12.11.2014 Views

Russ Doerner - Controlled Fusion Atomic Data Center

Russ Doerner - Controlled Fusion Atomic Data Center

Russ Doerner - Controlled Fusion Atomic Data Center

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Erosion Behavior of Carbon and Tungsten<br />

Surfaces Exposed to Deuterium Plasma<br />

Containing a <strong>Controlled</strong> Amount of<br />

Beryllium Impurities<br />

R. P. <strong>Doerner</strong> and M. J. Baldwin<br />

<strong>Center</strong> for Energy Research, University of California – San Diego<br />

D. G. Whyte<br />

University of Wisconsin - Madison<br />

K. Schmid, J. Roth and A. Wiltner<br />

Max-Plank Institute for Plasmaphysics, Garching, Germany<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


PISCES is a steady-state reflex arc plasma source that<br />

provides parameters relevant to edge physics and PMI<br />

issues in present and future confinement machines<br />

Sample Manipulator<br />

Surface<br />

Analysis<br />

System<br />

Confinement<br />

PISCES-B Devices<br />

Ion flux (m -2 s -1 ) 10 23 10 23<br />

Ion energy (eV)<br />

20-300 (bias) 10-300 (thermal)<br />

Target<br />

C, W, Be, Li<br />

Heat flux (MW/m 2 ) 1-10 1-10<br />

Reciprocating<br />

Double<br />

Probe<br />

Da monitor<br />

Pyrometers<br />

Axial<br />

Spectroscopic views<br />

Doppler<br />

T (eV) e<br />

2-40 (thermal) 1-100 (thermal)<br />

n (m -3 ) e<br />

10 17 -10 19 10 18 -10 20<br />

Impurity fraction (%) 0.03-10 1-10<br />

Pulse length continuous 10-30 sec<br />

Target materials C,W,Be,Li C,W,Be,etc.<br />

and coatings<br />

(essentially any)<br />

Plasma<br />

Source<br />

Plasma species H,D,He H,D,T,He<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


PISCES-B, and Its Associated Surface Analysis<br />

Laboratory, Are Compatible with<br />

Beryllium Operations.<br />

- The PISCES-B plasma generator is contained<br />

in a separate enclosure to prevent release of<br />

beryllium particulates into the general lab.<br />

- The entire enclosure has a specially<br />

designed ventilation system that filters all<br />

input and output air streams.<br />

- All personnel entering the enclosure<br />

wear full coverage personal protective<br />

equipment and follow strict entry and<br />

exit procedures when performing<br />

routine maintenance, machine repair, or<br />

sample handling/exchange operations.<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


US-EU Collaboration on<br />

Mixed-Material PMI Effects for ITER<br />

U.S. - R. <strong>Doerner</strong> – UCSD<br />

E.U. – A. Loarte - EFDA<br />

Three main experimental aspects:<br />

• The erosion, deuterium retention and codeposition properties of<br />

graphite exposed to a beryllium-containing deuterium plasmas<br />

• The erosion, deuterium retention and codeposition properties of<br />

tungsten exposed to deuterium plasma containing beryllium<br />

impurities (as well as with and without (in TPE) carbon impurities)<br />

• The erosion and deuterium retention behavior of beryllium<br />

exposed to deuterium plasma at temperatures approaching the<br />

Be melting temperature<br />

Verification of surface and edge plasma models:<br />

TRIDYN (IPP), ERO (KFA), WBC (ANL), UEDGE (LLNL, UCSD)<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


PISCES-B linear plasma device simulates<br />

ITER diverted field line geometry<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


PISCES- B has been modified to allow exposure of<br />

samples to Be seeded plasma<br />

High temperature<br />

MBE effusion cell<br />

used to seed<br />

plasma with<br />

evaporated Be<br />

12 °<br />

153 mm<br />

102 mm<br />

Beryllium<br />

impurity<br />

seeding<br />

195 mm<br />

Axial spectroscopic field of view<br />

Thermocouple<br />

Cooled target<br />

holder<br />

Target<br />

76 mm<br />

Deposition<br />

probe<br />

sample<br />

45 o<br />

PISCES-B Plasma<br />

Radial transport<br />

guard<br />

Water cooled Mo<br />

heat dump<br />

Heatable<br />

deposition probe<br />

assembly<br />

Thermocouple<br />

Resistive heating<br />

coils<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


PISCES-B operation above 6 eV T e provides<br />

complete ionization of the thermal Be atom beam<br />

0.25<br />

0.20<br />

Be II Plasma concentration, new Be Oven<br />

(30.10.2002)<br />

• Be II line emission @ 467 nm is<br />

used to measure Be ion density<br />

(along with ADAS rate<br />

coefficients)<br />

Be II / n e<br />

[%]<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

Te 3eV, T Be<br />

= 1450 °C, n e<br />

= 3E12 cm -3<br />

Te 7eV, T Be<br />

= 1450 °C, n e<br />

= 3E12 cm -3<br />

Te 20eV, T Be<br />

= 1450 °C, n e<br />

= 2E12 cm -3<br />

Te 16eV, T Be<br />

= 1550 °C, n e<br />

= 2E12 cm -3<br />

Te 6eV, T Be<br />

= 1550 °C, n e<br />

= 3E12 cm -3<br />

0 50 100 150 200<br />

Distance from Target [mm]<br />

Be oven<br />

location<br />

• Be oven temperature controls<br />

Be ion density in the plasma<br />

• Be concentration is fairly<br />

constant along the plasma<br />

column<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


Results from experimental tasks #1 & #2<br />

Task 1<br />

• The erosion, deuterium retention and codeposition<br />

properties of graphite exposed to a beryllium-containing<br />

deuterium plasmas<br />

Task 2<br />

• The erosion, deuterium retention and codeposition<br />

properties of tungsten exposed to deuterium plasma<br />

containing beryllium impurities (as well as with and<br />

without (in TPE) carbon impurities)<br />

Task 3<br />

• The erosion and deuterium retention behavior of<br />

beryllium exposed to deuterium plasma at temperatures<br />

approaching the Be melting temperature<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


A small beryllium impurity concentration in the<br />

plasma drastically suppresses carbon erosion<br />

-50 V bias, 200ºC, T e<br />

= 8 eV, n e<br />

= 3 e 12 cm -3<br />

4000<br />

Chemical erosion<br />

Physical sputtering<br />

3500<br />

3000<br />

CD band<br />

No Be injection<br />

0.2% Be ion concentration<br />

2.4 10 4<br />

No Be injection<br />

0.2% Be ion concentration<br />

2500<br />

D gamma<br />

Be I<br />

2.8 10 4 400 450 500 550 600<br />

2 10 4<br />

2000<br />

1500<br />

1000<br />

500<br />

1.6 10 4<br />

1.2 10 4<br />

8000<br />

4000<br />

C I<br />

200 400 600 800 1000<br />

pixel number<br />

pixel number<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


Be rich surface layers form during exposure<br />

and shield underlying carbon from erosion<br />

T surface = 700ºC T surface = 800ºC<br />

100<br />

100<br />

80<br />

80<br />

60<br />

60<br />

40<br />

40<br />

20<br />

T surface ~ 250C<br />

T surface ~ 700C<br />

20<br />

T surface ~ 900C<br />

T surface ~ 1000C<br />

0<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

Be plasma concentration (%)<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Be plasma concentration (%)<br />

• Be surface concentration after 5000 sec. P-B exposure.<br />

• ITER will have 1-10% Be impurity concentration in the<br />

divertor plasma<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


Be layer formation effectively eliminates<br />

erosion from carbon substrate<br />

CD band intensity<br />

(i.e. chemical erosion)<br />

decreases With increasing<br />

Weight loss data<br />

confirms reduction in<br />

erosion seen spectroscopically<br />

Be concentration in the plasma<br />

100<br />

CD-Band intensity [%]<br />

80<br />

60<br />

40<br />

20<br />

CD-Band intensity [%]<br />

Linear Fit: CD = 100.0 - 580.6 * C Be<br />

0<br />

0.00 0.05 0.10 0.15<br />

Be plasma concentration [%]<br />

Normalized weightloss [10 -26 mg m 2 ]<br />

Weight loss (mg/cm 2 )<br />

0<br />

-10<br />

-20<br />

-30<br />

Bias: 50V<br />

~500K<br />

No Be<br />

Be seeding<br />

~1000K<br />

No Be<br />

Be seeding<br />

0.00 0.05 0.10 0.15 0.20<br />

Be 1+ plasma concentration [%]<br />

Decreasing erosion<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


Be layer forms on C targets with a complicated<br />

three dimensional structure<br />

~0.1 % Be seeding<br />

∆m = - 5 mg<br />

AES - 85 % Be,<br />

10% O & 5% C<br />

ATJ graphite<br />

Not exposed<br />

No Be seeding<br />

∆m = - 62 mg<br />

Plasma<br />

conditions:<br />

Γ D<br />

~3x10 18 cm -2 s -1 , T e<br />

~ 6eV, n e<br />

~ 10 12 cm -3 , T ~500 K, D Ion Fluence ~2x10 22 cm -2<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


Do we understand why these Be layers form?<br />

In equilibrium:<br />

Deposition Rate of Be = Removal Rate of Be<br />

Be Deposition Rate = f Be<br />

Γ pl<br />

(1 – R f<br />

)<br />

~0 for Be on C<br />

where, f Be<br />

= plasma Be concentration, Γ pl<br />

= plasma flux, R f<br />

= reflection coefficient<br />

Be Removal Rate = c Be<br />

Y Be<br />

Γ pl<br />

(1-R d<br />

)<br />

where, c Be<br />

= Be surface concentration, Y Be<br />

= sputtering yield of Be due to 50 eV<br />

deuterium ions (=0.02), R d<br />

= redeposition fraction (~20% from WBC simulation)<br />

So the equilibrium surface concentration of Be, c Be<br />

, should be:<br />

c Be<br />

= f Be<br />

/ Y Be<br />

(1-R d<br />

) = 0.001 / 0.02(1-0.2) = ~ 6%<br />

Beryllium-carbide formation may be responsible for erosion suppression.<br />

If Be 2<br />

C surface layer, then Y = 0.002 (from TRIMSP) and<br />

c Be<br />

= f Be<br />

/ Y Be2C<br />

(1-R d<br />

) = 0.001 / 0.002(1-0.2) = ~ 60%<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


*<br />

*<br />

*<br />

* Be oven became depleted during exposure<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


WPM samples show collection of beryllium<br />

rich deposits during Be seeding runs<br />

<strong>Data</strong> from IPP-Garching sputter XPS system<br />

100<br />

profile, WPMTA01<br />

300ºC target exposure<br />

100<br />

700ºC target exposure<br />

composition (%)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Be%<br />

C%<br />

O%<br />

Ta%<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

<strong>Atomic</strong> %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Be%<br />

C%<br />

O%<br />

Ta-%<br />

20<br />

20<br />

20<br />

10<br />

10<br />

10<br />

0<br />

0 5000 10000 15000 20000 25000 30000 35000 40000 45000<br />

0<br />

0<br />

Be seeding on<br />

time (s)<br />

Plasma setup<br />

C sample, No Be<br />

Ta<br />

substrate<br />

0 20 40 60 80 100 120<br />

Fluence [cm -2 ]<br />

Be seeding on<br />

Plasma on<br />

Ta<br />

substrate<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


T retained in Be rich codeposits can be more<br />

easily removed during divertor bakeout<br />

D/Be in codeposits (at. %)<br />

1 10 100<br />

Baldwin et al.<br />

PSI-16 Maine USA (2004)<br />

J. Nucl. Mater. (accepted)<br />

50 o C (O ~ 3 at. %)<br />

ITER bake<br />

150 o C (O ~ 30 at. %)<br />

Co-deposited a:CH layer<br />

Causey et al. J. Nucl.<br />

Mater. 176-7 (1990) 987<br />

300 o C (O ~ 33 at. %)<br />

1 10 100<br />

H/C in codeposits (at. %)<br />

• Although more hydrogen<br />

isotopes are retained during<br />

lower temperature<br />

codeposition, they are more<br />

easily desorbed<br />

• ITER can bake divertor to<br />

375°C (after coolant drain)<br />

• Codeposits will be in line-ofsight<br />

of erosion location<br />

200 400 600 800 1000<br />

• Oxygen bake may not be<br />

Temperature ( o C)<br />

needed<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


Be impurities from the ITER first wall can also form<br />

Be-rich surfaces on the tungsten baffle plates.<br />

• Be layers have been observed<br />

on on W surfaces, as well as C<br />

Surface composition of a W target<br />

exposed to a Be seeded deuterium<br />

plasma in PISCES-B<br />

• Plasma exposure conditions<br />

– Be conc. ~0.1%<br />

100<br />

– E ion<br />

~ 75 eV<br />

90<br />

– T W<br />

~ 300°C<br />

– Ion flux ~ 1x10 22 m -2 s -1<br />

– Exposure time = 5000 sec.<br />

• Estimated Be layer thickness<br />

on W is 10 nm<br />

Composition (at. %)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Be (at %)<br />

O (at %)<br />

W (at %)<br />

10<br />

• Surface has 12 times as much<br />

Be as W<br />

0<br />

0 5 10 15 20<br />

Sputtering Time (min)<br />

0 10 20 30 40<br />

Estimated Thickness (nm)<br />

50 60<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


Be on W should be even less likely to form<br />

Be surface layers.<br />

Again, in equilibrium:<br />

Deposition Rate of Be = Removal Rate of Be<br />

Be Deposition Rate = f Be<br />

Γ pl<br />

(1 – R f<br />

)<br />

where, R f<br />

= reflection coefficient is now R f<br />

~ 0.6 (for Be on W)<br />

Be Removal Rate = c Be<br />

Y Be<br />

Γ pl<br />

(1-R d<br />

)<br />

Now, Y Be<br />

= 0.026 for 75 eV D ions on Be<br />

So the equilibrium surface concentration of Be on W, c Be-W<br />

, should be:<br />

c Be-W<br />

= f Be<br />

(1-R f<br />

)/ Y Be<br />

(1-R d<br />

) = 0.001(1-0.6) / 0.026(1-0.2) = ~ 2%<br />

Are tungsten beryllides (i.e. Be x<br />

W) responsible?<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


What will be the result of Be layers on<br />

plasma exposed W surfaces?<br />

• Be can alloy with W<br />

• Resulting alloys (Be W 22<br />

and Be W) have lower<br />

12<br />

melting temperatures<br />

(~1500°C)<br />

• Should ITER/JET be<br />

concerned about these<br />

alloys? (Ongoing research)<br />

From H. Okamoto and L.E. Tanner, in “Phase Diagrams of<br />

Binary Tungsten Alloys”, Ed. S.V. Naidu and P. Rao,Indian<br />

Institute of Metals, Calcutta, 1991.<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


If alloy formation (carbide or beryllide) is responsible for Be<br />

layers, then subsequent Be deposition should be quickly<br />

re-eroded. Be alloy layers should be thin.<br />

C sample, 175°C, f Be<br />

~0.15%<br />

W sample (AES data)<br />

f Be<br />

= 0.1%, 5000 sec., T W<br />

= 300°C<br />

100<br />

90<br />

Composition (at. %)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Be (at %)<br />

O (at %)<br />

W (at %)<br />

0 5 10 15 20<br />

Sputtering Time (min)<br />

0 10 20 30 40<br />

Estimated Thickness (nm)<br />

50 60<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


The dynamic behavior of the Be layer may help<br />

decipher the mechanism responsible for<br />

surface layer formation.<br />

1.6<br />

• At PISCES-B conditions:<br />

f ~ 0.001<br />

Be<br />

Γ = 3e18 cm -2 s -1<br />

pl<br />

Γ = 3e15 Be/cm 2 s<br />

Be<br />

or 1 Be monolayer/sec<br />

CD/Dg<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0 50 100 150 200<br />

Distance from Target [mm]<br />

Discharge time [s]<br />

1940<br />

2670<br />

3500<br />

4100<br />

7050<br />

For 50 eV Be on C the stopping<br />

distance is only ~0.5nm, or<br />

~2-3 monolayers<br />

Erosion suppression (i.e. CD<br />

band decrease) takes much<br />

longer<br />

Upstream Be conc. (%)<br />

1<br />

0.1<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL<br />

0.01<br />

10 1 10 2 10 3 10 4<br />

CD Band strength e-folding time (s)


US-EU Collaboration on Be/C/W has produced<br />

significant new results, but more work is needed.<br />

• Understand mechanism responsible for Be-rich layer<br />

formation at very low impurity Be concentration (~0.1%)<br />

• Develop a model that can predict the dynamic behavior<br />

of the Be coating process<br />

• Investigate concurrent Be and C injection into D plasma<br />

• Investigate similarities and differences of W & C targets<br />

• W-Be alloy formation is a critical issue needing<br />

immediate attention (melting temperature, thermal<br />

properties, formation rates, tritium retention, etc.)<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL


Be impurities may dominate PMI<br />

(specifically tritium accumulation) in<br />

devices with large area Be walls<br />

• Need to predict first wall erosion rates (CX, diffusion,<br />

blob transport, ELMs, …)<br />

• Understanding SOL flows in confinement devices is<br />

crucial to predicting divertor impurity content and<br />

likelihood of layer growth<br />

• Subject layers to ELM style heat pulses during formation<br />

• Investigate role of other impurities (i.e. oxygen, Ne, Ar)<br />

UCSD<br />

University of California San Diego<br />

R. <strong>Doerner</strong>, March 22, 2005<br />

PSIF workshop, ORNL

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!