13.11.2014 Views

MRAM: A New Technology for the Future - NCCAVS - User Groups

MRAM: A New Technology for the Future - NCCAVS - User Groups

MRAM: A New Technology for the Future - NCCAVS - User Groups

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>MRAM</strong>: A NEW TECHNOLOGY FOR<br />

THE FUTURE<br />

Kamel Ounadjela, Cypress Semiconductor<br />

<strong>Future</strong> is Today<br />

<strong>NCCAVS</strong> March 17, 2004<br />

1<br />

Kamel Ounadjela (kno@cypress.com)


OUTLINE<br />

• WHY <strong>MRAM</strong>?<br />

• ISSUES TO MAKE A WORKING <strong>MRAM</strong><br />

• Read Yield Dependencies:<br />

?MTJs in <strong>MRAM</strong><br />

? IMPORTANCE OF WITHIN-ARRAY MATCHING<br />

? CAN WE DO BETTER?<br />

• Write Yield Dependencies:<br />

? HOW TO INCREASE THE WRITE MARGIN<br />

? THEORY OF ZERO DEFECTS<br />

? ZERO NEEL COUPLING SWITCHING: IMPROVED<br />

LAYER MORPHOLOGY<br />

? ZERO POLES FROM PINNED LAYER: CRITICAL ETCH<br />

STEPS<br />

• Product Pulsing Sequencing<br />

• SCALABILITY<br />

• CONCLUSION<br />

<strong>NCCAVS</strong> March 17, 2004<br />

2<br />

Kamel Ounadjela (kno@cypress.com)


Magnetic Memory: Historical Perspective<br />

Intel 1 Mbits<br />

Magnetic Bubble Memory<br />

1980<br />

CypressSemi, 256kb <strong>MRAM</strong> Chip,<br />

MTJ, 4Mb, 2003<br />

Control Data Corp.<br />

1Kbits Ferrite Core Memory<br />

1965<br />

Honeywell<br />

16Kbits <strong>MRAM</strong> Chip<br />

AMR <strong>Technology</strong> 1994<br />

Motorola 4Mbits <strong>MRAM</strong> Chip,<br />

MTJ, 4Mb, 2003<br />

<strong>NCCAVS</strong> March 17, 2004<br />

3<br />

Kamel Ounadjela (kno@cypress.com)


• <strong>MRAM</strong> Will Become A :<br />

MAINSTREAM MEMORY TECHNOLOGY<br />

• High Per<strong>for</strong>mance NON VOLATILE Storage Element<br />

With FAST READ / WRITE And NO WEAR OUT Will Add<br />

Value To All Areas Of The Semiconductor <strong>Technology</strong><br />

• HOW DO WE KNOW:<br />

WHY <strong>MRAM</strong>?<br />

• Check www.cnn.com about <strong>the</strong> 10 technologies to watch in 2004 in all<br />

areas ranging from medicine, house networking, energy, supply chain,<br />

computer memory, software, wireless broadband … <strong>MRAM</strong> is in <strong>the</strong>re and<br />

is described as:<br />

• Magnetoresistive random acces memory is (in <strong>the</strong>ory, anyway) more than 1,000<br />

times faster than <strong>the</strong> fastest current nonvolatile flash memory and nearly 10<br />

times faster than DRAM. "Nonvolatile" means it retains memory when <strong>the</strong> power<br />

is off. Add in its low power consumption, and it's perfect <strong>for</strong> use in an upcoming<br />

crop of computers and cell phones.<br />

<strong>NCCAVS</strong> March 17, 2004<br />

4<br />

Kamel Ounadjela (kno@cypress.com)


Emerging Memories<br />

• Industry’s Quest - The Search <strong>for</strong> <strong>the</strong> PERFECT Memory:<br />

Low Cost, High Volume, Low Power, NV,<br />

Compatible with Established CMOS Technologies<br />

• Several Non Volatile Technologies in Development: FeRAM, OUM<br />

• <strong>MRAM</strong>s Close to Ideal<br />

Worst<br />

Good<br />

Best<br />

DRAM<br />

SRAM<br />

FLASH<br />

FRAM<br />

<strong>MRAM</strong><br />

OUM<br />

Cost<br />

Access Time<br />

Write Time<br />

Active<br />

power<br />

Stand By<br />

Non Volatile<br />

Endurance<br />

<strong>NCCAVS</strong> March 17, 2004<br />

5<br />

Kamel Ounadjela (kno@cypress.com)


<strong>MRAM</strong> OPPORTUNITIES<br />

<strong>MRAM</strong><br />

1T1R 1T1R (2T/2R)<br />

(2T/2R)<br />

<strong>MRAM</strong><br />

X-Point<br />

Thermal Switching<br />

Spin Spin Transfer<br />

Comparable Speed/Power<br />

Lower Cost<br />

Immunity to Radiation<br />

Non-Volatile<br />

Faster Write/Read<br />

Lower Power<br />

Comparable Cost<br />

Non-Volatile<br />

nondestructive Read<br />

No wear out<br />

In Select Applications<br />

Comparable Cost<br />

Non-Volatile<br />

Comparable Speed<br />

Comparable Cost<br />

Non-Volatile<br />

SRAM<br />

FLASH<br />

DRAM<br />

<strong>NCCAVS</strong> March 17, 2004<br />

6<br />

Kamel Ounadjela (kno@cypress.com)


Cypress Objectives<br />

? Deliver 256K Working <strong>MRAM</strong> Memory<br />

? High Density <strong>MRAM</strong> Memory On Mainstream<br />

SRAM <strong>Technology</strong><br />

? High Density 1.8V and 3V Design <strong>for</strong> Industrial<br />

Applications (cell phones and o<strong>the</strong>rs)<br />

<strong>NCCAVS</strong> March 17, 2004<br />

7<br />

Kamel Ounadjela (kno@cypress.com)


256K <strong>MRAM</strong> PRODUCT DESCRIPTION<br />

CY9C62256<br />

? 5V 256K <strong>MRAM</strong><br />

? Form, Fit & Functionality Compatible with<br />

Micro Power 256K RAM (CY62256)<br />

? Industrial Temperature Range<br />

? Additional <strong>MRAM</strong> Functionality<br />

? Non-Volatile Memory Storage<br />

? Infinite Endurance & Data Retention<br />

? For additional in<strong>for</strong>mation www.siliconmagnetics.com<br />

<strong>NCCAVS</strong> March 17, 2004<br />

8<br />

Kamel Ounadjela (kno@cypress.com)


<strong>MRAM</strong> BASICS (1): THE MTJ<br />

? MTJ Magneto Resistive Effect<br />

• Bottom Pinned Layer Has Electron Spin Fixed In One Direction<br />

• Top Layer Electron Spin Can Be Ei<strong>the</strong>r Parallel or Anti parallel To Pinned<br />

Layer Depending on The Switched State<br />

• When Electron Spins Tunnel Across Tunnel Junction, Tunneling Electrons<br />

See Spin Polarization Dependent of <strong>the</strong> Magnetization Orientation<br />

• This Gives The MR Ratio ? R/R (Example: 3K Ohm/10K Ohm)<br />

Magnetic Tunnel Junction<br />

STORAGE LAYER<br />

INSULATING BARRIER<br />

PARALLEL MOMENTS<br />

LOW RESISTANCE<br />

? R/R=28% @300mV<br />

PINNED LAYER<br />

PARALLEL MOMENTS<br />

LOW RESISTANCE<br />

<strong>NCCAVS</strong> March 17, 2004<br />

9<br />

Kamel Ounadjela (kno@cypress.com)


<strong>MRAM</strong> BASICS (2): Reading And Writing<br />

? Reading: Relies on <strong>the</strong> determination of <strong>the</strong> low or high<br />

resistance state of <strong>the</strong> MTJ<br />

? Writing:<br />

ONLY THE ELEMENT<br />

AT THE INTERSECTION<br />

IS WRITTEN<br />

CURRENT<br />

Y<br />

X<br />

CURRENT<br />

<strong>NCCAVS</strong> March 17, 2004<br />

10<br />

Kamel Ounadjela (kno@cypress.com)


<strong>MRAM</strong> BASICS (3): WRITING DATA<br />

CURRENT<br />

Y<br />

X<br />

CURRENT<br />

CURRENT<br />

SUM OF 2 MAGNETIC FIELDS<br />

ONLY THE ELEMENT<br />

AT THE INTERSECTION<br />

IS WRITTEN<br />

TOP VIEW<br />

Y<br />

X<br />

CURRENT<br />

CURRENT<br />

FIELD GENERATED BY CURRENT<br />

ALONG Y DIRECTION<br />

MAGNETIZATION SWITCH<br />

IN STORAGE LAYER<br />

MAGNETIZATION REMAINS<br />

UNCHANGED IN STORAGE LAYER<br />

<strong>NCCAVS</strong> March 17, 2004<br />

11<br />

Kamel Ounadjela (kno@cypress.com)


Memory Cell: Write And Read Operation<br />

Read Mode<br />

Detection of <strong>the</strong> MR effect:<br />

Read 0: Spins aligned<br />

Read 1: Spins opposing<br />

Write Mode<br />

Write 0: Aligned current pulses in bit and<br />

word lines: Spins aligned<br />

Write 1: Opposed current pulses in bit and<br />

word lines: Spins opposing<br />

<strong>NCCAVS</strong> March 17, 2004<br />

12<br />

Kamel Ounadjela (kno@cypress.com)


STANDARD <strong>MRAM</strong> PROCESS<br />

PERIPHERY<br />

<strong>MRAM</strong> CELL<br />

MAGNETIC STACK<br />

Bit Line<br />

Digit Line<br />

M2<br />

M1<br />

=<br />

ST CMOS<br />

Process<br />

ADDS ON TO STANDARD LOGIC<br />

AND/OR MEMORY PROCESS<br />

<strong>NCCAVS</strong> March 17, 2004<br />

13<br />

Kamel Ounadjela (kno@cypress.com)


<strong>MRAM</strong> PROCESS And INTEGRATION<br />

M3: BIT LINE<br />

M2:<br />

DIGIT LINE<br />

M1<br />

<strong>NCCAVS</strong> March 17, 2004<br />

14<br />

Kamel Ounadjela (kno@cypress.com)


IMPORTANCE OF WITHIN-ARRAY<br />

MATCHING<br />

• BASIC FEASIBILITY PROVEN – SINGLE <strong>MRAM</strong> BIT IS WORKING<br />

(THIS IS NOT A TRIVIAL STATEMENT…)<br />

• CHALLENGE FOR A VIABLE <strong>MRAM</strong> PRODUCT:<br />

MAKING ALL BITS IN A DIE SUFFICIENTLY IDENTICAL<br />

? CELL & BIT DESIGN FOR OPTIMUM MARGIN<br />

? IMPROVED MTJ MATERIALS<br />

? PROCESS INTEGRATION<br />

FREQUENCY<br />

DESIRED WITHIN-ARRAY DISTRIBUTIONS<br />

?H c /H c = MIN<br />

FOR WRITE WINDOW<br />

H c<br />

?H c<br />

BIT SWITCHING CURRENT<br />

FREQUENCY<br />

?R MIN /R MIN = MIN<br />

FOR READ WINDOW<br />

R MIN<br />

?R MIN<br />

BIT RESISTANCE<br />

<strong>NCCAVS</strong> March 17, 2004<br />

15<br />

Kamel Ounadjela (kno@cypress.com)


READ YIELD: MTJ STACK<br />

12<br />

SCHEMATIC LAYER<br />

STRUCTURE<br />

- TOP ELECTRODE<br />

- FERROMAGNET<br />

TYPICAL X-WFR DATA (8”)<br />

@ 300 mV<br />

MR RATIO<br />

RESISTANCE<br />

[%] [k? ]<br />

AlOx<br />

Ru<br />

- FERROMAGNET<br />

- FERROMAGNET<br />

- ANTI-<br />

FERROMAGNET<br />

- BOTTOM<br />

ELECTRODE<br />

27.3 26.4 27.4 26.6 27.6 26.7<br />

27.6 25.8 26.2 26.3 25.9 26.4 26.7 27.2<br />

27.1 26.4 25.5 26.0 25.6 25.7 25.4 26.9<br />

26.8 25.9 26.5 26.2 25.5 26.1 26.8 26.6<br />

26.7 25.8 26.2 26.5 26.4 26.0 26.4 26.9<br />

26.9 26.7 25.6 26.5 25.9 26.5<br />

10.5 10.1 10.5 10.8 10.4 9.9<br />

10.8 10.4 10.9 10.3 10.7 10.9 10.8 10.5<br />

10.6 11.0 10.4 10.8 11.0 10.3 11.0 10.9<br />

11.3 10.5 10.9 10.7 10.7 10.3 11.5 10.9<br />

11.1 11.3 10.9 10.9 10.8 11.2 11.3 11.4<br />

11.5 11.0 11.2 11.0 11.4 12.1<br />

MEAN: 26.4<br />

STDEV: 2.2%<br />

MEAN: 10.9<br />

STDEV: 3.9%<br />

• RA ~3 k? -?m 2 , MR @ 300 mV ~25-40% (MATERIAL DEPENDENT)<br />

<strong>NCCAVS</strong> March 17, 2004<br />

16<br />

Kamel Ounadjela (kno@cypress.com)


READ YIELD: HOMOGENEITY OF TUNNEL BARRIER<br />

• MTJ BARRIER INTEGRITY IS CRITICAL FOR WIDE SEPARATION<br />

OF WITHIN-ARRAY RESISTANCE DISTRIBUTIONS<br />

TUNNELING CURRENT [a. u.]<br />

Bit #1 Bit #2<br />

“Hot Spots”<br />

Bit #1 Bit #2<br />

Position On Wafer<br />

Bit #1<br />

Bit #2<br />

Bit #1<br />

Bit #2<br />

WITHIN-ARRAY DISTRIB.<br />

Rp<br />

NO<br />

WINDOW<br />

WIDE<br />

WINDOW<br />

Rap<br />

• DIFFERENCES MAY NOT BE SIGNIFICANT AT THE SINGLE<br />

BIT PERFORMANCE LEVEL (MR, RA), BUT…<br />

<strong>NCCAVS</strong> March 17, 2004<br />

17<br />

Kamel Ounadjela (kno@cypress.com)


HOMOGENEITY OF TUNNEL BARRIER<br />

• …IN LARGE BIT POPULATIONS, IMPROVED BARRIER SHOWS<br />

REDUCED BIT-TO-BIT VARIABILITY<br />

Cumulative Probability<br />

0.99<br />

0.9<br />

0.7<br />

0.5<br />

0.3<br />

0.1<br />

0.01<br />

AlOx Tunnel Barrier:<br />

Barrier #1 - BASELINE<br />

Barrier #2<br />

TUNNEL BARRIERS<br />

Barrier #3<br />

Barrier #4 WITH IMPROVED<br />

Barrier #5 HOMOGENEITY<br />

-500 -300 -100 100 300 500 700<br />

Resistance Difference Between Neighbouring Bits [? ]<br />

CUMULATIVE PROBABILITY PLOTS OF RESISTANCE DIFFERENCE BETWEEN NEIGHBOURING<br />

BITS SAMPLED FROM THE ARRAYS OF MTJs WITH ALOx BARRIER PREPARED IN VARIOUS WAYS<br />

<strong>NCCAVS</strong> March 17, 2004<br />

18<br />

Kamel Ounadjela (kno@cypress.com)


HOMOGENEITY OF TUNNEL BARRIER<br />

• WITH MTJs OF IMPROVED MICROSTRUCTURE, A TIGHT CONTROL<br />

OF WITHIN-ARRAY BIT RESISTANCE CAN BE ACHIEVED<br />

Cumulative Probability<br />

0.99<br />

0.9<br />

0.7<br />

0.5<br />

0.3<br />

0.1<br />

0.01<br />

Frequency<br />

30000<br />

20000<br />

10000<br />

0<br />

524,288 MTJs<br />

1? = 1.1%<br />

ZERO OUTLIERS<br />

10.0<br />

10.3<br />

10.6<br />

10.9<br />

11.2<br />

11.5<br />

11.8<br />

MTJ Resistance [k? ]<br />

10.5<br />

10.8<br />

11.1<br />

11.5<br />

11.8<br />

MTJ Resistance [k? ]<br />

? MTJ RESISTANCE VARIATION WITHIN A FULLY INTEGRATED<br />

256K DIE: NORMAL DISTRIBUTION (1.1%), NO OUTLIERS<br />

<strong>NCCAVS</strong> March 17, 2004<br />

19<br />

Kamel Ounadjela (kno@cypress.com)


HOMOGENEITY OF TUNNEL BARRIER<br />

• “LOW” AND “HIGH” RESISTIVITY DISTRIBUTIONS WITHIN A<br />

256K <strong>MRAM</strong> DIE SHOW A DISTINCT SEPARATION (>23? )<br />

? R = 2.99 k? = 23.9 ?<br />

75000<br />

R P ????125 ??(1.1%)<br />

50000<br />

Count<br />

25000<br />

R P<br />

Resistance (? )<br />

R AP<br />

10400 11200 12000 12800 13600 14400<br />

<strong>NCCAVS</strong> March 17, 2004<br />

20<br />

Kamel Ounadjela (kno@cypress.com)


13<br />

? The Half Select Problem:<br />

? Switching Distribution is a killer => Needs to be<br />

tighten to increase writing Margin<br />

Y<br />

CURRENT<br />

Unselected<br />

Bits Switch<br />

X<br />

CURRENT<br />

Selected Bits<br />

Don’t Switch<br />

Unselected<br />

Bits Switch<br />

<strong>NCCAVS</strong> March 17, 2004<br />

21<br />

Kamel Ounadjela (kno@cypress.com)


IDEAL WRITE/DISTURB WINDOW<br />

WRITING DIST<br />

WRITE WINDOW<br />

DIGIT LINE CURRENT = 6MA<br />

WRITE/DISTURB<br />

WINDOW<br />

DISTURB WINDOW<br />

DIGIT LINE CURRENT = 0MA<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

I BIT (MA)<br />

WRITING DIST<br />

WRITE WINDOW<br />

BIT LINE CURRENT = 6MA<br />

WRITE/DISTURB<br />

WINDOW<br />

DISTURB WINDOW<br />

BIT LINE CURRENT = 0MA<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

I DIGIT (MA)<br />

<strong>NCCAVS</strong> March 17, 2004<br />

22<br />

Kamel Ounadjela (kno@cypress.com)


WRITE/DISTURB DISTRIBUTIONS:<br />

What are <strong>the</strong> problems<br />

PROBLEM#1<br />

BIT MATCHING<br />

VARIABILITY<br />

WRITING DIST<br />

WRITE WINDOW<br />

DIGIT LINE CURRENT = 6MA<br />

WRITE/DISTURB<br />

WINDOW<br />

DISTURB WINDOW<br />

DIGIT LINE CURRENT = 0MA<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

I BIT (MA)<br />

Define <strong>New</strong><br />

Scheme <strong>for</strong><br />

Dot Shape<br />

PROBLEM#2<br />

INTERLAYER<br />

COUPLING<br />

SHIFT<br />

WRITING DIST<br />

WRITE WINDOW<br />

BIT LINE CURRENT = 6MA<br />

NO<br />

WINDOW<br />

DISTURB WINDOW<br />

BIT LINE CURRENT = 0MA<br />

Improve<br />

Integration<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

I DIGIT (MA)<br />

<strong>NCCAVS</strong> March 17, 2004<br />

23<br />

Kamel Ounadjela (kno@cypress.com)


SORT TEST FOR BL & DL DISTURB<br />

16<br />

10 1<br />

0<br />

1 0<br />

1<br />

COMPARE<br />

1? ?<br />

?<br />

1<br />

0<br />

1<br />

0<br />

1<br />

0<br />

?<br />

?<br />

?<br />

0<br />

1<br />

0<br />

1<br />

0<br />

1<br />

?<br />

?<br />

?<br />

Writing Checkerboard<br />

Writing Inverse checkerboard<br />

Bit counts = 9<br />

10 1<br />

0<br />

1 1<br />

1<br />

1? ?<br />

?<br />

1<br />

1<br />

1<br />

0<br />

1<br />

0<br />

?<br />

?<br />

?<br />

0<br />

0<br />

1<br />

1<br />

0<br />

1<br />

?<br />

?<br />

?<br />

Writing Checkerboard<br />

Writing Inverse checkerboard<br />

Bit counts = 5<br />

• Allow to check multiple disturbs and select on each site<br />

• Output is range of current at which select/Disturb is best<br />

<strong>NCCAVS</strong> March 17, 2004<br />

24<br />

Kamel Ounadjela (kno@cypress.com)


1 DIE SORT YIELD W/ BL & DL DISTURB<br />

17<br />

? Cy shape:<br />

Uses <strong>the</strong> S state <strong>for</strong> <strong>the</strong> writing and <strong>the</strong> C state<br />

<strong>for</strong> <strong>the</strong> disturb.<br />

?Good operating window<br />

? Shape designed to have <strong>the</strong> C state stable at rest<br />

<strong>for</strong> improving <strong>the</strong> Bit Line Disturb (Vortex <strong>for</strong>mation).<br />

? Needs <strong>the</strong> Digit Line current to reach <strong>the</strong> S state<br />

<strong>NCCAVS</strong> March 17, 2004<br />

25<br />

Kamel Ounadjela (kno@cypress.com)


Improved Shape: Uses C and S states 18<br />

Magnetic states very close in energy. Small perturbations (defects <strong>for</strong> instance) may<br />

<strong>for</strong>ce to stabilize in one states at <strong>the</strong> expense of <strong>the</strong> o<strong>the</strong>r.<br />

C state<br />

S state<br />

Vortex <strong>for</strong>mation<br />

and annihilation.<br />

High cost in<br />

energy. High<br />

switching field.<br />

Coherent<br />

rotation. Low<br />

cost in energy.<br />

Low switching<br />

field.<br />

Relaxed state: No field applied<br />

Transverse Field applied<br />

<strong>NCCAVS</strong> March 17, 2004<br />

26<br />

Kamel Ounadjela (kno@cypress.com)


19<br />

How reversal occurs when starting from C states…<br />

Vortex<br />

<strong>for</strong>mation<br />

Relaxed state<br />

No current<br />

Be<strong>for</strong>e<br />

reversal<br />

After<br />

reversal<br />

Transverse<br />

field<br />

I DL<br />

=10Oe<br />

I BL<br />

= 0 mA<br />

Transverse<br />

field just<br />

be<strong>for</strong>e<br />

reversal<br />

Transverse<br />

field just<br />

after<br />

reversal<br />

<strong>NCCAVS</strong> March 17, 2004<br />

27<br />

Kamel Ounadjela (kno@cypress.com)


Select and Disturb Behavior<br />

Improved Free Layer+Integration<br />

22<br />

80<br />

60<br />

40<br />

20<br />

Count Axis<br />

80<br />

60<br />

40<br />

20<br />

Count Axis<br />

0 4 8 12 18 24 30 36 42 48 54 60 66<br />

0 4 8 12 18 24 30 36 42 48 54 60 66<br />

150<br />

100<br />

50<br />

Count<br />

125<br />

100<br />

75<br />

50<br />

25<br />

Count<br />

0 4 8 12 18 24 30 36 42 48 54 60 66<br />

22Oe Window X-wafer<br />

0 4 8 12 18 24 30 36 42 48 54 60 66<br />

No Window X-wafer<br />

<strong>NCCAVS</strong> March 17, 2004<br />

28<br />

Kamel Ounadjela (kno@cypress.com)


Switching Distribution<br />

25<br />

1.0<br />

0.9<br />

0.8<br />

Cumulative Probability<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Hc1<br />

Hc2<br />

Hc1<br />

Hc2<br />

Hc1<br />

Hc2<br />

Median Std Dev<br />

14.25 5.45<br />

13.06 3.82<br />

14.38 2.00<br />

12.77 1.98<br />

12.84 1.52<br />

10.45 1.50<br />

QF For Switching<br />

2.6<br />

3.41<br />

7.19 Hc1<br />

6.44<br />

8.48<br />

6.96<br />

Hc2<br />

0.0<br />

0 10 20 30 40<br />

Switching Field (Oe)<br />

• What could be <strong>the</strong> Factors of Improvement<br />

• Optimizing Dot Shape<br />

• Reducing Interlayer coupling by Optimizing Integration (Etch + Material<br />

Stack<br />

<strong>NCCAVS</strong> March 17, 2004<br />

29<br />

Kamel Ounadjela (kno@cypress.com)


X- Wf Interlayer Coupling vs Disturbed Bits In Dies<br />

23<br />

Interlayer Coupling (Oe)<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

Interlayer Coupling<br />

0 10000 20000 30000 40000 50000<br />

Median Disturbed Bits<br />

? Larger <strong>the</strong> interlayer coupling, larger is <strong>the</strong> median Disturbed Bits<br />

? Having an Interlayer Coupling close to Zero is not good enough<br />

<strong>NCCAVS</strong> March 17, 2004<br />

30<br />

Kamel Ounadjela (kno@cypress.com)


Simple Picture <strong>for</strong> Interlayer Coupling<br />

27<br />

Resistance (kOhms)<br />

13<br />

12<br />

11<br />

10<br />

No Interlayer Coupling<br />

Resistance (kOhms)<br />

-10 -5 0 5 10<br />

13<br />

12<br />

11<br />

10<br />

Positive Interlayer<br />

Coupling: Neel Coupling<br />

Favor <strong>the</strong> parallel State<br />

Resistance (kOhms)<br />

-10 -5 0 5 10<br />

13<br />

12<br />

11<br />

10<br />

-10 -5 0 5 10<br />

Bit line current (mA)<br />

Negative Interlayer<br />

Coupling: Poles due to<br />

Pinned Layer<br />

Favor Antiparallel State<br />

<strong>NCCAVS</strong> March 17, 2004<br />

31<br />

Kamel Ounadjela (kno@cypress.com)


BIT SWITCHING BALANCING SCHEMES<br />

• BALANCED BIT HYSTERESIS LOOP IS DESIRED FOR<br />

SYMMETRICAL AND STABLE BIT SWITCHING<br />

(a)<br />

TYPICAL<br />

Neel +5 Oe<br />

ZERO OFFSET LOOP<br />

FOR SYMMETRICAL<br />

BIT SWITCHING<br />

ALTERNATIVE<br />

Neel ~0 Oe<br />

(b)<br />

Poles -5 Oe<br />

Poles ~0 Oe<br />

Free<br />

AlOx<br />

Pinned Layer<br />

Free<br />

AlOx<br />

Pinned Layer<br />

• THE TWO BALANCING SCHEMES ARE ALMOST IDENTICAL<br />

AT THE SINGLE BIT SWITCHING LEVEL, BUT…<br />

<strong>NCCAVS</strong> March 17, 2004<br />

32<br />

Kamel Ounadjela (kno@cypress.com)


Origin of interlayer coupling (1)<br />

28<br />

• Orange Peel coupling (Neel type)<br />

• Originates from roughness during deposition of magnetic films.<br />

• Interlayer coupling is negative (Favors Parallel state)<br />

• Uni<strong>for</strong>mity dictated by <strong>the</strong> roughness height and wave length.<br />

Today,we are able to achieve a Neel Coupling close to 1Oe by<br />

making extremely smooth and uni<strong>for</strong>m stacks.<br />

t F<br />

t S<br />

h<br />

2 2<br />

? ? h ?<br />

H ?<br />

Ms exp<br />

2?<br />

2 tS<br />

/ ? ?<br />

2<br />

?<br />

? t<br />

? F ?<br />

? T<br />

<strong>NCCAVS</strong> March 17, 2004<br />

33<br />

Kamel Ounadjela (kno@cypress.com)


BIT SWITCHING BALANCING SCHEMES<br />

• …IN LARGE BIT POPULATIONS, ZERO NEEL COUPLING<br />

ALLOWS FOR NARROWER BIT SWITCHING DISTRIBUTION<br />

0.99<br />

Cumulative Probability<br />

0.9<br />

0.7<br />

0.5<br />

0.3<br />

0.1<br />

0.01<br />

Bit Switching Loop Centering Scheme:<br />

Neel ~0 Oe, Poles ~0 Oe (b)<br />

Neel+Poles ~0 Oe (a)<br />

MTJ Switching Field [a.u.]<br />

CUMULATIVE PROBABILITY PLOTS OF BIT SWITCHING DISTRIBUTIONS SAMPLED FROM<br />

THE ARRAYS OF MTJs PATTERNED USING DIFFERENT LOOP CENTERING SCHEMES<br />

? BETTER CONTROL OF BIT-TO-BIT VARIABILITY<br />

<strong>NCCAVS</strong> March 17, 2004<br />

34<br />

Kamel Ounadjela (kno@cypress.com)


1 2 3 4 5<br />

NEAR-ZERO NEEL COUPLING<br />

• LOW NEEL COUPLING POSSIBLE WITH NANOCRYSTALLINE<br />

AND SMOOTHER MTJ LAYERS<br />

Neel Coupling<br />

Field [Oe]<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

MTJ#1 - BASELINE<br />

MTJ#2<br />

MTJ#3<br />

MTJ#4<br />

MTJ#5<br />

NANOCRYSTALLINE<br />

(OR AMORPHOUS)<br />

AND SMOOTHENED<br />

LAYERS<br />

AlOx<br />

AlOx<br />

AlOx<br />

PtMn PtMn PtMn<br />

CONTRARY TO CIP DEVICES<br />

(SPIN VALVES), MTJs DO NOT FACE<br />

LIMITATIONS IN USING MORE<br />

HOMOGENEOUS, BUT OF HIGHER<br />

RESISTIVITY, NANOCRYSTALLINE<br />

OR AMORPHOUS MATERIALS<br />

? LOW NEEL COUPLING CORRELATES WITH MORE<br />

HOMOGENEOUS MTJs (TEM CROSSECTIONS)<br />

<strong>NCCAVS</strong> March 17, 2004<br />

35<br />

Kamel Ounadjela (kno@cypress.com)


SCALABILITY<br />

38<br />

? <strong>Technology</strong> Elements:<br />

? 100nm <strong>Technology</strong> Node: Cell Size Below 0.2 ?m2<br />

? TJ Size Metal Limited<br />

? Magnetic cladding on top of Metal Line to Boost <strong>the</strong><br />

magnetic field provided by <strong>the</strong> current<br />

? Scaling Challenges<br />

? Reaching <strong>the</strong> Superparamagnetic limit (Making <strong>the</strong> dot<br />

smaller)<br />

<strong>NCCAVS</strong> March 17, 2004<br />

1. Data Retention and Error Rate. Needs new scheme to go<br />

beyond this limit<br />

? Switching<br />

1. Increased switching current: Need Magnetic Liners To Boost<br />

Magnetic Field (4X) with <strong>the</strong> same current<br />

2. Patterning Control<br />

? Junction Resistance<br />

1. Need extra control on RA product and higher MR ratio: Need<br />

<strong>New</strong> Magnetic Stack and Better Etch control<br />

36<br />

Kamel Ounadjela (kno@cypress.com)


38<br />

SUMMARY<br />

? Most of <strong>the</strong> issues to make a manufacturable <strong>MRAM</strong> Part have<br />

been resolved: Working parts have been demonstrated. Still<br />

Some problems subsist such as Yield Increase (Compared to<br />

SC <strong>Technology</strong>)<br />

? 3 Vectors of Optimization<br />

? Dot Shape optimization:<br />

? Stack and Integration optimization:<br />

? Materials and thickness<br />

? Interlayer Coupling: Critical issues are Control of Poles Thru<br />

? Pinned layer: Avoid any poles to affect switching of <strong>the</strong><br />

free layer<br />

? Smoothness, Smoothness and Smoothness again<br />

? Limit Thermal Degradation<br />

? Programming Conditions<br />

? Pulse width<br />

? Time delay between DL and BL pulses found critical to have a<br />

sharp transition between write and no write<br />

<strong>NCCAVS</strong> March 17, 2004<br />

37<br />

Kamel Ounadjela (kno@cypress.com)


39<br />

Acknowledgements:<br />

Witek Kula<br />

Fred Jenne<br />

Bettye Wadkins<br />

Hualiang Yu<br />

Bill Koutny<br />

Helen Chung<br />

Sam Geha<br />

Eugene Chen<br />

Biju Parameshwaran<br />

Mehran Sedigh<br />

Ben Schwarz<br />

Chang Ju Choi<br />

June Sananikone<br />

Jeff Kaszubinski<br />

<strong>NCCAVS</strong> March 17, 2004<br />

38<br />

Kamel Ounadjela (kno@cypress.com)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!