atta<strong>in</strong><strong>in</strong>g uni-modal crystal size distributi<strong>on</strong> is<br />

much lower as compared to seed ratio required for<br />

atta<strong>in</strong><strong>in</strong>g ideal growth curve. Although <strong>in</strong>crease <strong>in</strong><br />

seed ratio leads to atta<strong>in</strong><strong>in</strong>g ideal growth curve, due<br />

to mass balance c<strong>on</strong>stra<strong>in</strong>t, the mean crystal size reduces<br />

rapidly. Moreover the use <strong>of</strong> high seed ratio,<br />

to c<strong>on</strong>trol supersaturati<strong>on</strong> and to atta<strong>in</strong> ideal growth<br />

curve, leads to higher loads <strong>on</strong> the downstream process<strong>in</strong>g,<br />

thereby <strong>in</strong>creas<strong>in</strong>g the process<strong>in</strong>g cost.


126 C. SRINIVASAKANNAN et al., A <str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> Crystallizati<strong>on</strong> <strong>of</strong> <strong>Oxalic</strong> <strong>Acid</strong> …, Chem. Biochem. Eng. Q. 16 (3) 125–129 (2002)<br />

S<strong>in</strong>ce the c<strong>on</strong>trol <strong>of</strong> cool<strong>in</strong>g rate is quite easy with<br />

use <strong>of</strong> modern process c<strong>on</strong>trol, the present study attempts<br />

to study the effect <strong>of</strong> different cool<strong>in</strong>g<br />

modes <strong>on</strong> crystal size distributi<strong>on</strong> for a uni-modal<br />

crystal size distributi<strong>on</strong> <strong>of</strong> oxalic acid. The effects<br />

<strong>of</strong> various operat<strong>in</strong>g quantities <strong>on</strong> crystal size distributi<strong>on</strong><br />

for the best identified cool<strong>in</strong>g mode, has<br />

been studied.<br />

Experimental<br />

Experiments are carried out <strong>in</strong> a five liter jacketed<br />

crystallizer made <strong>of</strong> sta<strong>in</strong>less steel 316 Grade,<br />

with mild steel jacket for heat<strong>in</strong>g and cool<strong>in</strong>g purpose.<br />

The schematic diagram <strong>of</strong> the experimental<br />

set up is shown <strong>in</strong> Figure 1. The crystallizer c<strong>on</strong>sists<br />

<strong>of</strong> agitator (1), baffles (2), jacket (3), jacket<br />

fluid <strong>in</strong>let (4), jacket fluid outlet (5), and outlet<br />

valve (6). The diameter <strong>of</strong> the crystallizer is 180<br />

mm with a height <strong>of</strong> 240 mm. The experimental set<br />

up comprises <strong>of</strong> a circulati<strong>on</strong> bath with provisi<strong>on</strong> to<br />

either cool to –50 °C or heat to 250 °C. Six blade<br />

pitched turb<strong>in</strong>e and anchor agitators are used <strong>in</strong> the<br />

present study. The agitator is placed 20 mm from<br />

the bottom <strong>of</strong> the crystallizer. The diameter <strong>of</strong> turb<strong>in</strong>e<br />

as well as anchor agitator is 90 mm. Two baffles<br />

<strong>of</strong> 23 mm are <strong>in</strong>stalled opposite to each other to<br />

avoid vortex formati<strong>on</strong> and for better mix<strong>in</strong>g <strong>on</strong>ly<br />

<strong>in</strong> the case <strong>of</strong> turb<strong>in</strong>e agitator.<br />

<strong>in</strong> the c<strong>on</strong>trol unit refers to the temperature <strong>in</strong> the<br />

crystallizer bath and accord<strong>in</strong>gly manipulates the<br />

temperature <strong>of</strong> coolant to achieve the required temperature.<br />

Based <strong>on</strong> the solubility data (Table.1) a<br />

saturated soluti<strong>on</strong> <strong>of</strong> oxalic acid is prepared at a<br />

temperature <strong>of</strong> 60 °C by dissolv<strong>in</strong>g required amount<br />

<strong>of</strong> oxalic acid <strong>in</strong> three liters <strong>of</strong> distilled water. After<br />

dissolv<strong>in</strong>g the stirrer speed is adjusted to the desired<br />

level. The experiments are started by cool<strong>in</strong>g the<br />

soluti<strong>on</strong> at different cool<strong>in</strong>g rates as required for the<br />

experiment. The seeds are added to the crystallizer<br />

under supersaturated c<strong>on</strong>diti<strong>on</strong>s at required seed ratio.<br />

Seed ratio is def<strong>in</strong>ed as the mass <strong>of</strong> seeds taken<br />

to the theoretical yield <strong>of</strong> crystals taken from solubility<br />

curve by cool<strong>in</strong>g from 60 to 10 °C. Prelim<strong>in</strong>ary<br />

experiments are c<strong>on</strong>ducted to ensure that<br />

uni-modal crystal size distributi<strong>on</strong> is obta<strong>in</strong>ed at<br />

the seed ratio used <strong>in</strong> the present study. The total<br />

suspensi<strong>on</strong> is withdrawn at the end <strong>of</strong> the experiment,<br />

filtered <strong>in</strong> a Buckner funnel under vacuum.<br />

The product is dried <strong>in</strong> an air oven and subjected to<br />

sieve analysis. The crystal size distributi<strong>on</strong> is obta<strong>in</strong>ed<br />

and the mean size is calculated. The experiments<br />

are c<strong>on</strong>ducted cover<strong>in</strong>g different temperature<br />

pr<strong>of</strong>iles as shown <strong>in</strong> Figure 2. The details <strong>of</strong> various<br />

quantities covered <strong>in</strong> the present study are detailed<br />

<strong>in</strong> Table 2.<br />

Table 1<br />

Solubility Data for <strong>Oxalic</strong> <strong>Acid</strong> – Water System<br />

Temperature °C g <strong>of</strong> oxalic acid / 100 g <strong>of</strong> water<br />

0 3.0<br />

10 6.0<br />

20 9.5<br />

30 14.5<br />

40 21.6<br />

60 44.3<br />

80 84.4<br />

Table 2<br />

Details <strong>of</strong> qualitities and their range covered <strong>in</strong><br />

the present study<br />

Quantities Range Unit<br />

Fig. 1<br />

Schematic diagram <strong>of</strong> experimental setup<br />

(1) Agitator, (2) Baffles, (3) Jacket, (4) Jacket<br />

fluid <strong>in</strong>let, (5) Jacket fluid outlet, (6) Outlet valve.<br />

Desired temperature <strong>in</strong> the crystallizer is<br />

achieved by sett<strong>in</strong>g appropriate temperature <strong>in</strong> the<br />

c<strong>on</strong>trol unit <strong>of</strong> circulati<strong>on</strong> bath. Temperature sensor<br />

Type <strong>of</strong> Agitators<br />

Six Blade turb<strong>in</strong>e,<br />

Anchor<br />

Temperature 60 to 10 °C<br />

Seed Ratio 1, 3<br />

<strong>Batch</strong> time 130, 300 m<strong>in</strong>.<br />

Agitator speed 100, 140, 180 rpm<br />

Seed size 80 m


C. SRINIVASAKANNAN et al., A <str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> Crystallizati<strong>on</strong> <strong>of</strong> <strong>Oxalic</strong> <strong>Acid</strong> …, Chem. Biochem. Eng. Q. 16 (3) 125–129 (2002) 127<br />

Results and discussi<strong>on</strong><br />

In order to assess the crystallizati<strong>on</strong> characteristics<br />

<strong>of</strong> crystallizer, experiments are carried out<br />

with l<strong>in</strong>ear cool<strong>in</strong>g mode and different c<strong>on</strong>trolled<br />

cool<strong>in</strong>g modes. The effect <strong>of</strong> operat<strong>in</strong>g quantities<br />

such as agitati<strong>on</strong> rates, type <strong>of</strong> agitator and seed ratio,<br />

are performed for the best identified cool<strong>in</strong>g<br />

mode.<br />

Figure 2 shows different cool<strong>in</strong>g modes adopted<br />

for experimentati<strong>on</strong>. Curve c<strong>on</strong>trolled cool<strong>in</strong>g<br />

mode A, corresp<strong>on</strong>ds to slower cool<strong>in</strong>g rate dur<strong>in</strong>g<br />

the <strong>in</strong>itial stages and faster cool<strong>in</strong>g <strong>in</strong> the later<br />

stages. Curve c<strong>on</strong>trolled cool<strong>in</strong>g mode B corresp<strong>on</strong>ds<br />

to faster cool<strong>in</strong>g rate dur<strong>in</strong>g the <strong>in</strong>itial stages<br />

and slower cool<strong>in</strong>g dur<strong>in</strong>g the later stages. Curve<br />

l<strong>in</strong>ear cool<strong>in</strong>g mode corresp<strong>on</strong>ds to c<strong>on</strong>stant rate <strong>of</strong><br />

cool<strong>in</strong>g from the beg<strong>in</strong>n<strong>in</strong>g to end. However all the<br />

experiments are carried out for 300 m<strong>in</strong>utes. Curve<br />

c<strong>on</strong>trolled cool<strong>in</strong>g mode C corresp<strong>on</strong>ds to the case<br />

<strong>in</strong> which f<strong>in</strong>al temperature <strong>of</strong> the magma is reached<br />

at much faster rate as compared to other cool<strong>in</strong>g<br />

modes. The f<strong>in</strong>al temperature <strong>of</strong> 10 °C is atta<strong>in</strong>ed<br />

with <strong>in</strong> 130 m<strong>in</strong>utes.<br />

Fig. 2<br />

Plot <strong>of</strong> crystallizer temperature with respect to<br />

time observed for various cool<strong>in</strong>g modes<br />

The different temperature pr<strong>of</strong>iles corresp<strong>on</strong>d<br />

to different levels <strong>of</strong> supersaturati<strong>on</strong> dur<strong>in</strong>g various<br />

stages <strong>of</strong> crystallizati<strong>on</strong>. Figure 3 compares the<br />

crystal size distributi<strong>on</strong> <strong>of</strong> all the above different<br />

modes <strong>of</strong> cool<strong>in</strong>g. It can be observed, that a narrow<br />

crystal size distributi<strong>on</strong> and higher mean size is obta<strong>in</strong>ed<br />

for l<strong>in</strong>ear cool<strong>in</strong>g mode, as compared to c<strong>on</strong>trolled<br />

cool<strong>in</strong>g mode A. This is c<strong>on</strong>trary to the belief,<br />

as the supersaturati<strong>on</strong> levels are ma<strong>in</strong>ta<strong>in</strong>ed<br />

lower dur<strong>in</strong>g the <strong>in</strong>itial stages <strong>in</strong> c<strong>on</strong>trolled cool<strong>in</strong>g<br />

mode A, as compared to l<strong>in</strong>ear cool<strong>in</strong>g mode. This<br />

may be due to the sec<strong>on</strong>dary nucleati<strong>on</strong>, which sets<br />

<strong>in</strong> at later stages <strong>of</strong> cool<strong>in</strong>g due to higher levels <strong>of</strong><br />

supersaturati<strong>on</strong>, has lesser time to grow result<strong>in</strong>g <strong>in</strong><br />

Fig. 3<br />

Effect <strong>of</strong> different cool<strong>in</strong>g modes <strong>on</strong> crystal size<br />

distributi<strong>on</strong><br />

wider crystal size distributi<strong>on</strong> and lower mean size.<br />

On the other hand <strong>in</strong> the case <strong>of</strong> l<strong>in</strong>ear cool<strong>in</strong>g<br />

mode the small amount <strong>of</strong> nucleati<strong>on</strong> that sets <strong>in</strong><br />

dur<strong>in</strong>g the <strong>in</strong>itial stages <strong>of</strong> cool<strong>in</strong>g has ample time<br />

to grow result<strong>in</strong>g <strong>in</strong> a narrow size distributi<strong>on</strong> and<br />

higher mean size.<br />

The crystal size distributi<strong>on</strong> due to c<strong>on</strong>trolled<br />

cool<strong>in</strong>g mode B is <strong>in</strong>ferior to the l<strong>in</strong>ear cool<strong>in</strong>g<br />

mode and c<strong>on</strong>trolled cool<strong>in</strong>g mode A (Fig. 3). This<br />

may be due to high levels <strong>of</strong> supersaturati<strong>on</strong> <strong>in</strong> the<br />

<strong>in</strong>itial stages, which leads to higher <strong>in</strong>itial nucleati<strong>on</strong>,<br />

lead<strong>in</strong>g to lower mean crystal size and wider<br />

crystal size distributi<strong>on</strong>.<br />

It can be observed from Figure 3 that the crystal<br />

size distributi<strong>on</strong> due to c<strong>on</strong>trolled cool<strong>in</strong>g mode<br />

C is <strong>in</strong>ferior as compared to other cool<strong>in</strong>g modes.<br />

S<strong>in</strong>ce the rate <strong>of</strong> cool<strong>in</strong>g <strong>in</strong> c<strong>on</strong>trolled cool<strong>in</strong>g mode<br />

C, as compared to other cool<strong>in</strong>g modes is much<br />

faster lead<strong>in</strong>g to exposure <strong>of</strong> the seeded crystal to<br />

much higher levels <strong>of</strong> supersaturati<strong>on</strong>, results <strong>in</strong><br />

high amounts <strong>of</strong> <strong>in</strong>itial nucleati<strong>on</strong> and leads to<br />

wider size distributi<strong>on</strong> and low mean crystal size.<br />

The effects <strong>of</strong> operat<strong>in</strong>g quantities such as the<br />

seed ratio, type <strong>of</strong> agitator, agitati<strong>on</strong> rate, are carried<br />

out follow<strong>in</strong>g l<strong>in</strong>ear cool<strong>in</strong>g mode with 300<br />

m<strong>in</strong>utes crystallizati<strong>on</strong> durati<strong>on</strong>.<br />

Figure 4 shows a reducti<strong>on</strong> <strong>in</strong> the mean crystal<br />

size with the <strong>in</strong>crease <strong>in</strong> seed ratio, although, there<br />

is no significant change <strong>in</strong> the crystal size distributi<strong>on</strong>.<br />

The reducti<strong>on</strong> <strong>in</strong> mean size <strong>of</strong> the crystals is<br />

due to the mass balance c<strong>on</strong>stra<strong>in</strong>t. With the <strong>in</strong>crease<br />

<strong>in</strong> number <strong>of</strong> seed crystals, the solute is distributed<br />

<strong>on</strong> higher number <strong>of</strong> seeds, and hence the<br />

size <strong>in</strong>crease is limited. The <strong>in</strong>crease <strong>in</strong> seed ratio<br />

<strong>on</strong> <strong>on</strong>e hand reduces the <strong>in</strong>itial nucleati<strong>on</strong> <strong>in</strong> l<strong>in</strong>ear<br />

cool<strong>in</strong>g pr<strong>of</strong>ile and <strong>on</strong> the other hand promotes<br />

growth <strong>of</strong> the seeded crystals, <strong>on</strong> the other hand due<br />

to mass balance c<strong>on</strong>stra<strong>in</strong>ts the size enlargement is<br />

limited.


128 C. SRINIVASAKANNAN et al., A <str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> Crystallizati<strong>on</strong> <strong>of</strong> <strong>Oxalic</strong> <strong>Acid</strong> …, Chem. Biochem. Eng. Q. 16 (3) 125–129 (2002)<br />

Fig. 4<br />

Effect <strong>of</strong> seed c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> crystal size distributi<strong>on</strong><br />

Figure 5 compares the crystal size distributi<strong>on</strong><br />

for turb<strong>in</strong>e agitator and anchor agitator at 140 rpm.<br />

A higher mean crystal size and narrow crystal size<br />

distributi<strong>on</strong> is obta<strong>in</strong>ed for turb<strong>in</strong>e type agitator as<br />

compared to anchor type agitator. It could be, because<br />

<strong>of</strong> the <strong>in</strong>tense mix<strong>in</strong>g <strong>in</strong> anchor agitator, as<br />

compared to turb<strong>in</strong>e agitator lead<strong>in</strong>g to formati<strong>on</strong> <strong>of</strong><br />

sec<strong>on</strong>dary nucleati<strong>on</strong> due to attriti<strong>on</strong>, c<strong>on</strong>tribut<strong>in</strong>g<br />

to fresh nuclei, results <strong>in</strong> lower mean size and wider<br />

crystal size distributi<strong>on</strong>.<br />

Fig. 6<br />

Effect <strong>of</strong> different Agitati<strong>on</strong> rate with turb<strong>in</strong>e agitator<br />

<strong>on</strong> crystal size distributi<strong>on</strong><br />

Fig. 7<br />

Effect <strong>of</strong> different Agitati<strong>on</strong> rate with Anchor agitator<br />

<strong>on</strong> crystal size distributi<strong>on</strong><br />

agitator, 100 rpm is sufficient to keep the solids <strong>in</strong><br />

suspensi<strong>on</strong> without aid<strong>in</strong>g formati<strong>on</strong> <strong>of</strong> fresh nuclei<br />

due to attriti<strong>on</strong>.<br />

Fig. 5<br />

Effect <strong>of</strong> type <strong>of</strong> Agitator <strong>on</strong> crystal size distributi<strong>on</strong><br />

It can be evidenced from figure 6 that a higher<br />

mean crystal size and narrow crystal size distributi<strong>on</strong><br />

is obta<strong>in</strong>ed at 140 rpm as compared to 180 rpm<br />

with turb<strong>in</strong>e type agitator. At 180 rpm the mix<strong>in</strong>g is<br />

more <strong>in</strong>tense lead<strong>in</strong>g to formati<strong>on</strong> <strong>of</strong> fresh nucleati<strong>on</strong><br />

due to attriti<strong>on</strong> result<strong>in</strong>g <strong>in</strong> poorer product<br />

quality. Similarly figure 7 shows a higher mean<br />

crystal size at 100 rpm as compared to 140 rpm for<br />

anchor agitator. In the case <strong>of</strong> anchor agitator s<strong>in</strong>ce<br />

the mix<strong>in</strong>g is observed to be better than the turb<strong>in</strong>e<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

A detailed study <strong>in</strong> batch cool<strong>in</strong>g crystallizer<br />

cover<strong>in</strong>g different cool<strong>in</strong>g modes is carried out and<br />

it is found that a l<strong>in</strong>ear temperature pr<strong>of</strong>ile with 300<br />

m<strong>in</strong>utes cool<strong>in</strong>g cycle is found to provide narrow<br />

crystal size distributi<strong>on</strong> and higher mean crystal<br />

size. The effects <strong>of</strong> various quantities such as the<br />

seed ratio, type <strong>of</strong> agitator, agitati<strong>on</strong> rate are assessed<br />

under l<strong>in</strong>ear cool<strong>in</strong>g mode. The <strong>in</strong>crease <strong>in</strong><br />

seed ratio is found to decrease the mean crystal size<br />

due to mass balance c<strong>on</strong>stra<strong>in</strong>ts. The turb<strong>in</strong>e agitator<br />

is found to have narrow crystal size distributi<strong>on</strong><br />

and higher mean crystal size at 140 rpm as com-


C. SRINIVASAKANNAN et al., A <str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> Crystallizati<strong>on</strong> <strong>of</strong> <strong>Oxalic</strong> <strong>Acid</strong> …, Chem. Biochem. Eng. Q. 16 (3) 125–129 (2002) 129<br />

pared to anchor agitator. This is attributed to the <strong>in</strong>tense<br />

mix<strong>in</strong>g with anchor agitator, which leads to<br />

sec<strong>on</strong>dary nucleati<strong>on</strong> due to attriti<strong>on</strong>. Similarly 140<br />

rpm is found to give higher mean size and narrow<br />

size distributi<strong>on</strong> as compared to 180 rpm with turb<strong>in</strong>e<br />

agitator. With anchor agitator 100 rpm is found<br />

to give higher mean crystal size as compared to 140<br />

rpm. An agitati<strong>on</strong> rate <strong>of</strong> 100 rpm is sufficient to<br />

keep the solids <strong>in</strong> suspensi<strong>on</strong> with anchor agitator,<br />

whereas 140 rpm is required <strong>in</strong> the case <strong>of</strong> turb<strong>in</strong>e<br />

agitator.<br />

List <strong>of</strong> Symbols<br />

SR<br />

m<br />

m s<br />

m th<br />

– Seed Ratio, m s /m th<br />

– mass <strong>of</strong> crystal<br />

– mass <strong>of</strong> sead crystals<br />

– theoretical mass <strong>of</strong> crystal<br />

d c – crystal diameter, m<br />

t – time, h<br />

T – temperature, °C<br />

References<br />

1. Tavare, N. S., Rohani, S., Garside, J., Can. J. Chem. Eng.<br />

68 (1990) 260<br />

2. J<strong>on</strong>es, A. G., Chem. Engg. Sci. 29 (1974) 1075.<br />

3. Mull<strong>in</strong>, J. W., Crystallizati<strong>on</strong>, Butterworths. L<strong>on</strong>d<strong>on</strong> 1972.<br />

4. Mull<strong>in</strong>, J. W., Nyvlt, J., Chem. Engg. Sci. 26 (1971) 369.<br />

5. J<strong>on</strong>es, A. G., Mull<strong>in</strong> J. W., Chem. Engg. Sci. 29 (1974)105.<br />

6. Aj<strong>in</strong>kya, M. B., Ray, W. H., Chem. Eng. Comm. 1 (1974)<br />

181.<br />

7. Morari, M., Chem. Engg. Comm. 4 (1980) 167.<br />

8. J<strong>on</strong>es, A. G., Akers, S. R. G., Budz., Cryst. Res. Tech. 21<br />

(1986) 1383.<br />

9. Jagadesh, D., Kubota, N., Yokata, M., Doski N., Sato, A., J.<br />

Chem. Engg. Japan. 32 (1999) 514.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!