12.11.2014 Views

What Is A Free Radical - Ústav lékařské chemie a biochemie

What Is A Free Radical - Ústav lékařské chemie a biochemie

What Is A Free Radical - Ústav lékařské chemie a biochemie

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Reactive Oxygen Species<br />

in the Body<br />

Antioxidant Defence<br />

Jan Pláteník MD, PhD<br />

Ústav lékařské bio<strong>chemie</strong> 1.LF UK<br />

<strong>What</strong> is a free radical ?<br />

- any chemical species (molecule, atom, ion)<br />

capable of independent existence that contains<br />

at least one unpaired electron<br />

radical<br />

O 2·–<br />

ion<br />

molecule<br />

1


For what do we need oxygen?<br />

Transfer of electrons (oxidation) from organic substances to<br />

oxygen releases huge amount of energy<br />

E.g. Glucose:<br />

C 6 H 12 O 6 + 6 O 2 → 6 CO 2 + 6 H 2 O<br />

∆G o ’ = – 2820 kJ/ mol (180 g of glucos<br />

ose)<br />

In addition, reactivity of oxygen can be controlled by catalysis<br />

with transition metals (iron, copper)<br />

Does sugar burn ?<br />

2


Spin restriction of dioxygen<br />

• Normal (triplet) O 2 is a<br />

biradical, with high<br />

affinity to electrons<br />

• But gain of an electron<br />

requires one of the<br />

unpaired electrons<br />

changes its spin, which is<br />

a slow process.<br />

• That’s why we do not<br />

burn in the air<br />

• Singlet O 2 is an excited,<br />

highly reactive species<br />

Respiratory chain in the<br />

mitochondrial inner membrane<br />

4


The respiratory chain:<br />

..ele<br />

electrons flow ‘downhill’ and<br />

terminate at oxygen<br />

Overall reaction:<br />

NADH + H + + 1/2 O 2 → NAD + + H 2 O<br />

∆G o ’ = –219.25 kJ mol -1<br />

..and<br />

resulting proton gradient powersp<br />

ATP synthesis<br />

5


Reactive oxygen species (ROS, ‘oxygen radicals’) can be<br />

derived from intermediates of oxygen reduction to water:<br />

O 2<br />

+4 e-<br />

(+4 H + )<br />

+1 e-<br />

O 2·–<br />

superoxide<br />

+2 e-<br />

(+2 H + )<br />

H 2 O 2<br />

hydrogen peroxide<br />

+3 e-<br />

(+3 H + )<br />

2H 2 O<br />

OH·<br />

hydroxyl<br />

radical<br />

( +H 2 O )<br />

Superoxide<br />

O 2·–<br />

• Sources in the body:<br />

– Escape of electrons to oxygen<br />

- Respiratory chain in mitochondria<br />

- Other similar redox carrier systems, e.g. microsomal<br />

cytochrome P450 monooxygenase<br />

– NAD(P)H Oxidase:<br />

- Phagocytes (”respiratory burst”)<br />

- Non-phagocytic cells<br />

– Some enzymes:<br />

- Xanthine oxidase<br />

- Cyclooxygenase<br />

- Lipoxygenase<br />

– Reaction of FeII-hemoglobin with oxygen<br />

– Autoxidation (reaction with oxygen) of various compounds<br />

(ascorbate, glutathione and other thiols, catecholamines)<br />

6


Superoxide originates in the<br />

mitochondrial respiratory chain<br />

• 1-2 % from total<br />

oxygen consumption<br />

• Escape of electrons<br />

from redox centers of<br />

complexes I and III,<br />

mostly from<br />

semiquinone<br />

Respiratory burst of phagocyte<br />

7


Origin of superoxide from oxyhemoglobin<br />

Štípek S et al.: Antioxidanty a volné radikály ve zdraví a nemoci. Grada<br />

Publishing, Praha, 2000.<br />

Superoxide<br />

• Properties:<br />

- Moderate reactivity, both oxidising and reducing<br />

agent<br />

- Limited ability to cross biological membranes (only<br />

through anion channels or in its protonated form)<br />

- Releases iron from Fe-S clusters<br />

• Fate:<br />

– Dismutation:<br />

O 2·–<br />

O 2·–<br />

+ O 2·–<br />

+ 2 H + → O 2 + H 2 O 2<br />

– Reaction with nitric oxide:<br />

NO· + O 2·–<br />

→ OONO – (peroxynitrite)<br />

8


Hydrogen peroxide<br />

H 2 O 2<br />

• Formation in the body:<br />

– Dismutation of superoxide (spontaneous or<br />

catalyzed by superoxide dismutase)<br />

O 2·–<br />

+ O 2·–<br />

+ 2 H + → O 2 + H 2 O 2<br />

– Directly by action of some enzymes:<br />

• Xanthine oxidase<br />

• Monoamine oxidase (MAO)<br />

Hydrogen peroxide<br />

• Properties:<br />

- No radical<br />

- <strong>Free</strong>ly crosses biological membranes<br />

- Fairly unreactive as such<br />

- But rapidly reacts with reduced transition metals such<br />

as iron, copper (the Fenton reaction)<br />

• Fate:<br />

– The Fenton reaction:<br />

H 2 O 2<br />

hydroxyl radical<br />

H 2 O 2 + Fe 2+ → OH – + OH· + Fe 3+<br />

– Safe decomposition by glutathione peroxidase or<br />

catalase<br />

9


Hydroxyl radical<br />

• Formation in the body:<br />

– Ionising radiation:<br />

H 2 O → H· + OH·<br />

OH ·<br />

– The Fenton reaction:<br />

H 2 O 2 + Fe 2+ → OH – + OH· + Fe 3+<br />

• Properties:<br />

- Extremely high reactivity. Damages biomolecules<br />

near its site of formation.<br />

Reactive Oxygen Species (ROS)<br />

• <strong>Radical</strong>s:<br />

– Superoxide, O 2·–<br />

– Hydroperoxyl radical, HO 2·<br />

– Hydroxyl radical, OH·<br />

– Peroxyl radicals, ROO·<br />

– Alkoxyl radicals, RO·<br />

• Non-radicals:<br />

– Hydrogen peroxide, H 2 O 2<br />

– Hypochlorous acid, HClO<br />

– Ozone O 3<br />

– Singlet oxygen, 1 O 2<br />

10


Nitric oxide<br />

• Formation in the body:<br />

NO ·<br />

– NO synthase-catalysed reaction:<br />

L-Arginine + O 2<br />

+ NADPH → L-Citrulline + NADP + +NO·<br />

– Three different NO synthases:<br />

- NOS I (neuronal, constitutive)<br />

- NOS II (phagocytes, inducible)<br />

- NOS III (endothelial, constitutive)<br />

Nitric oxide<br />

• Properties:<br />

- Gaseous radical<br />

- Reaction with heme iron of guanylate cyclase<br />

(…physiological effects)<br />

- Reaction with heme iron of hemoglobin (…physiological<br />

inactivation)<br />

- Reaction with sulfhydryl groups on glutathione etc. to<br />

nitrosothiol (…transport NO)<br />

- Reaction with superoxide to peroxynitrite and finally<br />

hydroxyl radical (…toxicity):<br />

NO· + O 2·–<br />

→ OONO – peroxynitrite<br />

NO ·<br />

OONO – + H + → HOONO → OH· + NO 2 ·<br />

peroxynitrous acid<br />

hydroxyl radical<br />

11


NO causes relaxation of smooth muscles in blood<br />

vessel wall:<br />

Reactive Nitrogen Species (RNS)<br />

• <strong>Radical</strong>s:<br />

– Nitric oxide, NO·<br />

– Nitric dioxide, NO 2 ·<br />

• Non-radicals:<br />

– Nitrosonium, NO +<br />

– Nitroxyl, NO –<br />

– Nitrous acid, HNO 2<br />

– Dinitrogen trioxide, N 2 O 3<br />

– Dinitrogen tetraoxide, N 2 O 4<br />

– Nitronium, NO 2<br />

+<br />

– Peroxynitrite, ONOO –<br />

– Alkylperoxynitrite, ROONO<br />

12


Oxidative damage to biomolecules<br />

• Lipids: peroxidation of polyunsaturated<br />

fatty acids in membranes<br />

• Proteins: oxidation of -SH, carbonylation -<br />

NH 2 , hydroxylation/nitrosylation of<br />

aromatic AA, cross-linking, degradation<br />

• Nucleic acids: strand breaks, hydroxylation<br />

of bases ... mutation, cancerogenesis<br />

Lipid peroxidation<br />

(rancidity)<br />

13


Further fate of lipid peroxides<br />

Ionising radiation:<br />

Hydroxyl radical originates from ionisation of water:<br />

H 2 O + hν → H· + OH·<br />

Reactive oxygen species in the body:<br />

One-electron reduction of oxygen (mitochondria,<br />

NADPH oxidase) forms superoxide O 2·–<br />

Dismutation of superoxide produces hydrogen peroxide:<br />

O 2·–<br />

+ O 2·–<br />

+ 2 H + → O 2 + H 2 O 2<br />

Fenton reaction with Fe or Cu converts peroxide to<br />

hydroxyl radical:<br />

H 2 O 2 + Fe 2+ → OH – + OH· + Fe 3+<br />

14


Where RONS are beneficial:<br />

Monooxygenases (cytochrome P450): hydroxylation<br />

of steroids, xenobiotics etc.<br />

Mechanism: basically a controlled Fenton reaction<br />

Fe 3+ + SH + 2 e- + O 2 + H + → FeOOH SH<br />

FeOOH SH → FeO 3+ SH + H 2 O<br />

FeO 3+ SH → FeOH 3+ S• → Fe 3+ SOH → Fe 3+ + SOH<br />

Where RONS are beneficial:<br />

• Monooxygenases: hydroxylation of steroids,<br />

xenobiotics etc.<br />

• Phagocyte weapons: killing microbes or cancer cells<br />

• Mediators of inflammatory reaction<br />

15


Beneficial ROS:<br />

Respiratory<br />

burst of<br />

neutrophilic granulocyte<br />

© 1998 Garland Publishing<br />

Where RONS are beneficial:<br />

• Monooxygenases: hydroxylation of steroids,<br />

xenobiotics etc.<br />

• Phagocyte weapons: killing microbes or cancer cells<br />

• Mediators of inflammatory reaction<br />

• Local hormones/mediators:<br />

- NO:<br />

- smooth muscle relaxation in blood vessels, gastrointestinal tract,<br />

corpus cavernosum penis<br />

- neurotransmitter/ neuromodulator in the CNS, function in<br />

synaptic plasticity, learning & memory<br />

- inhibition of thrombocyte adhesion & aggregation, leucocyte<br />

adhesion<br />

Superoxide as well with effects opposing NO ?<br />

16


Concept of redox signaling<br />

• Redox environment inside the cell –<br />

determined mostly by ratios GSH/GSSG<br />

and NADH/NAD<br />

• Redox sensors on proteins:<br />

– critical -SH groups<br />

– Fe-S centers<br />

• Targets of redox signaling:<br />

– transcription factors<br />

– protein kinases and phosphatases<br />

Redox<br />

signaling<br />

• Oxidative stress activates<br />

certain protein kinases and<br />

transcription factors<br />

• Outcome: e.g. stimulation<br />

of proliferation, or cellular<br />

senescence (ageing)<br />

• Actions of<br />

ROS/antioxidants in the<br />

cell can be very specific<br />

(T. Finkel & N.J. Holbrook, Nature 408 (2000), 239-247)<br />

17


…and very complex<br />

Oxidative stress<br />

• Levels of reactive oxygen species are kept<br />

within certain limits by mechanisms of<br />

antioxidant defence<br />

• Oxidative stress occurs if the<br />

oxidant/antioxidant balance shifts to<br />

oxidation<br />

18


Antioxidant defence<br />

• prevention of ROS/RNS formation<br />

(regulation of producing enzymes,<br />

sequestration of metals)<br />

• scavenging, trapping and quenching of<br />

radicals<br />

• reparation systems (phospholipases,<br />

proteasome, DNA repair)<br />

Antioxidant in food chemistry<br />

• Reducing agent capable<br />

of terminating chain<br />

reaction of lipid<br />

peroxidation<br />

…“chain-breaking” ...<br />

• E.g.:<br />

– Butylated<br />

hydroxytoluene (BHT)<br />

– Butylated hydroxyanisol<br />

(BHA)<br />

– Tocopherol (Vitamin E)<br />

19


Antioxidant defence of human body<br />

• Anatomy of the body limiting tissue oxygen<br />

• Antioxidant enzymes<br />

• Sequestration of redox active metals<br />

• Antioxidant substrates (scavengers)<br />

• Stress response<br />

• (Repair systems)<br />

O 2<br />

First organism<br />

(anaerobic)<br />

?<br />

Develop<br />

antioxidant<br />

defence ?<br />

Die out ?<br />

Resort to<br />

anaerobic<br />

condition ?<br />

20


Clump together !<br />

O 2<br />

O 2<br />

Antioxidant defence I<br />

Regulation of tissue O 2<br />

Inhaled air: 160 mmHg O 2<br />

Lung capillaries: 100 mmHg O 2<br />

Arterial blood: 85 mmHg O 2<br />

Arterioles: 70 mmHg O 2<br />

Capillaries: 50 mmHg O 2<br />

Cells: 1-10 mmHg O 2<br />

Mitochondria: < 0,5 mmHg O 2<br />

Fig: Wikipedia<br />

21


Mitochondria originated from<br />

phagocyted/parasitic bacteria ...<br />

Antioxidant defence II<br />

Antioxidant enzymes<br />

• Superoxide dismutase:<br />

O 2·–<br />

+ O 2·–<br />

+ 2 H + → O 2 + H 2 O 2<br />

• Catalase:<br />

2 H 2 O 2 → 2 H 2 O + O 2<br />

• Glutathione peroxidase, peroxiredoxin:<br />

H 2 O 2 + 2 R-SH → 2 H 2 O + RS-SR<br />

22


Superoxide dismutase (SOD)<br />

• Catalyses dismutation of superoxide:<br />

O 2·–<br />

+ O 2·–<br />

+ 2 H + → O 2 + H 2 O 2<br />

• Absolutely required for life in oxygen<br />

• SOD1: Cu+Zn (cytosol of eukaryotic cells)<br />

• SOD2:<br />

– Mn (mitochondrial matrix)<br />

– Fe (bacteria)<br />

• EC-SOD (SOD3): extracelullar, Cu+Zn,<br />

– MW 135,000; binds to heparane sulfate on the<br />

inner surface of blood vessels<br />

Glutathione peroxidases (GPX)<br />

• Reduction of peroxides coupled to oxidation of<br />

glutathione:<br />

2 GSH + H 2 O 2 → GS-SG + 2 H 2 O<br />

(glutathione is subsequently regenerated by<br />

glutathione reductases)<br />

• Active site contains selenocysteine<br />

• Cytosolic glutathione peroxidase:<br />

– reduces H 2 O 2 and LOOH after release from<br />

phospholipids<br />

• Phospholipide hydroperoxide-GSH-peroxidase:<br />

– reduces LOOH even in membranes<br />

23


Glutathione (GSH/GSSG)<br />

• tripeptide, in every cell<br />

1-10 mM<br />

• keeps ICT reduced<br />

• substrate for GPX, etc.<br />

• also non-enzymatic<br />

reactions with ROS and<br />

mixed disulfides with<br />

proteins ... products of<br />

GSH oxidation are toxic<br />

for cell<br />

• in oxidative stress the<br />

cell exports GSSG out<br />

Catalase<br />

• Tetramer, every subunit contains heme with<br />

Fe<br />

• Dismutation of hydrogen peroxide:<br />

2 H 2 O 2 → 2 H 2 O + O 2<br />

• Red blood cells, peroxisomes<br />

• Also peroxidase activity:<br />

H 2 O 2 + ROOH → H 2 O + ROH + O 2<br />

(in comparison to GPX less significant)<br />

24


Oxidation<br />

of very long chain fatty acids in peroxisome<br />

oxisomes:<br />

O 2·–<br />

Superoxide dismutase<br />

H 2 O 2<br />

H 2 O<br />

Glutathione<br />

peroxidase<br />

GSH<br />

Reduced glutathione<br />

(GSH)<br />

GS-SG Oxidised glutathione NADP +<br />

(GS-SG)<br />

Glutathione<br />

reductase<br />

NADPH+H +<br />

Transhydrogenase<br />

NAD +<br />

NADH+H +<br />

Pentose cycle<br />

ATP<br />

25


Peroxiredoxin/Thioredoxin<br />

• Recently discovered antioxidant system,<br />

more important for removal of hydrogen<br />

peroxide than GPX<br />

O 2·–<br />

Superoxide dismutase<br />

NADPH+H +<br />

H 2 O 2<br />

Peroxiredoxin<br />

RED<br />

Thioredoxin<br />

RED<br />

Thioredoxin<br />

reductase RED<br />

SH HS<br />

SH HS<br />

FADH 2 (Se)<br />

GSH<br />

Peroxiredoxin<br />

OX<br />

Thioredoxin<br />

OX<br />

Thioredoxin<br />

reductase OX<br />

H 2 O<br />

S<br />

S<br />

S<br />

S<br />

FAD (Se)<br />

NADP +<br />

26


Antioxidant defence III<br />

Sequestration of metals<br />

• Redox-active transition metals (Fe, Cu)<br />

accept/donate one electron easily<br />

– ... alleviation of spin restriction of dioxygen<br />

– ... metals are in active centers of all oxygen handlingenzymes<br />

• But, the same properties of Fe, Cu are deleterious<br />

if uncontrolled<br />

– the Fenton oxidant:<br />

H 2 O 2 + Fe 2+ → OH – + OH· + Fe 3+<br />

oxidative damage to biomolecules<br />

Antioxidant defence III<br />

Sequestration of metals<br />

• Iron/copper handling proteins:<br />

– transferrin: binds 2 atoms Fe 3+ (transport)<br />

– lactoferrin: analogous to transferrin, but no Fe<br />

release (... only sequestration), leucocytes<br />

– ferritin: H and L subunits, H is ferroxidase, Fe<br />

storage (up to 4500 atoms Fe 3+ )<br />

– haptoglobin: binds hemoglobin in circulation<br />

– hemopexin: binds heme in circulation<br />

– ceruloplasmin: contains Cu, function:<br />

ferroxidase (export Fe from the cells)<br />

– albumin: transport of Cu<br />

27


ICT<br />

ECT<br />

Superoxide<br />

Peroxide<br />

Fe/Cu<br />

Superoxide<br />

Peroxide<br />

Fe/Cu<br />

Superoxide dismutase<br />

Glutathione peroxidase<br />

Catalase<br />

Glutathione<br />

Tocopherol<br />

Ascorbate<br />

Labile iron pool (LIP) present<br />

Antioxidant enzymes &<br />

glutathione levels very low<br />

Tocopherol<br />

Ascorbate<br />

Carotenoids, uric acid, albumin,<br />

glucose, bilirubin...<br />

Sequestration of iron and copper:<br />

- transferrin, lactoferrin<br />

- hemopexin<br />

- haptoglobin<br />

- ceruloplasmin (ferroxidase)<br />

- Cu bound to albumin<br />

Antioxidant defence IV<br />

Low-molecular-weight antioxidant substrates<br />

• THIOLS:<br />

– Glutathione<br />

– Thioredoxin<br />

• OTHER ENDOGENOUS METABOLITES:<br />

– Bilirubin<br />

– Uric acid<br />

– Lipoic acid<br />

• DIETARY:<br />

– Ascorbate (Vitamin C)<br />

– α-Tocopherol (Vitamin E)<br />

– Carotenoids<br />

– Plant phenols<br />

28


Tocopherols (Vitamin E)<br />

• group of 8 isomers,<br />

α-tocopherol most<br />

effective<br />

• antioxidant of<br />

membranes<br />

(lipophilic)<br />

• “chain-breaking” ...<br />

terminates the<br />

chain reaction of<br />

lipid peroxidation<br />

Ascorbate (Vitamin C)<br />

• Redox-active saccharide<br />

• In most animals synthesized from glucuronic acid<br />

• Vitamin for humans, other primates, bats and guinea pigs<br />

• Deficit causes scurvy (scorbut)<br />

29


Ascorbate in the body:<br />

• Main function is pro-oxidant: cofactor of hydroxylases<br />

– Hydroxylation of Pro and Lys in collagen synthesis<br />

– Synthesis of noradrenaline from dopamine<br />

– Synthesis of carnitine (… role in oxidation of fat)<br />

– Activation of hypothalamic peptidic hormones by<br />

amidation (CRH, GRH, oxytocin, vasopressin,<br />

substance P)<br />

• Reductant for iron: promotes its intestinal absorption<br />

• Potentially dangerous pro-oxidant if iron sequestration<br />

impaired (hemochromatosis) (?)<br />

• Daily need 70-100 mg, high doses p.o. excreted by<br />

urine (renal threshold cca 200 mg/24 hours)<br />

membrane compartment:<br />

hydrophilic compartment:<br />

LH<br />

Tocopherol<br />

Semidehydroascorbate<br />

LOO·<br />

+e -<br />

chain reaction of<br />

lipid peroxidation<br />

Dehydroascorbate<br />

LOOH<br />

L·<br />

Tocopheryl<br />

radical<br />

Ascorbate<br />

-e - dehydroascorbate<br />

GSSG<br />

reductase<br />

2GSH<br />

30


Activated neutrophiles<br />

accumulate<br />

dehydroascorbate (DHA)<br />

DHA<br />

GLUT1<br />

GSH<br />

Glutaredoxin<br />

Ascorbate<br />

GSSG<br />

Protects membrane of the neutrophile<br />

from its own ROS ...<br />

• Selenium:<br />

– Trace element (daily need 55 µg), possibility of<br />

deficiency as well as intoxication<br />

– Component of several antioxidant enzymes<br />

(glutathione peroxidase, thioredoxin reductase)<br />

and also e.g. 5‘-dejodase<br />

• β-carotene (provitamin A) is precursor for<br />

synthesis of:<br />

– Retinal … vision<br />

– Retinoic acid …regulator of gene expression,<br />

cellular growth and differentiation<br />

31


Antioxidant defence V<br />

Stress response<br />

Oxidation or nitrosylation of sensor -SH<br />

Transcription factors (NFκB, Nrf-2…):<br />

activation, nuclear translocation<br />

Induction of gene expression:<br />

• chaperones (heat shock proteins)<br />

• antioxidant enzymes<br />

• metallothionein<br />

• hemoxygenase 1<br />

…→ more resistant to further<br />

oxidative stress<br />

Apoptosis as the<br />

ultimate antioxidant defence ?<br />

32


Why red blood cells need<br />

pentose phosphate cycle?<br />

2 O 2·–<br />

+2H +<br />

H 2 O 2 + O 2<br />

Superoxide<br />

dismutase<br />

NADP +<br />

H 2 O<br />

Glutathione<br />

peroxidase<br />

Glutathione<br />

reductase<br />

Methemoglobin<br />

reductase<br />

Hb-FeII<br />

NADPH+H +<br />

Hb-FeIII<br />

Pentose phosphate pathway<br />

33


<strong>Free</strong> radicals in pathogenesis of human diseases<br />

• Cause of disease, e.g.:<br />

• cancerogenesis due to exposition to ionising radiation<br />

• retinopathy of the newborn (fibroplasia retrolentalis)<br />

• Contribute to pathogenesis, e.g:<br />

• atherosclerosis<br />

• diabetes mellitus<br />

• hypertension<br />

• some kinds of cancer<br />

• brain trauma/hemorrhage<br />

• ischemia/reperfusion injury of heart and other organs<br />

• Parkinson disease<br />

• Alzheimer disease<br />

• ageing<br />

• Merely an epiphenomenon (general consequence of<br />

tissue damage)<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!