12.11.2014 Views

What Is A Free Radical - Ústav lékařské chemie a biochemie

What Is A Free Radical - Ústav lékařské chemie a biochemie

What Is A Free Radical - Ústav lékařské chemie a biochemie

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Reactive Oxygen Species<br />

in the Body<br />

Antioxidant Defence<br />

Jan Pláteník MD, PhD<br />

Ústav lékařské bio<strong>chemie</strong> 1.LF UK<br />

<strong>What</strong> is a free radical ?<br />

- any chemical species (molecule, atom, ion)<br />

capable of independent existence that contains<br />

at least one unpaired electron<br />

radical<br />

O 2·–<br />

ion<br />

molecule<br />

1


For what do we need oxygen?<br />

Transfer of electrons (oxidation) from organic substances to<br />

oxygen releases huge amount of energy<br />

E.g. Glucose:<br />

C 6 H 12 O 6 + 6 O 2 → 6 CO 2 + 6 H 2 O<br />

∆G o ’ = – 2820 kJ/ mol (180 g of glucos<br />

ose)<br />

In addition, reactivity of oxygen can be controlled by catalysis<br />

with transition metals (iron, copper)<br />

Does sugar burn ?<br />

2


Spin restriction of dioxygen<br />

• Normal (triplet) O 2 is a<br />

biradical, with high<br />

affinity to electrons<br />

• But gain of an electron<br />

requires one of the<br />

unpaired electrons<br />

changes its spin, which is<br />

a slow process.<br />

• That’s why we do not<br />

burn in the air<br />

• Singlet O 2 is an excited,<br />

highly reactive species<br />

Respiratory chain in the<br />

mitochondrial inner membrane<br />

4


The respiratory chain:<br />

..ele<br />

electrons flow ‘downhill’ and<br />

terminate at oxygen<br />

Overall reaction:<br />

NADH + H + + 1/2 O 2 → NAD + + H 2 O<br />

∆G o ’ = –219.25 kJ mol -1<br />

..and<br />

resulting proton gradient powersp<br />

ATP synthesis<br />

5


Reactive oxygen species (ROS, ‘oxygen radicals’) can be<br />

derived from intermediates of oxygen reduction to water:<br />

O 2<br />

+4 e-<br />

(+4 H + )<br />

+1 e-<br />

O 2·–<br />

superoxide<br />

+2 e-<br />

(+2 H + )<br />

H 2 O 2<br />

hydrogen peroxide<br />

+3 e-<br />

(+3 H + )<br />

2H 2 O<br />

OH·<br />

hydroxyl<br />

radical<br />

( +H 2 O )<br />

Superoxide<br />

O 2·–<br />

• Sources in the body:<br />

– Escape of electrons to oxygen<br />

- Respiratory chain in mitochondria<br />

- Other similar redox carrier systems, e.g. microsomal<br />

cytochrome P450 monooxygenase<br />

– NAD(P)H Oxidase:<br />

- Phagocytes (”respiratory burst”)<br />

- Non-phagocytic cells<br />

– Some enzymes:<br />

- Xanthine oxidase<br />

- Cyclooxygenase<br />

- Lipoxygenase<br />

– Reaction of FeII-hemoglobin with oxygen<br />

– Autoxidation (reaction with oxygen) of various compounds<br />

(ascorbate, glutathione and other thiols, catecholamines)<br />

6


Superoxide originates in the<br />

mitochondrial respiratory chain<br />

• 1-2 % from total<br />

oxygen consumption<br />

• Escape of electrons<br />

from redox centers of<br />

complexes I and III,<br />

mostly from<br />

semiquinone<br />

Respiratory burst of phagocyte<br />

7


Origin of superoxide from oxyhemoglobin<br />

Štípek S et al.: Antioxidanty a volné radikály ve zdraví a nemoci. Grada<br />

Publishing, Praha, 2000.<br />

Superoxide<br />

• Properties:<br />

- Moderate reactivity, both oxidising and reducing<br />

agent<br />

- Limited ability to cross biological membranes (only<br />

through anion channels or in its protonated form)<br />

- Releases iron from Fe-S clusters<br />

• Fate:<br />

– Dismutation:<br />

O 2·–<br />

O 2·–<br />

+ O 2·–<br />

+ 2 H + → O 2 + H 2 O 2<br />

– Reaction with nitric oxide:<br />

NO· + O 2·–<br />

→ OONO – (peroxynitrite)<br />

8


Hydrogen peroxide<br />

H 2 O 2<br />

• Formation in the body:<br />

– Dismutation of superoxide (spontaneous or<br />

catalyzed by superoxide dismutase)<br />

O 2·–<br />

+ O 2·–<br />

+ 2 H + → O 2 + H 2 O 2<br />

– Directly by action of some enzymes:<br />

• Xanthine oxidase<br />

• Monoamine oxidase (MAO)<br />

Hydrogen peroxide<br />

• Properties:<br />

- No radical<br />

- <strong>Free</strong>ly crosses biological membranes<br />

- Fairly unreactive as such<br />

- But rapidly reacts with reduced transition metals such<br />

as iron, copper (the Fenton reaction)<br />

• Fate:<br />

– The Fenton reaction:<br />

H 2 O 2<br />

hydroxyl radical<br />

H 2 O 2 + Fe 2+ → OH – + OH· + Fe 3+<br />

– Safe decomposition by glutathione peroxidase or<br />

catalase<br />

9


Hydroxyl radical<br />

• Formation in the body:<br />

– Ionising radiation:<br />

H 2 O → H· + OH·<br />

OH ·<br />

– The Fenton reaction:<br />

H 2 O 2 + Fe 2+ → OH – + OH· + Fe 3+<br />

• Properties:<br />

- Extremely high reactivity. Damages biomolecules<br />

near its site of formation.<br />

Reactive Oxygen Species (ROS)<br />

• <strong>Radical</strong>s:<br />

– Superoxide, O 2·–<br />

– Hydroperoxyl radical, HO 2·<br />

– Hydroxyl radical, OH·<br />

– Peroxyl radicals, ROO·<br />

– Alkoxyl radicals, RO·<br />

• Non-radicals:<br />

– Hydrogen peroxide, H 2 O 2<br />

– Hypochlorous acid, HClO<br />

– Ozone O 3<br />

– Singlet oxygen, 1 O 2<br />

10


Nitric oxide<br />

• Formation in the body:<br />

NO ·<br />

– NO synthase-catalysed reaction:<br />

L-Arginine + O 2<br />

+ NADPH → L-Citrulline + NADP + +NO·<br />

– Three different NO synthases:<br />

- NOS I (neuronal, constitutive)<br />

- NOS II (phagocytes, inducible)<br />

- NOS III (endothelial, constitutive)<br />

Nitric oxide<br />

• Properties:<br />

- Gaseous radical<br />

- Reaction with heme iron of guanylate cyclase<br />

(…physiological effects)<br />

- Reaction with heme iron of hemoglobin (…physiological<br />

inactivation)<br />

- Reaction with sulfhydryl groups on glutathione etc. to<br />

nitrosothiol (…transport NO)<br />

- Reaction with superoxide to peroxynitrite and finally<br />

hydroxyl radical (…toxicity):<br />

NO· + O 2·–<br />

→ OONO – peroxynitrite<br />

NO ·<br />

OONO – + H + → HOONO → OH· + NO 2 ·<br />

peroxynitrous acid<br />

hydroxyl radical<br />

11


NO causes relaxation of smooth muscles in blood<br />

vessel wall:<br />

Reactive Nitrogen Species (RNS)<br />

• <strong>Radical</strong>s:<br />

– Nitric oxide, NO·<br />

– Nitric dioxide, NO 2 ·<br />

• Non-radicals:<br />

– Nitrosonium, NO +<br />

– Nitroxyl, NO –<br />

– Nitrous acid, HNO 2<br />

– Dinitrogen trioxide, N 2 O 3<br />

– Dinitrogen tetraoxide, N 2 O 4<br />

– Nitronium, NO 2<br />

+<br />

– Peroxynitrite, ONOO –<br />

– Alkylperoxynitrite, ROONO<br />

12


Oxidative damage to biomolecules<br />

• Lipids: peroxidation of polyunsaturated<br />

fatty acids in membranes<br />

• Proteins: oxidation of -SH, carbonylation -<br />

NH 2 , hydroxylation/nitrosylation of<br />

aromatic AA, cross-linking, degradation<br />

• Nucleic acids: strand breaks, hydroxylation<br />

of bases ... mutation, cancerogenesis<br />

Lipid peroxidation<br />

(rancidity)<br />

13


Further fate of lipid peroxides<br />

Ionising radiation:<br />

Hydroxyl radical originates from ionisation of water:<br />

H 2 O + hν → H· + OH·<br />

Reactive oxygen species in the body:<br />

One-electron reduction of oxygen (mitochondria,<br />

NADPH oxidase) forms superoxide O 2·–<br />

Dismutation of superoxide produces hydrogen peroxide:<br />

O 2·–<br />

+ O 2·–<br />

+ 2 H + → O 2 + H 2 O 2<br />

Fenton reaction with Fe or Cu converts peroxide to<br />

hydroxyl radical:<br />

H 2 O 2 + Fe 2+ → OH – + OH· + Fe 3+<br />

14


Where RONS are beneficial:<br />

Monooxygenases (cytochrome P450): hydroxylation<br />

of steroids, xenobiotics etc.<br />

Mechanism: basically a controlled Fenton reaction<br />

Fe 3+ + SH + 2 e- + O 2 + H + → FeOOH SH<br />

FeOOH SH → FeO 3+ SH + H 2 O<br />

FeO 3+ SH → FeOH 3+ S• → Fe 3+ SOH → Fe 3+ + SOH<br />

Where RONS are beneficial:<br />

• Monooxygenases: hydroxylation of steroids,<br />

xenobiotics etc.<br />

• Phagocyte weapons: killing microbes or cancer cells<br />

• Mediators of inflammatory reaction<br />

15


Beneficial ROS:<br />

Respiratory<br />

burst of<br />

neutrophilic granulocyte<br />

© 1998 Garland Publishing<br />

Where RONS are beneficial:<br />

• Monooxygenases: hydroxylation of steroids,<br />

xenobiotics etc.<br />

• Phagocyte weapons: killing microbes or cancer cells<br />

• Mediators of inflammatory reaction<br />

• Local hormones/mediators:<br />

- NO:<br />

- smooth muscle relaxation in blood vessels, gastrointestinal tract,<br />

corpus cavernosum penis<br />

- neurotransmitter/ neuromodulator in the CNS, function in<br />

synaptic plasticity, learning & memory<br />

- inhibition of thrombocyte adhesion & aggregation, leucocyte<br />

adhesion<br />

Superoxide as well with effects opposing NO ?<br />

16


Concept of redox signaling<br />

• Redox environment inside the cell –<br />

determined mostly by ratios GSH/GSSG<br />

and NADH/NAD<br />

• Redox sensors on proteins:<br />

– critical -SH groups<br />

– Fe-S centers<br />

• Targets of redox signaling:<br />

– transcription factors<br />

– protein kinases and phosphatases<br />

Redox<br />

signaling<br />

• Oxidative stress activates<br />

certain protein kinases and<br />

transcription factors<br />

• Outcome: e.g. stimulation<br />

of proliferation, or cellular<br />

senescence (ageing)<br />

• Actions of<br />

ROS/antioxidants in the<br />

cell can be very specific<br />

(T. Finkel & N.J. Holbrook, Nature 408 (2000), 239-247)<br />

17


…and very complex<br />

Oxidative stress<br />

• Levels of reactive oxygen species are kept<br />

within certain limits by mechanisms of<br />

antioxidant defence<br />

• Oxidative stress occurs if the<br />

oxidant/antioxidant balance shifts to<br />

oxidation<br />

18


Antioxidant defence<br />

• prevention of ROS/RNS formation<br />

(regulation of producing enzymes,<br />

sequestration of metals)<br />

• scavenging, trapping and quenching of<br />

radicals<br />

• reparation systems (phospholipases,<br />

proteasome, DNA repair)<br />

Antioxidant in food chemistry<br />

• Reducing agent capable<br />

of terminating chain<br />

reaction of lipid<br />

peroxidation<br />

…“chain-breaking” ...<br />

• E.g.:<br />

– Butylated<br />

hydroxytoluene (BHT)<br />

– Butylated hydroxyanisol<br />

(BHA)<br />

– Tocopherol (Vitamin E)<br />

19


Antioxidant defence of human body<br />

• Anatomy of the body limiting tissue oxygen<br />

• Antioxidant enzymes<br />

• Sequestration of redox active metals<br />

• Antioxidant substrates (scavengers)<br />

• Stress response<br />

• (Repair systems)<br />

O 2<br />

First organism<br />

(anaerobic)<br />

?<br />

Develop<br />

antioxidant<br />

defence ?<br />

Die out ?<br />

Resort to<br />

anaerobic<br />

condition ?<br />

20


Clump together !<br />

O 2<br />

O 2<br />

Antioxidant defence I<br />

Regulation of tissue O 2<br />

Inhaled air: 160 mmHg O 2<br />

Lung capillaries: 100 mmHg O 2<br />

Arterial blood: 85 mmHg O 2<br />

Arterioles: 70 mmHg O 2<br />

Capillaries: 50 mmHg O 2<br />

Cells: 1-10 mmHg O 2<br />

Mitochondria: < 0,5 mmHg O 2<br />

Fig: Wikipedia<br />

21


Mitochondria originated from<br />

phagocyted/parasitic bacteria ...<br />

Antioxidant defence II<br />

Antioxidant enzymes<br />

• Superoxide dismutase:<br />

O 2·–<br />

+ O 2·–<br />

+ 2 H + → O 2 + H 2 O 2<br />

• Catalase:<br />

2 H 2 O 2 → 2 H 2 O + O 2<br />

• Glutathione peroxidase, peroxiredoxin:<br />

H 2 O 2 + 2 R-SH → 2 H 2 O + RS-SR<br />

22


Superoxide dismutase (SOD)<br />

• Catalyses dismutation of superoxide:<br />

O 2·–<br />

+ O 2·–<br />

+ 2 H + → O 2 + H 2 O 2<br />

• Absolutely required for life in oxygen<br />

• SOD1: Cu+Zn (cytosol of eukaryotic cells)<br />

• SOD2:<br />

– Mn (mitochondrial matrix)<br />

– Fe (bacteria)<br />

• EC-SOD (SOD3): extracelullar, Cu+Zn,<br />

– MW 135,000; binds to heparane sulfate on the<br />

inner surface of blood vessels<br />

Glutathione peroxidases (GPX)<br />

• Reduction of peroxides coupled to oxidation of<br />

glutathione:<br />

2 GSH + H 2 O 2 → GS-SG + 2 H 2 O<br />

(glutathione is subsequently regenerated by<br />

glutathione reductases)<br />

• Active site contains selenocysteine<br />

• Cytosolic glutathione peroxidase:<br />

– reduces H 2 O 2 and LOOH after release from<br />

phospholipids<br />

• Phospholipide hydroperoxide-GSH-peroxidase:<br />

– reduces LOOH even in membranes<br />

23


Glutathione (GSH/GSSG)<br />

• tripeptide, in every cell<br />

1-10 mM<br />

• keeps ICT reduced<br />

• substrate for GPX, etc.<br />

• also non-enzymatic<br />

reactions with ROS and<br />

mixed disulfides with<br />

proteins ... products of<br />

GSH oxidation are toxic<br />

for cell<br />

• in oxidative stress the<br />

cell exports GSSG out<br />

Catalase<br />

• Tetramer, every subunit contains heme with<br />

Fe<br />

• Dismutation of hydrogen peroxide:<br />

2 H 2 O 2 → 2 H 2 O + O 2<br />

• Red blood cells, peroxisomes<br />

• Also peroxidase activity:<br />

H 2 O 2 + ROOH → H 2 O + ROH + O 2<br />

(in comparison to GPX less significant)<br />

24


Oxidation<br />

of very long chain fatty acids in peroxisome<br />

oxisomes:<br />

O 2·–<br />

Superoxide dismutase<br />

H 2 O 2<br />

H 2 O<br />

Glutathione<br />

peroxidase<br />

GSH<br />

Reduced glutathione<br />

(GSH)<br />

GS-SG Oxidised glutathione NADP +<br />

(GS-SG)<br />

Glutathione<br />

reductase<br />

NADPH+H +<br />

Transhydrogenase<br />

NAD +<br />

NADH+H +<br />

Pentose cycle<br />

ATP<br />

25


Peroxiredoxin/Thioredoxin<br />

• Recently discovered antioxidant system,<br />

more important for removal of hydrogen<br />

peroxide than GPX<br />

O 2·–<br />

Superoxide dismutase<br />

NADPH+H +<br />

H 2 O 2<br />

Peroxiredoxin<br />

RED<br />

Thioredoxin<br />

RED<br />

Thioredoxin<br />

reductase RED<br />

SH HS<br />

SH HS<br />

FADH 2 (Se)<br />

GSH<br />

Peroxiredoxin<br />

OX<br />

Thioredoxin<br />

OX<br />

Thioredoxin<br />

reductase OX<br />

H 2 O<br />

S<br />

S<br />

S<br />

S<br />

FAD (Se)<br />

NADP +<br />

26


Antioxidant defence III<br />

Sequestration of metals<br />

• Redox-active transition metals (Fe, Cu)<br />

accept/donate one electron easily<br />

– ... alleviation of spin restriction of dioxygen<br />

– ... metals are in active centers of all oxygen handlingenzymes<br />

• But, the same properties of Fe, Cu are deleterious<br />

if uncontrolled<br />

– the Fenton oxidant:<br />

H 2 O 2 + Fe 2+ → OH – + OH· + Fe 3+<br />

oxidative damage to biomolecules<br />

Antioxidant defence III<br />

Sequestration of metals<br />

• Iron/copper handling proteins:<br />

– transferrin: binds 2 atoms Fe 3+ (transport)<br />

– lactoferrin: analogous to transferrin, but no Fe<br />

release (... only sequestration), leucocytes<br />

– ferritin: H and L subunits, H is ferroxidase, Fe<br />

storage (up to 4500 atoms Fe 3+ )<br />

– haptoglobin: binds hemoglobin in circulation<br />

– hemopexin: binds heme in circulation<br />

– ceruloplasmin: contains Cu, function:<br />

ferroxidase (export Fe from the cells)<br />

– albumin: transport of Cu<br />

27


ICT<br />

ECT<br />

Superoxide<br />

Peroxide<br />

Fe/Cu<br />

Superoxide<br />

Peroxide<br />

Fe/Cu<br />

Superoxide dismutase<br />

Glutathione peroxidase<br />

Catalase<br />

Glutathione<br />

Tocopherol<br />

Ascorbate<br />

Labile iron pool (LIP) present<br />

Antioxidant enzymes &<br />

glutathione levels very low<br />

Tocopherol<br />

Ascorbate<br />

Carotenoids, uric acid, albumin,<br />

glucose, bilirubin...<br />

Sequestration of iron and copper:<br />

- transferrin, lactoferrin<br />

- hemopexin<br />

- haptoglobin<br />

- ceruloplasmin (ferroxidase)<br />

- Cu bound to albumin<br />

Antioxidant defence IV<br />

Low-molecular-weight antioxidant substrates<br />

• THIOLS:<br />

– Glutathione<br />

– Thioredoxin<br />

• OTHER ENDOGENOUS METABOLITES:<br />

– Bilirubin<br />

– Uric acid<br />

– Lipoic acid<br />

• DIETARY:<br />

– Ascorbate (Vitamin C)<br />

– α-Tocopherol (Vitamin E)<br />

– Carotenoids<br />

– Plant phenols<br />

28


Tocopherols (Vitamin E)<br />

• group of 8 isomers,<br />

α-tocopherol most<br />

effective<br />

• antioxidant of<br />

membranes<br />

(lipophilic)<br />

• “chain-breaking” ...<br />

terminates the<br />

chain reaction of<br />

lipid peroxidation<br />

Ascorbate (Vitamin C)<br />

• Redox-active saccharide<br />

• In most animals synthesized from glucuronic acid<br />

• Vitamin for humans, other primates, bats and guinea pigs<br />

• Deficit causes scurvy (scorbut)<br />

29


Ascorbate in the body:<br />

• Main function is pro-oxidant: cofactor of hydroxylases<br />

– Hydroxylation of Pro and Lys in collagen synthesis<br />

– Synthesis of noradrenaline from dopamine<br />

– Synthesis of carnitine (… role in oxidation of fat)<br />

– Activation of hypothalamic peptidic hormones by<br />

amidation (CRH, GRH, oxytocin, vasopressin,<br />

substance P)<br />

• Reductant for iron: promotes its intestinal absorption<br />

• Potentially dangerous pro-oxidant if iron sequestration<br />

impaired (hemochromatosis) (?)<br />

• Daily need 70-100 mg, high doses p.o. excreted by<br />

urine (renal threshold cca 200 mg/24 hours)<br />

membrane compartment:<br />

hydrophilic compartment:<br />

LH<br />

Tocopherol<br />

Semidehydroascorbate<br />

LOO·<br />

+e -<br />

chain reaction of<br />

lipid peroxidation<br />

Dehydroascorbate<br />

LOOH<br />

L·<br />

Tocopheryl<br />

radical<br />

Ascorbate<br />

-e - dehydroascorbate<br />

GSSG<br />

reductase<br />

2GSH<br />

30


Activated neutrophiles<br />

accumulate<br />

dehydroascorbate (DHA)<br />

DHA<br />

GLUT1<br />

GSH<br />

Glutaredoxin<br />

Ascorbate<br />

GSSG<br />

Protects membrane of the neutrophile<br />

from its own ROS ...<br />

• Selenium:<br />

– Trace element (daily need 55 µg), possibility of<br />

deficiency as well as intoxication<br />

– Component of several antioxidant enzymes<br />

(glutathione peroxidase, thioredoxin reductase)<br />

and also e.g. 5‘-dejodase<br />

• β-carotene (provitamin A) is precursor for<br />

synthesis of:<br />

– Retinal … vision<br />

– Retinoic acid …regulator of gene expression,<br />

cellular growth and differentiation<br />

31


Antioxidant defence V<br />

Stress response<br />

Oxidation or nitrosylation of sensor -SH<br />

Transcription factors (NFκB, Nrf-2…):<br />

activation, nuclear translocation<br />

Induction of gene expression:<br />

• chaperones (heat shock proteins)<br />

• antioxidant enzymes<br />

• metallothionein<br />

• hemoxygenase 1<br />

…→ more resistant to further<br />

oxidative stress<br />

Apoptosis as the<br />

ultimate antioxidant defence ?<br />

32


Why red blood cells need<br />

pentose phosphate cycle?<br />

2 O 2·–<br />

+2H +<br />

H 2 O 2 + O 2<br />

Superoxide<br />

dismutase<br />

NADP +<br />

H 2 O<br />

Glutathione<br />

peroxidase<br />

Glutathione<br />

reductase<br />

Methemoglobin<br />

reductase<br />

Hb-FeII<br />

NADPH+H +<br />

Hb-FeIII<br />

Pentose phosphate pathway<br />

33


<strong>Free</strong> radicals in pathogenesis of human diseases<br />

• Cause of disease, e.g.:<br />

• cancerogenesis due to exposition to ionising radiation<br />

• retinopathy of the newborn (fibroplasia retrolentalis)<br />

• Contribute to pathogenesis, e.g:<br />

• atherosclerosis<br />

• diabetes mellitus<br />

• hypertension<br />

• some kinds of cancer<br />

• brain trauma/hemorrhage<br />

• ischemia/reperfusion injury of heart and other organs<br />

• Parkinson disease<br />

• Alzheimer disease<br />

• ageing<br />

• Merely an epiphenomenon (general consequence of<br />

tissue damage)<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!