13.11.2014 Views

Nokia 12 GSM Module Hardware Integration ... - KORE Telematics

Nokia 12 GSM Module Hardware Integration ... - KORE Telematics

Nokia 12 GSM Module Hardware Integration ... - KORE Telematics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

NOKIA <strong>12</strong> <strong>GSM</strong> MODULE<br />

HARDWARE INTEGRATION MANUAL<br />

Copyright © 2003-2004 <strong>Nokia</strong>. All rights reserved. Issue 1.3 923<strong>12</strong>30


Contents<br />

ACRONYMS AND TERMS ......................................................................................................1<br />

1. ABOUT THIS DOCUMENT ................................................................................................3<br />

2. INTRODUCTION ................................................................................................................4<br />

3. MECHANICAL INTEGRATION...........................................................................................5<br />

3.1 DIMENSIONS ...............................................................................................................5<br />

4. ELECTRICAL INTEGRATION ............................................................................................7<br />

4.1 M2M SYSTEM CONNECTOR......................................................................................7<br />

4.1.1 Electrical characteristics ........................................................................................8<br />

4.1.2 Connector pin-out ..................................................................................................9<br />

4.2 GROUNDING .............................................................................................................16<br />

4.3 POWER SUPPLY .......................................................................................................16<br />

4.4 SERIAL COMMUNICATION.......................................................................................17<br />

4.4.1 PORT1.................................................................................................................17<br />

4.4.2 PORT2.................................................................................................................18<br />

4.4.3 PORT3.................................................................................................................18<br />

4.5 SIM INTERFACE ........................................................................................................18<br />

4.6 AUDIO INTERFACE ...................................................................................................19<br />

4.6.1 Analog audio........................................................................................................19<br />

4.6.1.1 Analog audio example ..................................................................................21<br />

4.6.1.2 Acoustic echo ...............................................................................................23<br />

4.6.2 Digital audio .........................................................................................................23<br />

4.6.2.1 Sign-extended linear code ............................................................................24<br />

5. RF AND ANTENNA INTEGRATION.................................................................................26<br />

5.1 ANTENNA INSTALLATION ........................................................................................26<br />

6. TEST BOARD FOR THE NOKIA <strong>12</strong> <strong>GSM</strong> MODULE .......................................................28<br />

6.1 POWERING................................................................................................................28<br />

6.2 SIM CARD READER ..................................................................................................28<br />

6.3 RS-232 CONVERTERS..............................................................................................28<br />

6.4 AUDIO ........................................................................................................................29<br />

7. CERTIFICATIONS............................................................................................................32


7.1.1 RX-2.....................................................................................................................32<br />

7.1.2 RX-9.....................................................................................................................32<br />

7.2 TECHNICAL REQUIREMENTS .................................................................................33<br />

7.2.1 SIM testing...........................................................................................................33<br />

7.2.2 Power supply .......................................................................................................33<br />

7.2.3 EMC/ESD and safety tests ..................................................................................33<br />

7.2.4 RF testing ............................................................................................................33<br />

7.2.5 RF exposure ........................................................................................................34<br />

7.2.6 Additional type approval notes.............................................................................34<br />

REFERENCES.......................................................................................................................35<br />

APPENDIX: NOKIA <strong>12</strong> TEST BOARD PART LIST, ASSEMBLY DRAWING AND<br />

SCHEMATICS ..................................................................................................................36


Legal Notice<br />

Copyright © 2003-2004 <strong>Nokia</strong>. All rights reserved.<br />

Reproduction, transfer, distribution or storage of part or all of the contents in this document in any form without the<br />

prior written permission of <strong>Nokia</strong> is prohibited.<br />

<strong>Nokia</strong> and <strong>Nokia</strong> Connecting People are registered trademarks of <strong>Nokia</strong> Corporation. Java and all Java-based<br />

marks are trademarks or registered trademarks of Sun Microsystems, Inc. Other product and company names<br />

mentioned herein may be trademarks or trade names of their respective owners.<br />

<strong>Nokia</strong> operates a policy of continuous development. <strong>Nokia</strong> reserves the right to make changes and improvements<br />

to any of the products described in this document without prior notice.<br />

Under no circumstances shall <strong>Nokia</strong> be responsible for any loss of data or income or any special, incidental,<br />

consequential or indirect damages howsoever caused.<br />

The contents of this document are provided "as is". Except as required by applicable law, no warranties of any<br />

kind, either express or implied, including, but not limited to, the implied warranties of merchantability and fitness<br />

for a particular purpose, are made in relation to the accuracy, reliability or contents of this document. <strong>Nokia</strong><br />

reserves the right to revise this document or withdraw it at any time without prior notice.<br />

RX-9:<br />

FCC/INDUSTRY CANADA NOTICE<br />

Your device may cause TV or radio interference (for example, when using a telephone in close proximity to<br />

receiving equipment). The FCC or Industry Canada can require you to stop using your telephone if such<br />

interference cannot be eliminated. If you require assistance, contact your local service facility. This device<br />

complies with part 15 of the FCC rules. Operation is subject to the condition that this device does not cause<br />

harmful interference.


ACRONYMS AND TERMS<br />

Acronym/term<br />

A<br />

AC<br />

A/D<br />

API<br />

AT<br />

Description<br />

Ampere<br />

°C Celcius<br />

CE<br />

CORBA<br />

CMOS<br />

CSD<br />

CTS<br />

dB<br />

dBi<br />

DC<br />

DCD<br />

DCE<br />

DSR<br />

DTE<br />

DTR<br />

EARN<br />

EARP<br />

EDGE<br />

E<strong>GSM</strong><br />

EMC<br />

ESD<br />

F<br />

Alternating Current<br />

Analog-to-Digital<br />

Application Programming Interface<br />

ATtention (command language)<br />

Mark for a product that fulfils the EU safety and<br />

R&TTE requirements<br />

Common Object Request Broker Architecture<br />

Complementary Metal-Oxide Semiconductor<br />

Circuit Switched Data<br />

Clear To Send<br />

Decibel<br />

Antenna Gain<br />

Direct Current<br />

Data Carrier Detect<br />

Data Circuit Terminating Equipment<br />

Data Set Ready<br />

Data Terminal Equipment<br />

Data Terminal Ready<br />

Earphone Amplifier Inverting Input Pin<br />

Earphone Amplifier Non-Inverting Input Pin<br />

Enhanced Data Rates for Global Evolution<br />

Extended <strong>GSM</strong><br />

Electromagnetic Compatibility<br />

Electrostatic Discharge<br />

Farad<br />

°F Fahrenheit<br />

FCC<br />

GGSN<br />

GPRS<br />

Federal Communications Commission<br />

Gateway GPRS Support Node<br />

General Packet Radio Service<br />

1/44


Acronym/term<br />

GPS<br />

<strong>GSM</strong><br />

HBM<br />

Hi-Z<br />

HSCSD<br />

HW<br />

Hz<br />

IC<br />

IP<br />

M2M<br />

MICN<br />

MICP<br />

MMCX<br />

PCB<br />

PCM<br />

RF<br />

RI<br />

RS-232<br />

RTS<br />

RX-2<br />

RX-9<br />

SIM<br />

SMS<br />

SW<br />

TCP<br />

UART<br />

UDP<br />

V<br />

W<br />

Description<br />

Global Positioning System<br />

Global System for Mobile Communication<br />

Human Body Model<br />

High Impedance<br />

High Speed Circuit Switched Data<br />

<strong>Hardware</strong><br />

Hertz<br />

Integrated Circuit<br />

Internet Protocol<br />

Machine-to-machine<br />

Microphone amplifier inverting input pin<br />

Microphone amplifier non-inverting input pin<br />

Miniature Microax<br />

Printed Circuit Board<br />

Pulse Code Modulation<br />

Radio Frequency<br />

Ring Indicator<br />

Interface, standardised by the Electronic Industries<br />

Alliance (EIA), for communication between<br />

computers, terminals, and modems<br />

Request to Send<br />

Type designation for the <strong>Nokia</strong> <strong>12</strong> <strong>GSM</strong> module<br />

(E<strong>GSM</strong> 900/<strong>GSM</strong> 1800 MHz bands)<br />

Type designation for the <strong>Nokia</strong> <strong>12</strong> <strong>GSM</strong> module<br />

(<strong>GSM</strong> 850/<strong>GSM</strong> 1900 MHZ bands)<br />

Subscriber Identity <strong>Module</strong><br />

Short Message Service<br />

Software<br />

Transmission Control Protocol<br />

Universal Asynchronous Receiver/Transmitter<br />

User Datagram Protocol<br />

Volt<br />

Watt<br />

2/44


1. ABOUT THIS DOCUMENT<br />

This document provides instructions for the <strong>Nokia</strong> <strong>12</strong> <strong>GSM</strong> module (hereafter<br />

<strong>Nokia</strong> <strong>12</strong> module) hardware integration. The document is intended to help the<br />

system integrator to integrate the <strong>Nokia</strong> <strong>12</strong> module into a remote end hardware<br />

application and to gain the necessary type approvals.<br />

The document describes the mechanical, electrical and radio frequency (RF)<br />

integration as well as antenna installation. In addition the document describes<br />

the technical characteristics of the <strong>Nokia</strong> <strong>12</strong> test board, and lists the<br />

certifications and technical requirements needed for type approval.<br />

Note: For more information on the <strong>Nokia</strong> <strong>12</strong> module usage and software<br />

integration, see the <strong>Nokia</strong> <strong>12</strong> <strong>GSM</strong> <strong>Module</strong> Product Specification, <strong>Nokia</strong> M2M<br />

Platform Software Developer’s Guide and <strong>Nokia</strong> M2M Platform <strong>Nokia</strong> <strong>12</strong> <strong>GSM</strong><br />

<strong>Module</strong> IMlet Programming Guide.<br />

3/44


2. INTRODUCTION<br />

The <strong>Nokia</strong> <strong>12</strong> module has been designed for M2M (machine-to-machine)<br />

applications and other wireless solutions. There are two versions of the <strong>Nokia</strong><br />

<strong>12</strong> module:<br />

• RX-2 dual-band <strong>GSM</strong> device supporting EDGE, GPRS, HSCSD, CSD, and<br />

SMS in E<strong>GSM</strong> 900/<strong>GSM</strong> 1800 MHz bands<br />

• RX-9 dual band <strong>GSM</strong> device supporting EDGE, GPRS, CSD, SMS in <strong>GSM</strong><br />

850/<strong>GSM</strong> 1900 MHZ bands.<br />

The <strong>Nokia</strong> <strong>12</strong> module can be used in several applications due to its three<br />

different operating modes. Simple I/O applications can be easily implemented<br />

by using the <strong>Nokia</strong> <strong>12</strong> module in the User control mode that offers message<br />

personalising, secure messaging, and timing functionality for SMS controlled<br />

I/O applications. In the AT command mode, the <strong>Nokia</strong> <strong>12</strong> module can be used<br />

as a <strong>GSM</strong> modem. In modem use, all supported bearers are available. The<br />

<strong>Nokia</strong> <strong>12</strong> module is <strong>Nokia</strong> M2M Platform compatible. In the M2M system mode,<br />

the <strong>Nokia</strong> <strong>12</strong> module communicates with the server application through the<br />

<strong>Nokia</strong> M2M Gateway, and all the compatible features of the <strong>Nokia</strong> <strong>12</strong> module<br />

are available for developing a wide range of M2M applications.<br />

In addition to the different operating modes, the <strong>Nokia</strong> <strong>12</strong> module has an<br />

integrated TCP/IP stack which enables direct GPRS or <strong>GSM</strong> data connection<br />

between a remote end application and a server application. Due to the<br />

integrated TCP/IP stack, the HTTP and Socket APIs of the <strong>Nokia</strong> <strong>12</strong> are<br />

available for application development.<br />

In addition to the bearers and operating modes listed above, the <strong>Nokia</strong> <strong>12</strong><br />

supports several Java APIs, location service for external GPS module<br />

integration, reliability features like AutoPIN, <strong>GSM</strong> encryption and security<br />

codes, reset mechanism and <strong>Nokia</strong> M2M Platform authentication. Java<br />

technology support enables upgrading the application software over-the-air,<br />

and smart messaging makes the installation flexible. <strong>GSM</strong> phase 2+<br />

supplementary services enable voice application development.<br />

Note: All data bearers as well as TCP/IP are dependent on network support.<br />

4/44


3. MECHANICAL INTEGRATION<br />

The <strong>Nokia</strong> <strong>12</strong> module contains two holes for mounting screws. The screws can<br />

be used in mounting, but are not compulsory. The <strong>Nokia</strong> <strong>12</strong> module has been<br />

tested according to the automotive standard DIN 72300-3 (although not in<br />

various temperatures), and it can be integrated into various applications without<br />

the screws.<br />

3.1 DIMENSIONS<br />

The general dimensions and overall area of the <strong>Nokia</strong> <strong>12</strong> module are listed in<br />

Table 1 and Table 2.<br />

Table 1. General dimensions of the <strong>Nokia</strong> <strong>12</strong> <strong>GSM</strong> module (in millimetres<br />

and inches)<br />

Height 36 mm 1.41 inch<br />

Width 45 mm 1.77 inch<br />

Thickness 9 mm 0.35 inch<br />

Table 2. Overall area of the <strong>Nokia</strong> <strong>12</strong> <strong>GSM</strong> module (in square centimetres<br />

and square inches)<br />

Area 16.2 cm 2 2.48 inch 2<br />

The detailed physical dimensions (in millimeters) of the <strong>Nokia</strong> <strong>12</strong> module are<br />

shown in Figure 1.<br />

5/44


Figure 1. Detailed physical dimensions of the <strong>Nokia</strong> <strong>12</strong> <strong>GSM</strong> module (in<br />

millimetres)<br />

6/44


4. ELECTRICAL INTEGRATION<br />

4.1 M2M SYSTEM CONNECTOR<br />

All signals are routed through the M2M System Connector, except the antenna,<br />

which is routed through the miniature microax (MMCX) RF connector.<br />

The M2M System Connector is a 60-pin (2 rows, 30 pins per row), 1.27<br />

mm/0.05 inch pitch pin header connector. It has a frame that helps in the<br />

physical integration and also holds the <strong>Nokia</strong> <strong>12</strong> module firmly in position.<br />

The possible mating connector is described in Table 3.<br />

Table 3. Possible mating connectors for the <strong>Nokia</strong> <strong>12</strong> module<br />

Supplier Part number Description<br />

SAMTEC SFMC-130-02-S-D Female connector. Board-to-board<br />

SAMTEC SFM-130-02-S-D Female connector. Board-to-board.<br />

With alignment mark.<br />

Table 4 defines the recommended operating conditions for the actual device<br />

and/or interface operation, and Table 5 defines the absolute maximum ratings.<br />

Table 4. Recommended operating conditions<br />

Parameter Value Note<br />

Supply Voltage (V BB ) 3.6…4.0 V (3.8 V typical) Voltage must never<br />

drop below the low<br />

limit.<br />

Logic voltage (I/O<br />

voltage)<br />

DC output source or sink<br />

current (any I/O pin, user<br />

adjustable)<br />

Operating temperature<br />

range<br />

1.8…5.0 V<br />

0…5 V Upper limit<br />

depending on I/O<br />

voltage.<br />

-10…+55 °C<br />

+14…+131 °F<br />

Table 5. Absolute maximum ratings<br />

Parameter<br />

Supply voltage<br />

DC input voltage (any signal pin)<br />

Value<br />

+4.2 V<br />

-0.5…5.5 V<br />

7/44


Parameter<br />

Value<br />

Operating temperature range -25…+55 °C<br />

-13…+131 °F<br />

Storage temperature range -40…+85 °C<br />

-40…+185 °F<br />

4.1.1 Electrical characteristics<br />

All digital outputs (1-9) are open drain outputs, and all pins have a 10 kohm<br />

pull-up resistor to I/O voltage.<br />

Table 6. Digital output characteristics<br />

Parameter<br />

Application load resistance<br />

Application load capacitance<br />

High level output voltage minimum (Io=-20µA)<br />

Low level output voltage maximum (Io=1mA)<br />

Value<br />

>100 kohm<br />


Table 8. Digital input characteristics<br />

Parameter<br />

Application driving impedance<br />

Low level input voltage (IO VOLTAGE/pin 52<br />

1.8 - 5V)<br />

High level input voltage ((IO VOLTAGE/pin 52<br />

1.8 - 5V)<br />

Value<br />


Figure 2. Pin numbering of the <strong>Nokia</strong> <strong>12</strong> M2M System Connector<br />

The pin-out of the M2M System Connector in shown in Table 11.<br />

Table 11. M2M System Connector pin-out<br />

Pin Name Pin Name<br />

1 VBB 2 GND<br />

3 VBB 4 GND<br />

5 VBB 6 GND<br />

7 VBB 8 GND<br />

9 VBB 10 GND<br />

11 NC <strong>12</strong> NC<br />

13 NC 14 NC<br />

15 MICP 16 EARP<br />

17 MICN 18 EARN<br />

19 AD3 20 AD2<br />

21 PCMDCLK 22 PCMSCLK<br />

23 PCMTX 24 PCMRX<br />

25 RESET T 26 RESET A<br />

27 PORT1RX 28 NC<br />

29 PORT1TX 30 OUTPUT2<br />

31 OUTPUT3 32 OUTPUT4<br />

10/44


Pin Name Pin Name<br />

33 OUTPUT5 34 INPUT6<br />

35 INPUT5 36 AD1<br />

37 BSI 38 PORT2RX<br />

39 PORT2TX 40 PORT2RTS<br />

41 PORT2CTS 42 OUTPUT8<br />

43 INPUT8 44 OUTPUT9<br />

45 SLEEPX 46 INPUT11<br />

47 VSIM 48 SIMRST<br />

49 SIMCLK 50 SIMDATA<br />

51 SIMDET 52 IO VOLTAGE<br />

53 OUTPUT1/P3RX 54 INPUT4/P3TX<br />

55 INPUT10 56 INPUT7<br />

57 OUTPUT6 58 OUTPUT7<br />

59 INPUT9 60 NC<br />

The pin functions are described in Table <strong>12</strong>.<br />

Table <strong>12</strong>. M2M System Connector pin descriptions<br />

Pin Name Description<br />

1 VBB Device power. Voltage nominal 3.8 V, 3.6 V – 4.0 V,<br />

maximum current 2A peak. Regulated power input for<br />

the <strong>Nokia</strong> <strong>12</strong> module.<br />

All V BB pins must be connected together at the<br />

application end. The device end is not fuse-protected,<br />

so the application should provide sufficient overload<br />

protection.<br />

Current consumption can be as high as 2 A when<br />

transmitting at full power. When the <strong>Nokia</strong> <strong>12</strong> module<br />

is transmitting data, there is a current peak (max. 2A )<br />

at 4.6 ms intervals that lasts 0.577ms (1 TX slot) or<br />

1.154 ms (2 TX slots). Average power consumption is<br />

about 500 mA. The power supply should be designed<br />

according to this.<br />

If the operating voltage falls below 3.4 V, the <strong>Nokia</strong><br />

<strong>12</strong> module automatically shuts down. For more<br />

information on the power supply, see Chapter 4.3.<br />

2 GND Return ground for device power. These pins are used<br />

for device power (V BB ) return ground. Connect to<br />

common ground. All GND pins must be connected at<br />

11/44


Pin Name Description<br />

3 VBB See PIN 1<br />

4 GND See PIN 2<br />

5 VBB See PIN 1<br />

6 GND See PIN 2<br />

7 VBB See PIN 1<br />

8 GND See PIN 2<br />

9 VBB See PIN 1<br />

10 GND See PIN 2<br />

11 NC Not used<br />

<strong>12</strong> NC Not used<br />

13 NC Not used<br />

14 NC Not used<br />

the application end. For more information on<br />

grounding, see Chapter 4.2.<br />

15 MICP MICP is used with analog audio as differential<br />

positive input. The line is AC coupled at the device<br />

end. Frequency response is 300 - 3400 Hz. For more<br />

information on the analog audio, see chapter 4.6.1.<br />

16 EARP EARP is used with analog audio as differential<br />

positive output. Frequency response is 300 - 3400<br />

Hz. For more information on the analog audio, see<br />

Chapter 4.6.1.<br />

17 MICN MICN is used with analog audio as differential<br />

negative input. The line is AC coupled at the device<br />

end. Frequency response is 300 - 3400 Hz. For more<br />

information on the analog audio, see chapter 4.6.1.<br />

18 EARN EARN is used with analog audio as differential<br />

negative output. Frequency response is 300 - 3400<br />

Hz. For more information on the analog audio, see<br />

chapter 4.6.1.<br />

19 AD3 Input for 10 bit analog-to-digital (A/D) converter. The<br />

application end must scale voltage level between 0 -<br />

2.8 V.<br />

20 AD2 See PIN 19<br />

21 PCMDCLK PCMDCLK is a 5<strong>12</strong> kHz digital audio clock from the<br />

application module. Logic level is set by the IO<br />

VOLTAGE pin (pin 52). For more information on the<br />

digital audio, see Chapter 4.6.2.<br />

22 PCMSCLK PCMSCLK is one PCMDCLK cycle that repeats itself<br />

every 64 PCMDCLK cycles. Frame sync frequency is<br />

thus is 8 kHz. The logic level is set by the IO<br />

<strong>12</strong>/44


Pin Name Description<br />

VOLTAGE pin (pin 52). For more information on the<br />

digital audio, see Chapter 4.6.2.<br />

23 PCMTX Digital audio, transmits data from the device to the<br />

application. Logic level is set by the IO VOLTAGE pin<br />

(pin 52). For more information on the digital audio,<br />

see Chapter 4.6.2.<br />

24 PCMRX Digital audio, receives data from the application to the<br />

device. Logic level is set by the IO VOLTAGE pin (pin<br />

52). For more information on the digital audio, see<br />

Chapter 4.6.2.<br />

25 RESET T Reset input for the <strong>Nokia</strong> <strong>12</strong> module, active low. The<br />

<strong>Nokia</strong> <strong>12</strong> module is reset when this line is low. Logic<br />

level is set by the IO VOLTAGE pin (pin 52).<br />

Minimum duration is approximately 500 ms.<br />

26 RESET A Reset output for the application, active low. Reset<br />

goes high after approximately 170 ms of power-up.<br />

Logic level is set by the IO VOLTAGE pin (pin 52).<br />

27 PORT1RX PORT1 receive. PORT1RX is an asynchronous serial<br />

channel receive pin. Functionality otherwise as in pin<br />

29, PORT1TX. Logic level is set by the IO VOLTAGE<br />

pin (pin 52).<br />

28 NC Not used<br />

29 PORT1TX PORT1 transmit. PORT1TX is an asynchronous<br />

serial channel transmit pin that can be used with pin<br />

27 (PORT1RX) to form a full duplex serial link. Pins<br />

30-35 can be used to provide handshaking functions.<br />

Logic level is set by the IO VOLTAGE pin (pin52)<br />

30 OUTPUT2 Digital output from device. Logic level is set by the IO<br />

VOLTAGE pin (pin 52). If the AT command mode is<br />

active, this pin is used as a Data Carrier Detect<br />

(DCD) output for Port 1.<br />

31 OUTPUT3 Digital output from module. Logic level is set by the<br />

IO VOLTAGE pin (pin 52). If the AT command mode<br />

is active, this pin is used as Data Set Ready (DSR)<br />

output for Port 1.<br />

32 OUTPUT4 Digital output from module. Logic level is set by the<br />

I/O voltage pin (pin 52). If the AT command mode is<br />

active, this pin is used as Clear To Send (CTS) output<br />

for Port 1.<br />

33 OUTPUT5 Digital output from module. Logic level is set by the<br />

IO VOLTAGE pin (pin 52). If the AT command mode<br />

is active, this pin is used as Ring Indicator (RI) output<br />

for Port 1.<br />

34 INPUT6 Digital input to module. Logic level is set by the IO<br />

VOLTAGE pin (pin 52). If the AT command mode is<br />

active, this pin is used as Request To Send (RTS)<br />

13/44


Pin Name Description<br />

input for Port 1.<br />

35 INPUT5 Digital input to module. Logic level is set by the IO<br />

VOLTAGE pin (pin 52). If the AT command mode is<br />

active, this pin is used as Data Terminal Ready (DTR)<br />

input for Port 1<br />

36 AD1 Input for 10 bit A/D converter. The application end<br />

must scale voltage level between 0 to 2.8 V.<br />

37 BSI Input for 10 bit A/D converter. The application end<br />

must scale voltage level between 0 to 2.8 V.<br />

38 PORT2RX PORT2 receive. PORT2RX is an asynchronous serial<br />

channel receive pin and it is used with pin 39. Logic<br />

level is set by the IO VOLTAGE pin (pin 52).<br />

39 PORT2TX PORT2 Transmit. PORT2RX is an asynchronous<br />

serial channel transmit pin that is used with pin 38.<br />

Logic level is set by the IO VOLTAGE pin (pin 52).<br />

40 PORT2RTS RTS for PORT2. PORT2RTS provides handshaking<br />

signal for asynchronous communication between the<br />

<strong>Nokia</strong> <strong>12</strong> module and the application when using<br />

PORT2. Works together with pin 41. Logic level is set<br />

by the IO VOLTAGE pin (pin 52).<br />

41 PORT2CTS CTS for PORT2. PORT2CTS provides handshaking<br />

signal for asynchronous communication between the<br />

<strong>Nokia</strong> <strong>12</strong> module and the application when using<br />

PORT2. Works together with pin 40. Logic level is set<br />

by the IO VOLTAGE pin (pin 52).<br />

42 OUTPUT8 Digital output from the <strong>Nokia</strong> <strong>12</strong> module. Logic level is<br />

set by the IO VOLTAGE pin (pin 52).<br />

43 INPUT8 Digital input to the <strong>Nokia</strong> <strong>12</strong> module. Logic level is set<br />

by the IO VOLTAGE pin (pin 52).<br />

44 OUTPUT9 Digital output from the <strong>Nokia</strong> <strong>12</strong> module. Logic level is<br />

set by the IO VOLTAGE pin (pin 52).<br />

45 SLEEPX Sleep indicator of the <strong>Nokia</strong> <strong>12</strong> module. When the<br />

<strong>Nokia</strong> <strong>12</strong> module is in the sleep mode, the level of<br />

this output pin is low, otherwise high. The sleep mode<br />

is automatic. Logic level is set by the IO VOLTAGE<br />

pin (pin 52).<br />

46 INPUT11 Digital input to the <strong>Nokia</strong> <strong>12</strong> module. Logic level is set<br />

by the IO VOLTAGE pin (pin 52).<br />

47 VSIM Operating voltage for the SIM card, generated by the<br />

<strong>Nokia</strong> <strong>12</strong> module. For more information on the SIM<br />

interface, see Chapter 4.5.<br />

48 SIMRST Reset signal for the SIM card, generated by the <strong>Nokia</strong><br />

<strong>12</strong> module. For more information on the SIM<br />

interface, see Chapter 4.5.<br />

14/44


Pin Name Description<br />

49 SIMCLK Clock signal for the SIM card, generated by the <strong>Nokia</strong><br />

<strong>12</strong> module. For more information on the SIM<br />

interface, see Chapter 4.5.<br />

50 SIMDATA Data line between the SIM card and the <strong>Nokia</strong> <strong>12</strong><br />

module. For more information on the SIM interface,<br />

see Chapter 4.5.<br />

51 SIMDET SIM card detection signal. For more information on<br />

the SIM interface, see Chapter 4.5.<br />

52 IO VOLTAGE This pin sets logic level for the application. Voltage<br />

must be 1.8 V - 5.0 V. For more information on the<br />

power supply, see Chapter 4.3.<br />

53 OUTPUT1 /<br />

PORT3RX<br />

Digital output from the <strong>Nokia</strong> <strong>12</strong> module. Logic level is<br />

set by the IO VOLTAGE pin (pin 52). If PORT3 is<br />

configured for serial communication, this is a receive<br />

(input) signal.<br />

54 INPUT4 /<br />

PORT3TX<br />

Note! Direction changes if pin 53 is configured for<br />

serial communication.<br />

Digital input to the <strong>Nokia</strong> <strong>12</strong> module. Logic level is set<br />

by the IO VOLTAGE pin (pin 52). If PORT3 is<br />

configured for serial communication, this is a<br />

transmitter (output) signal.<br />

Note! Direction changes if pin 54 is configured for<br />

serial communication.<br />

55 INPUT10 Digital input to the <strong>Nokia</strong> <strong>12</strong> module. Logic level is set<br />

by the IO VOLTAGE pin (pin 52).<br />

56 INPUT7 Digital input to the <strong>Nokia</strong> <strong>12</strong> module. Logic level is set<br />

by the IO VOLTAGE pin (pin 52).<br />

57 OUTPUT6 Digital output from the <strong>Nokia</strong> <strong>12</strong> module. Logic level is<br />

set by the IO VOLTAGE pin (pin 52).<br />

58 OUTPUT7 Digital output from the <strong>Nokia</strong> <strong>12</strong> module. Logic level is<br />

set by the IO VOLTAGE pin (pin 52).<br />

59 INPUT9 Digital input to the <strong>Nokia</strong> <strong>12</strong> module. Logic level is set<br />

by the IO VOLTAGE pin (pin 52).<br />

60 NC Not used<br />

15/44


4.2 GROUNDING<br />

There is only one common ground for the power supply and I/Os in the <strong>Nokia</strong><br />

<strong>12</strong> module. That is, there are no separate analog/digital ground pins in the M2M<br />

System Connector.<br />

All ground pins must be connected together at the application end. Grounding<br />

through screws is not allowed. The mounting screws must be isolated from the<br />

application ground.<br />

4.3 POWER SUPPLY<br />

The <strong>Nokia</strong> <strong>12</strong> module is powered by the hardware application to which it is<br />

integrated. The operating voltage must not fall below the specification limit<br />

under any circumstances. The recommended operation conditions are shown in<br />

Table 4. For example, at full power, the TX can be up to 2 A, when current is<br />

drawn from the power supply. There are no capacitors on the power supply line<br />

of the <strong>Nokia</strong> <strong>12</strong> module, so the application must provide sufficient filtering.<br />

The power supply must be capable of supplying at least 3 W average power,<br />

but it is recommended that the power supply also provides the peak current.<br />

Otherwise a large capacitor bank is needed to compensate the voltage drop<br />

during transmit bursts.<br />

The <strong>Nokia</strong> <strong>12</strong> module does not have protection for over-voltage of current, so<br />

the hardware application must be equipped with one if there is a possibility for<br />

over-voltage. The hardware application should at least include a fuse.<br />

The ripple on the operating voltage must not exceed 100 mV and the voltage<br />

must never drop below 3.6 V during operation.<br />

The application must also produce I/O voltage. The logic levels of digital inputs<br />

and outputs correspond to this I/O voltage. I/O voltage can be supplied from a<br />

linear regulator.<br />

16/44


Figure 3. Example powering with simple DC/DC converter and linear<br />

regulator<br />

4.4 SERIAL COMMUNICATION<br />

The <strong>Nokia</strong> <strong>12</strong> module is accessible through three different asynchronous serial<br />

interfaces with different protocols. The pins provide one asynchronous channel<br />

with a simple handshaking capability. The usage of the 3 ports can be<br />

configured with the <strong>Nokia</strong> <strong>12</strong> Configurator software. The <strong>Nokia</strong> <strong>12</strong> Configurator<br />

is downloadable at www.forum.nokia.com/m2m free of charge.<br />

The <strong>Nokia</strong> <strong>12</strong> module supports the industry standard DB9 RS-232C connection,<br />

but an external level converter is required. For more information on the<br />

available handshake signals for different ports, see Chapters 4.4.1, 4.4.2 and<br />

4.4.3.<br />

The <strong>Nokia</strong> <strong>12</strong> module is a DCE (Data Communication Equipment) and the<br />

hardware application to which it is integrated is a DTE (Data Terminal<br />

Equipment). One possible method of implementing the level conversions is to<br />

use a MAX3237 transceiver or an equivalent integrated circuit (IC) level<br />

converter.<br />

Note: When port settings are changed, the new settings will not become valid<br />

until the <strong>Nokia</strong> <strong>12</strong> module is restarted.<br />

4.4.1 PORT1<br />

PORT1 provides the first asynchronous channel. This port can be used with full<br />

8 signal RS-232 handshaking signals. The baud rate for PORT1 can be<br />

between <strong>12</strong>00 and 230400 bit/s.<br />

17/44


Note: Baud rate 230400 bit/s can be used only with AT command mode and<br />

autobauding.<br />

There are several settings for PORT1. The default setting for PORT1 is ‘HW<br />

Detection’. This means that when a 68 kohm resistor is set between the BSI<br />

(pin 37) and the ground, the <strong>Nokia</strong> <strong>12</strong> module enters the AT command mode<br />

when it is started. It is also possible to set the AT command mode on by using<br />

the <strong>Nokia</strong> <strong>12</strong> Configurator (the connection type is set to ‘AT’).<br />

The <strong>Nokia</strong> <strong>12</strong> module provides all signals for the industry standard DB9 RS-<br />

232C connection, but an external level converter is required.<br />

4.4.2 PORT2<br />

PORT2 provides the second asynchronous channel with a simple handshaking<br />

capability (only RTS and CTS). The baud rate for PORT2 can be set to 9600,<br />

19200, 38400, 57600 or 115200 bit/s. PORT2 is the default port for using the<br />

M2M System Protocol. However, if PORT1 is configured to use the M2M<br />

System Protocol, PORT2 cannot be used.<br />

4.4.3 PORT3<br />

PORT3 provides the third asynchronous channel with no hardware<br />

handshakes. The baud rate for PORT3 can be set between <strong>12</strong>00 and 115200<br />

bit/s.<br />

4.5 SIM INTERFACE<br />

All leads from the M2M System Connector to the SIM card reader must be<br />

shorter than 15 cm/5.9 inches, because the voltage drop and increasing<br />

capacitance will affect timing. Furthermore, it is recommended that a 100 nF<br />

bypass capacitor is placed as close as possible to the SIM reader on the VSIM<br />

(pin47) line.<br />

The leads between the M2M System Connector and the SIM card reader must<br />

be protected against interferences, and that is why the striplines must always<br />

be placed within the interlayers of the printed circuit board (PCB).<br />

Note: The striplines must never be placed to the overlayer of the PCB.<br />

A possible SIM card reader supplier is listed in Table 13.<br />

Table 13. Possible SIM card reader supplier<br />

18/44


Supplier Part Number Description<br />

Amphenol M-C707_10M006_522_2 SIM reader with a lid open<br />

indication switch.<br />

DATA NC GND<br />

7 5 5<br />

3 2 1<br />

CLK RST VSIM<br />

Figure 4. SIM card connections (using Amphenol)<br />

The <strong>Nokia</strong> <strong>12</strong> module supports 1.8 V and 3 V SIM cards, and it automatically<br />

sets the correct voltage according to the SIM card that is used.<br />

Note: The SIM card reader must have a switch that indicates when the SIM card<br />

is being removed, so that the <strong>Nokia</strong> <strong>12</strong> module can shut it down correctly. The<br />

switch must open when the card is removed or the lid is open. The <strong>Nokia</strong> <strong>12</strong><br />

module has a pull-up in the SIM detection line, so the hardware application must<br />

connect the other end of the switch to the ground.<br />

4.6 AUDIO INTERFACE<br />

4.6.1 Analog audio<br />

The M2M System Connector provides possibilities to build different kind of<br />

audio applications around the <strong>Nokia</strong> <strong>12</strong> module.<br />

19/44


The analog TX path (from the external application to the <strong>Nokia</strong> <strong>12</strong> module) has<br />

a DC isolation inside the <strong>Nokia</strong> <strong>12</strong> module with 100 nF capacitors, and these<br />

capacitors together with the microphone preamplifier input impedance form a 1 st<br />

order high pass filter with 32 Hz roll-off (-3 dB).<br />

Table 14. Microphone audio characteristics<br />

Name Symbol Min Type Max Units<br />

Differential input<br />

voltage range for<br />

microphone input<br />

(MICP & MICN)<br />

Microphone amplifier<br />

input resistor<br />

Common mode voltage<br />

level<br />

0.316 2.0 V PP<br />

RMIC 30 50 kohm<br />

VCM 1.3 1.35 1.4 V<br />

The earphone lines from the <strong>Nokia</strong> <strong>12</strong> module are driven differentially to<br />

achieve the best possible audio quality, free of radio frequency noise. In the<br />

differential mode, positive output is driven from EARP and negative signal from<br />

EARN output.<br />

Table 15. Earphone audio characteristics<br />

Name Test condition Min Type Max Units<br />

Output voltage swing<br />

in fully differential<br />

mode<br />

EARP to EARN 0.316 2 V PP<br />

Output resistance 1 ohm<br />

Load resistance<br />

Load resistance<br />

Load capacitance<br />

Common voltage level<br />

for Earphone output<br />

EARP to EARN<br />

(with dynamic<br />

transducer)<br />

EARP to EARN<br />

(with external<br />

audio circuitry)<br />

EARP to EARN<br />

(with external<br />

audio circuitry)<br />

30 45 ohm<br />

1 kohm<br />

10 nF<br />

VCMEar 0.75 0.8 0.85 V<br />

Offset voltage -50 50 mV<br />

20/44


The following chapter gives an example of using the audio properties of the<br />

<strong>Nokia</strong> <strong>12</strong> module for voice communication purposes. The circuits presented in<br />

the example illustrate the connection methods.<br />

There are also other possibilities for using the <strong>Nokia</strong> <strong>12</strong> audio interface. The<br />

presented component values are examples only; the customer can adjust the<br />

application-specific values to achieve the best performance for the application<br />

in question.<br />

4.6.1.1 Analog audio example<br />

Analog TX path: Due to the small audio signal level of the electret microphone,<br />

it is recommended to use a preamplifier for the microphone before connecting it<br />

to the <strong>Nokia</strong> <strong>12</strong> module. It is strongly recommended to protect the differential<br />

connection against RF noise. A microphone preamplifier with 20 dB input gain<br />

is recommended for reasonable uplink audio levels.<br />

Microphone input: See Figure 5.<br />

VANA<br />

R5<br />

R4<br />

VANA<br />

C1<br />

VANA<br />

R3<br />

-<br />

C2<br />

MicP<br />

R1<br />

+<br />

R6<br />

R7<br />

VANA<br />

R2<br />

-<br />

+<br />

C3<br />

MicN<br />

Figure 5. Single-ended microphone pre-amplifier<br />

Analog RX path: In voice applications, the <strong>Nokia</strong> <strong>12</strong> module is able to drive an<br />

earphone application without external electronics. However, it is also possible<br />

to build a high-volume loudspeaker application by using an external power<br />

amplifier with a high sensitivity loudspeaker. The following paragraphs show<br />

example circuits for both cases.<br />

21/44


Earphone application: An earphone can be connected to the <strong>Nokia</strong> <strong>12</strong> module<br />

without external components. In Figure 6 external components are used for<br />

EMC purposes to optimise audio quality and reliability.<br />

R1<br />

L1<br />

R2<br />

C1<br />

C2<br />

J1<br />

J2<br />

Figure 6. Earphone application circuit<br />

The recommended earphone type is dynamic. The maximum allowed load for<br />

this application is 32 ohm. In the example circuit, L1 is the common mode<br />

choke for the suppression of common mode disturbance in the earphone lines.<br />

J1 and J2 are surge protector gaps for ESD protection. These can be replaced<br />

with varistor or any other state-of-the-art ESD protection component. C1 and<br />

C2 are used for RF noise filtering.<br />

R1 and R2 are used as an attenuator if the signal level from the <strong>Nokia</strong> <strong>12</strong><br />

module is too high for the application. These resistors can be replaced with<br />

linear potentiometers and thus get adjustable volume control for the earphone<br />

application. The following component list gives example values for the circuit:<br />

• L1= 1000ohm@100MHz<br />

• C1=C2=27pF<br />

• R1=R2= Must be defined together with the sensitivity of the earphone<br />

External Audio Power amplifier: External audio power must be used if there<br />

is a need to drive low impedance load as loudspeaker. Figure 7 shows an<br />

example connection circuit for differential audio boomer. In this application only<br />

the connection interface to the <strong>Nokia</strong> <strong>12</strong> module is presented. For more detailed<br />

information on the boomer connections and specification, see the boomer<br />

manufacturer application note.<br />

22/44


VDD<br />

C4<br />

R2<br />

Differential Audio<br />

Boomer<br />

VDD<br />

EarP<br />

EarN<br />

C1<br />

C2<br />

R1<br />

R3<br />

-<br />

+<br />

R5<br />

R4<br />

VDD<br />

R6<br />

Bypass<br />

-<br />

C3<br />

Bias<br />

+<br />

Shutdown control<br />

Figure 7. Differential external power amplifier connection<br />

Refer to the audio boomer manufacturer and loudspeaker application notes for<br />

information on maximum safe ratings for the selected components. Also keep in<br />

mind the limitation of V DD to avoid overdriving the audio boomer and thus<br />

distorting the output signal unnecessarily.<br />

4.6.1.2 Acoustic echo<br />

Because in a <strong>GSM</strong> voice call the uplink and downlink audios are activated at<br />

the same time, it is recommended to use common sense when evaluating a<br />

suitable distance between the loudspeaker and the microphone. The acoustic<br />

echo canceller inside the <strong>Nokia</strong> <strong>12</strong> module is tuned so that the optimum result<br />

is achieved with 20 cm or longer distance between the microphone and the<br />

speaker. It is also advisable to locate the microphone and the loudspeaker so<br />

that they are pointed away from each other to achieve the best possible doubletalk<br />

performance.<br />

4.6.2 Digital audio<br />

There is a pulse code modulation (PCM) codec interface in the <strong>Nokia</strong> <strong>12</strong><br />

module for digital audio support. The digital audio interface supports signextended<br />

13-bit linear code (total 16 bits are transmitted).<br />

23/44


4.6.2.1 Sign-extended linear code<br />

PCM digital audio data transmission between the <strong>Nokia</strong> <strong>12</strong> module and the<br />

application is handled with four signals: PCMDCLK, PCMSCLK, PCMTX, and<br />

PCMRX. The format of the data transmission is sign-extended 13-bit linear<br />

code. A total of 16 bits are transmitted, and higher order bits must be signextended.<br />

Transmission of data commences after frame sync (PCMSCLK) rises<br />

high for one PCMDCLK clock cycle. After returning low, each data bit is<br />

transmitted on the falling edge of PCMDCLK.<br />

PCMDClk<br />

PCMSClk<br />

PCMTxData<br />

PCMRxData<br />

15 14 13 <strong>12</strong> 11 10<br />

MSB<br />

Sign extended<br />

15 14 13 <strong>12</strong> 11 10<br />

MSB<br />

Sign extended<br />

0<br />

LSB<br />

0<br />

LSB<br />

Figure 8. Timing of clock and transmission signals<br />

The application must provide both the PCMDCLK and PCMSCLK. PCMDCLK<br />

frequency is 5<strong>12</strong> kHz and PCMSCLK is repeated at 8 kHz, that is, at every 64th<br />

clock cycle. All bits but the 16 data bits following the frame sync are discarded.<br />

PCMDCLK has a typical 50 % duty-cycle; a variation of 5 % can be tolerated.<br />

For detailed timing, refer to Figure 9 and Table 16. Tcyc is the cycle time (1.953<br />

microseconds) of the 5<strong>12</strong> kHz clock. The PCMSCLK rising edge must occur at<br />

the maximum of 8 ns after the PCMSCLK rising edge.<br />

The pulse width of the frame sync pulse should be one data clock cycle.<br />

PCMDClk<br />

Td(SCL)<br />

PCMSClk<br />

Td(PCMTxData)<br />

PCMTxData<br />

PCMRxData<br />

Th(PCMRxData)<br />

Tsu(PCMRxData)<br />

MSB<br />

MSB<br />

Figure 9. PCM timing diagram<br />

24/44


PCM timing characteristics are described in Table 16. The coding format<br />

presented in Table 16 is supported, for example, by the Motorola type<br />

MC145483 codec.<br />

Table 16. PCM timing characteristics<br />

Parameter Symbol Min Max Unit<br />

Delay time (PCMSClk valid after<br />

PCMDClk rising)<br />

Delay time (PCMTxData valid<br />

after PCMDClk rising)<br />

PCMRxData setup time before<br />

PCMDClk falling edge<br />

PCMRxData hold time after<br />

PCMDClk falling edge<br />

Td(SClk) 0 8 ns<br />

Td(TxData) 5 25 ns<br />

Tsu(RxData) 20 Tcyc-20 ns<br />

Th(RxData) 20 Tcyc-20 ns<br />

25/44


5. RF AND ANTENNA INTEGRATION<br />

The RF requirements for the <strong>Nokia</strong> <strong>12</strong> module are type-dependent:<br />

• RF requirements for the RX-2 type follow the ETSI E<strong>GSM</strong>900/<strong>GSM</strong>1800<br />

phase2+ specifications.<br />

• RF requirements for the RX-9 type follow the ETSI <strong>GSM</strong>850/<strong>GSM</strong>1900<br />

phase2+ specifications.<br />

Table 17. RF specifications for the <strong>Nokia</strong> <strong>12</strong> <strong>GSM</strong> module<br />

Parameter Value Description<br />

RF impedance 50 ohm<br />

RF power 2W (class 4) E<strong>GSM</strong>900 & <strong>GSM</strong> 850<br />

1W (class 1) <strong>GSM</strong>1800 & <strong>GSM</strong> 1900<br />

The RF signal from the <strong>Nokia</strong> <strong>12</strong> module to an external antenna goes trough<br />

the MMCX connector.<br />

An adapter cable between the MMCX connector and the antenna may be<br />

needed. Suitable connectors and cables are available, for example, from<br />

Amphenol, TYCO, and IMS Connector Systems.<br />

The <strong>Nokia</strong> <strong>12</strong> module is certified with a Smarteq dual-band antenna (art no:<br />

1140.26 for 900/1800MHz and 1140.27 for 850/1900MHz). Suitable antennas<br />

are available, for example, from Smarteq and Hirschmann.<br />

For more information on the RF exposure, see Chapter 7.2.5.<br />

5.1 ANTENNA INSTALLATION<br />

The antenna must be placed within a good RF field; a location where the signal<br />

strength is adequate. A hand-portable phone can be used to check the best<br />

location for the antenna.<br />

Note: Electronic devices can cause interference, which affects the performance of<br />

the <strong>Nokia</strong> <strong>12</strong> module. Do not place the antenna close to electronic devices or<br />

other antennas.<br />

If an additional cable is needed between the antenna and the <strong>Nokia</strong> <strong>12</strong> module,<br />

use low-loss cables (for example RG-58. Amphenol, Suhner, etc.) and<br />

connectors. Every additional cable, adapter, and connector increases the loss<br />

of signal power.<br />

26/44


When designing the hardware application to which the <strong>Nokia</strong> <strong>12</strong> module is<br />

integrated into, it is important to take care of RF emissions. Do not place any<br />

sensitive components or striplines near the antenna or the antenna connector.<br />

For more information on the RF exposure, see Chapter 7.2.5.<br />

27/44


6. TEST BOARD FOR THE NOKIA <strong>12</strong> <strong>GSM</strong> MODULE<br />

The <strong>Nokia</strong> <strong>12</strong> test board is a hardware development tool for application<br />

developers and system integrators. It manages DC voltages, SIM card, I/O’s,<br />

and audios. You can measure several interfaces by pin headers, and the<br />

software interfaces of the D9 connectors can be seen and handled. The device<br />

can be reset with the reset button on the test board PCB.<br />

The <strong>Nokia</strong> <strong>12</strong> module has been type approved with the <strong>Nokia</strong> <strong>12</strong> test board. For<br />

more information on the <strong>Nokia</strong> <strong>12</strong> test board, see Appendix: <strong>Nokia</strong> <strong>12</strong> test<br />

board part list, assembly drawing and schematics.<br />

6.1 POWERING<br />

A 3A step down converter is used to produce module V CC . Low ESR capacitors<br />

are used.<br />

Table 18. Powering for the <strong>Nokia</strong> <strong>12</strong> test board<br />

6.2 SIM CARD READER<br />

The SIM card reader is directly connected to the M2M System Connector. The<br />

VSIM (pin47) decoupling capacitor must be present in all designs. To see the<br />

connections between the SIM card reader and the M2M System Connector, see<br />

Figure 4.<br />

6.3 RS-232 CONVERTERS<br />

All three serial ports of the <strong>Nokia</strong> <strong>12</strong> module are equipped with RS-232 level<br />

translators and D9 connector in the test board. If they are not used, there is a<br />

switch that can be used to set the converters in the Hi-Z mode.<br />

28/44


6.4 AUDIO<br />

For testing analog audio, the test board includes a connector for the <strong>Nokia</strong><br />

HSU-3 handset. The HSU-3 handset can be purchased from <strong>Nokia</strong> dealers.<br />

Figure 10. <strong>Nokia</strong> <strong>12</strong> test board microphone amplifier<br />

The <strong>Nokia</strong> <strong>12</strong> test board and its key components are shown in Figure 11.<br />

Figure 11. <strong>Nokia</strong> <strong>12</strong> test board components<br />

The <strong>Nokia</strong> <strong>12</strong> test board includes the following switches:<br />

29/44


• RS-232 translator switches for PORT1 and PORT2/PORT3<br />

−<br />

−<br />

When the RS-232 translators are on, PORT1 and PORT2/PORT3 are<br />

connected the <strong>Nokia</strong> <strong>12</strong> module via the M2M System Connector.<br />

When the RS-232 translators are off, PORT1 and PORT2/PORT3 are<br />

not connected the <strong>Nokia</strong> <strong>12</strong> module via the M2M System Connector.<br />

When the RS-232 translators are off, it is possible to establish a<br />

connection to the <strong>Nokia</strong> <strong>12</strong> module by using the pin headers (1-4).<br />

• Microphone input selection switches<br />

−<br />

−<br />

MIC FROM HSU-3 means that microphone signals are routed from the<br />

HSU- 3 connector on the testboard to the <strong>Nokia</strong> <strong>12</strong> module.<br />

MIC FROM PIN HEADER means that microphone signals are routed to<br />

pins 10 and 11 in pin header X100 on testboard edge.<br />

• Communication mode switches<br />

−<br />

−<br />

When the switches are in the normal mode position, the BSI line of the<br />

<strong>Nokia</strong> <strong>12</strong> module is floating.<br />

When the switches are in the AT mode position, a 68 kohm resistor is<br />

connected between the <strong>Nokia</strong> <strong>12</strong> module BSI line and ground.<br />

Note: To use the normal mode/AT mode settings on the test board, the<br />

connection type setting on the <strong>Nokia</strong> <strong>12</strong> Configurator must be set to ‘HW<br />

Detection’. If the connection type setting on the <strong>Nokia</strong> <strong>12</strong> Configurator is set to<br />

‘AT’, the communication mode switch settings on the <strong>Nokia</strong> <strong>12</strong> test board are<br />

overridden.<br />

The use of the switches on the <strong>Nokia</strong> <strong>12</strong> test board is illustrated in Figure <strong>12</strong>.<br />

30/44


Figure <strong>12</strong>. <strong>Nokia</strong> <strong>12</strong> test board switch usage<br />

31/44


7. CERTIFICATIONS<br />

The test house requires the following documentation from the application<br />

integrator for type approval tests:<br />

• <strong>Hardware</strong> description<br />

• Schematics<br />

• Block diagram<br />

• PWB/component layout<br />

• Bill of materials<br />

• HW/SW versions used in tests.<br />

• Summary of application<br />

• User’s guide<br />

If the application HW or SW changes, the integrator is responsible for verifying<br />

the effect, and if needed, to perform all required tests again in an accredited<br />

laboratory.<br />

7.1.1 RX-2<br />

The <strong>Nokia</strong> <strong>12</strong> module (RX-2) is a CE marked device. In order to show<br />

compliance to R&TTE requirements, the integrator has to show that all the<br />

instructions in this document have been followed in the integration, and a<br />

declaration of conformity has been written.<br />

The final product must carry CE marking to show compliance with all the<br />

directives that are applicable to it. The numbers of all the Notified Bodies<br />

involved in every aspect of the conformity assessment must be shown next to<br />

the CE marking with any additional markings that can be needed (for example,<br />

Alert symbol for WLAN). The technical documentation explains the role of each<br />

Notified Body. If external elements are designed according to this document,<br />

only the following tests must be carried out in an accredited laboratory:<br />

• EMC tests in all working modes (EN 301 489-1/7, 3GPP TS 51.010)<br />

• Safety (Europe: EN/IEC 60950)<br />

7.1.2 RX-9<br />

The <strong>Nokia</strong> <strong>12</strong> module (RX-9) is an FCC equipment authorized device (47CFR<br />

15, 22, 24). If external elements are designed according to this document, only<br />

the following tests must be carried out in an accredited laboratory:<br />

32/44


• FCC equipment authorization (all applicable parts of 47CFR15)<br />

7.2 TECHNICAL REQUIREMENTS<br />

7.2.1 SIM testing<br />

SIM testing is not needed, because the SIM card reader is a passive<br />

component. In the implementation, SIM presence must follow the type approval<br />

conditions of the <strong>Nokia</strong> <strong>12</strong> module. 6- or 8-pin SIM card readers can be used.<br />

For more information on the SIM interface, see Chapter 4.5.<br />

7.2.2 Power supply<br />

The power supply must be designed as advised in Chapter 4.3. If this<br />

specification is exactly followed and fulfilled, the number of required RF tests is<br />

minimized in the type approval process.<br />

Note: If the power supply specification is not followed, the <strong>Nokia</strong> <strong>12</strong> module type<br />

approval is not valid.<br />

7.2.3 EMC/ESD and safety tests<br />

EMC and safety tests according to <strong>GSM</strong> standards (EN 301 489-1/7, 3GPP TS<br />

51.010 and EN 60 950) are mandatory and must be completed by the<br />

application integrator. The integrator should guarantee overall ESD protection<br />

in the integrated application (EN 301 489).<br />

Note: The <strong>Nokia</strong> <strong>12</strong> test board is an ESD supersensitive device.<br />

7.2.4 RF testing<br />

The antenna must be connected to the <strong>Nokia</strong> <strong>12</strong> module as this document<br />

instructs. The antenna impedance has to be as specified in Chapter 5. Further<br />

passive RF testing for the type approval is not required. Radiation performance<br />

is always the responsibility of the integrator.<br />

Note: If the antenna specification is not followed, the <strong>Nokia</strong> <strong>12</strong> type approval is not<br />

valid.<br />

33/44


7.2.5 RF exposure<br />

In order to comply with the RF exposure requirements, install the antenna so<br />

that a minimum separation distance of 20 cm/7.9 inch can be maintained<br />

between the antenna and all persons.<br />

If some other antenna than the one in the sales package is used, it must be<br />

ensured that the maximum antenna gain of 3 dBi is not exceeded.<br />

RX-2<br />

If the application does not provide a separation distance of at least 20 cm/7.9<br />

inch, the integrator must carry out all needed certifications.<br />

RX-9<br />

The <strong>Nokia</strong> <strong>12</strong> module cannot be used in applications that allow the separation<br />

distance between antenna and all persons to be less than 20 cm/7.9 inch.<br />

7.2.6 Additional type approval notes<br />

Changes in the application software have no effect on type approval issues.<br />

If the <strong>Nokia</strong> <strong>12</strong> module software is updated, no type approval actions are<br />

required from the application integrator. All <strong>Nokia</strong> products are officially type<br />

approved.<br />

Any changes to the RF path are not allowed. Power supply instructions must be<br />

followed.<br />

RX-9<br />

The <strong>Nokia</strong> <strong>12</strong> module (RX-9) type label has the FCC ID number to indicate that<br />

it is FCC equipment authorized. If the application prevents the label from being<br />

visible, the application must be labeled so that it contains the text: “Contains<br />

FCC ID LJPRX-9”.<br />

34/44


REFERENCES<br />

<strong>Nokia</strong> M2M customer documents<br />

The following <strong>Nokia</strong> M2M customer documents are available at<br />

http://www.forum.nokia.com/m2m or http://www.americas.forum.nokia.com.<br />

/1/ <strong>Nokia</strong> M2M Platform Software Developer’s Guide<br />

/2/ <strong>Nokia</strong> M2M Platform <strong>Nokia</strong> <strong>12</strong> <strong>GSM</strong> <strong>Module</strong> IMlet Programming Guide<br />

/3/ <strong>Nokia</strong> <strong>12</strong> <strong>GSM</strong> <strong>Module</strong> Product Specification<br />

General standards and specifications<br />

/1/ 3GPP TS 51.010, Digital cellular telecommunication system (Phase 2+)<br />

Mobile Station (MS) conformance specification<br />

/ 3rd Generation Partnership Project (3GPP)<br />

/2/ 47CFR 15, 22, 24,Code of Federal Regulations, 47: Telecommunication<br />

Part 15: Radio frequency devides<br />

Part 22: Public mobile services<br />

Part 24: Personal communications services<br />

/ Federal Communications Commission (FCC)<br />

/3/ DIN 72300-3 Electrical and electronic equipment for road vehicles -<br />

Environmental condititons - Part 3: Mechanical loads<br />

/ Deutsches Institut fur Normung (DIN)<br />

/4/ EN 301 489-1/7 Electromagnetic compatibity and Radio spectrum Matters<br />

(ERM); Electro-Magnetic Compatibility (EMC) standard for radio<br />

equiment and services<br />

Part 1: Common tecnical requirements<br />

Part 7: Specific conditions for mobile and portable radio and ancillary<br />

equipment of digital cellular radio telecommunications systems (<strong>GSM</strong> and DCS)<br />

/ European Telecommunications Standards Institute (ETSI)<br />

/5/ EN/IEC 60950 Safety of Information technology equipment<br />

/ European Committee for Electrotecnical Standardization (Cenelec)<br />

35/44


APPENDIX: NOKIA <strong>12</strong> TEST BOARD PART LIST, ASSEMBLY<br />

DRAWING AND SCHEMATICS<br />

This appendix includes the <strong>Nokia</strong> <strong>12</strong> test board part list, assembly drawing and<br />

schematics. The reference numbers and x/y axis indicators on the part list can<br />

be used to locate the <strong>Nokia</strong> <strong>12</strong> test board parts on the assembly drawing.<br />

Table 19. <strong>Nokia</strong> <strong>12</strong> test board part list<br />

Ref. X Y Component<br />

Component<br />

value<br />

C100 J 13 Chipcap X7R 10% 50V 0402 1n0 50V<br />

C101 J 14 Cer. cap 10uF 16V Z <strong>12</strong>10 10u 16V<br />

C102 I 14 Tantal cap 20% 35V 100n_35V 35V<br />

C103 I 14 Tantal cap 20% 35V 100n_35V 35V<br />

C104 K 13 CHIPCAP X5R 100N K 10V 0402 100n 10V<br />

C105 K 13 Chipcap 5% NP0 22p 50V<br />

C106 K 13 Chipcap 5% NP0 22p 50V<br />

C107 K 13 CHIPCAP X5R 100N K 10V 0402 100n 10V<br />

C108 K 13 Chipcap 5% NP0 22p 50V<br />

C109 K 14 CHIPCAP NP0 180P J 25V 0402 180p 25V<br />

C110 K 14 Chipcap 5% NP0 22p 50V<br />

C111 K 13 CHIPCAP NP0 180P J 25V 0402 180p 25V<br />

C1<strong>12</strong> K <strong>12</strong> Chipcap 5% NP0 22p 50V<br />

C113 M 14 CHIPCAP X5R 1U0 10V 0805 1u0 10V<br />

C114 M 13 CHIPCAP X5R 1U0 10V 0805 1u0 10V<br />

C115 M 13 Chipcap 5% NP0 150p 50V<br />

C116 M 13 CHIPCAP X7R 18N J 25V 0603 18n 25V<br />

C117 M <strong>12</strong> Chipcap X7R 10% 16V 0402 10n 16V<br />

C118 K 13 CHIPCAP X5R 1U0 10V 0805 1u0 10V<br />

C119 J <strong>12</strong> Chipcap 5% NP0 22p 50V<br />

C<strong>12</strong>0 J <strong>12</strong> chipcap x7r 47n k 10v 0402 47n 10V<br />

C<strong>12</strong>1 J <strong>12</strong> CHIPCAP X5R 4U7 K 6V3 0805 4u7 6V3<br />

Voltage<br />

C<strong>12</strong>2 I 13 CHIPCAP X5R 1U K 6V3 0603 1u0 6.3V<br />

C<strong>12</strong>3 J <strong>12</strong> Chipcap X7R 5% 16V 0402 10n 16V<br />

C<strong>12</strong>4 I 13 Chipcap 5% NP0 22p 50V<br />

C<strong>12</strong>5 G 14 Cer. cap 10uF 16V Z <strong>12</strong>10 10u 16V<br />

36/44


Ref. X Y Component<br />

Component<br />

value<br />

C<strong>12</strong>6 H 14 Cer. cap 10uF 16V Z <strong>12</strong>10 10u 16V<br />

C400 P 11 CHIPCAP X5R 4U7 K 6V3 0805 4u7 6V3<br />

Voltage<br />

C401 O 11 CHIPCAP X5R 1U K 6V3 0603 1u0 6.3V<br />

C402 M 10 CHIPTCAP 470U M 10V L7.3X4.3X4.1 470u_10V 10V<br />

C403 L 10 CHIPTCAP 470U M 10V L7.3X4.3X4.1 470u_10V 10V<br />

C404 K 10 CHIPTCAP 470U M 10V L7.3X4.3X4.1 470u_10V 10V<br />

C405 J 10 CHIPTCAP 470U M 10V L7.3X4.3X4.1 470u_10V 10V<br />

C406 H 10 CHIPTCAP 470U M 10V L7.3X4.3X4.1 470u_10V 10V<br />

C4<strong>12</strong> P 14 CHIPCAP X7R 100N K 25V 0805 100n 25V<br />

C413 P 11 CHIPCAP X7R 100N K 25V 0805 100n 25V<br />

C414 O 13 CHIPCAP X7R 100N K 25V 0805 100n 25V<br />

C415 P 11 CHIPCAP X7R 100N K 25V 0805 100n 25V<br />

C416 P 14 CHIPCAP X7R 100N K 25V 0805 100n 25V<br />

C417 J 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C418 J 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C419 K 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C420 J 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C421 P 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C422 P 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C423 Q 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C424 Q 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C425 Q 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C426 Q 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C427 Q 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C428 Q 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C429 S <strong>12</strong> CHIPCAP X5R 1U K 6V3 0603 1u0 6.3V<br />

C430 Z 8 CHIPCAP X5R 100N K 10V 0402 100n 10V<br />

C431 J 11 Chipcap 5% NP0 22p 50V<br />

C432 U 11 Chipcap 5% NP0 22p 50V<br />

C433 U 11 Chipcap 5% NP0 22p 50V<br />

C434 U 11 Chipcap 5% NP0 22p 50V<br />

C435 T 11 Chipcap 5% NP0 22p 50V<br />

C436 V 11 CHIPCAP X7R 100N K 25V 0805 100n 25V<br />

37/44


Ref. X Y Component<br />

Component<br />

value<br />

C437 U 14 CHIPCAP X7R 100N K 25V 0805 100n 25V<br />

C438 V 11 CHIPCAP X7R 100N K 25V 0805 100n 25V<br />

C439 V 14 CHIPCAP X7R 100N K 25V 0805 100n 25V<br />

C440 V <strong>12</strong> CHIPCAP X7R 100N K 25V 0805 100n 25V<br />

C441 U 11 Chipcap 5% NP0 22p 50V<br />

C442 U 11 Chipcap 5% NP0 22p 50V<br />

C443 W 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C444 W 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C445 W 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C446 W 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C447 W 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C448 W 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C449 X 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C450 X 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C451 Y 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C452 Y 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C453 X 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C454 X 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C455 X 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C456 X 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C457 X 14 Chipcap X7R 10% 50V 0402 220p 50V<br />

C458 X 15 Chipcap X7R 10% 50V 0402 220p 50V<br />

C459 A 6 Chipcap 5% NP0 56p 50V<br />

C461 A 8 CHIPTCAP 68U M 25V 7.3X4.3X4.1 68u_25V 25V<br />

C462 B 7 Chipcap X7R 10% 50V 0402 1n0 50V<br />

C463 C 7 Chipcap 5% NP0 56p 50V<br />

C464 C 7 CHIPCAP X7R 100N K 16V 0603 100n 16V<br />

C465 D 7 CHIPTCAP 68U M 25V 7.3X4.3X4.1 68u_25V 25V<br />

Voltage<br />

C466 I 6 POSCAP 100UF+-20M 100u 6.3V<br />

C467 H 7 CHIPCAP X7R 100N K 16V 0603 100n 16V<br />

C468 H 7 Chipcap X7R 10% 50V 0402 220p 50V<br />

C469 H 8 CHIPTCAP 68UF M 6V3 68u 6.3V<br />

C470 H 8 CHIPCAP X7R 100N K 16V 0603 100n 16V<br />

38/44


Ref. X Y Component<br />

Component<br />

value<br />

C490 D 6 Chipcap X7R 10% 16V 0402 10n 16V<br />

Voltage<br />

C491 G 5 ELCAP 470U M 6V3 0R025 105C 8X10 470u_6V3 6.3V<br />

C492 I 5 ELCAP 470U M 6V3 0R025 105C 8X10 470u_6V3 6.3V<br />

C493 P 11 Chipcap X7R 5% 16V 0402 10n 16V<br />

F400 A 4 SM FUSE F2A 63V <strong>12</strong>06 2.0A ~<br />

L100 I 13 FERRITE BEAD 0R6 600R/100M 0402 600R/100MHz ~<br />

L101 I 13 FERRITE BEAD 0R6 600R/100M 0402 600R/100MHz ~<br />

L400 J 15 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L401 K 15 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L402 P 14 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L403 Q 14 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L404 Q 14 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L405 Q 14 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L406 W 15 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L407 W 15 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L408 W 15 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L409 X 15 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L410 Y 15 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L411 X 15 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L4<strong>12</strong> Y 15 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L413 X 15 FERRITE BEAD 0R35 240R/100M 0402 240R/100MHz ~<br />

L414 A 4 FERR.BEAD 0R03 42R/100MHZ 3A 0805 42R/100MHz ~<br />

L415 B 8 FERR.BEAD 0R03 42R/100MHZ 3A 0805 42R/100MHz ~<br />

L416 B 7 FERR.BEAD 0R03 42R/100MHZ 3A 0805 42R/100MHz ~<br />

L418 H 7 FERR.BEAD 0R03 42R/100MHZ 3A 0805 42R/100MHz ~<br />

L490 F 7 CHOKE 33U M 3.0A 65MR <strong>12</strong>X<strong>12</strong>X8 33uH ~<br />

N100 L 13 4XOPAMP 2.7-<strong>12</strong>V TS974 SO14 ~ ~<br />

N101 I 13 REG 3.3V/150MA LP2985A-3.3 SOT23-5 ~ 3.3V<br />

N400 P 11 REG 3.3V/150MA LP2985A-3.3 SOT23-5 ~ 3.3V<br />

N401 C 5 SW REG 1.2-37V 3A LM2676 TO263-7 ~ ADJ<br />

N402 P 13 MAX3237EAI RS323 5TX3RX SSOP28 ~ ~<br />

N403 U 13 MAX3237EAI RS323 5TX3RX SSOP28 ~ ~<br />

R100 Y 6 Resistor 5% 63mW 560R ~<br />

39/44


Ref. X Y Component<br />

Component<br />

value<br />

R101 L 8 Resistor 5% 63mW 560R ~<br />

R102 L 8 Resistor 5% 63mW 560R ~<br />

R103 L 8 Resistor 5% 63mW 560R ~<br />

R104 L 7 Resistor 5% 63mW 560R ~<br />

R105 L 7 Resistor 5% 63mW 560R ~<br />

R106 L 7 Resistor 5% 63mW 560R ~<br />

R107 L 6 Resistor 5% 63mW 560R ~<br />

R108 L 6 Resistor 5% 63mW 560R ~<br />

R109 L 5 Resistor 5% 63mW 560R ~<br />

R110 L 5 Resistor 5% 63mW 560R ~<br />

R111 L 4 Resistor 5% 63mW 560R ~<br />

R1<strong>12</strong> L 4 Resistor 5% 63mW 560R ~<br />

R113 L 4 Resistor 5% 63mW 560R ~<br />

R114 L 4 Resistor 5% 63mW 560R ~<br />

R115 Y 4 Resistor 5% 63mW 560R ~<br />

R116 Y 4 Resistor 5% 63mW 560R ~<br />

R117 Y 4 Resistor 5% 63mW 560R ~<br />

R118 L 6 Resistor 5% 63mW 560R ~<br />

R119 L 5 Resistor 5% 63mW 560R ~<br />

R<strong>12</strong>0 Y 6 Resistor 5% 63mW 560R ~<br />

R<strong>12</strong>1 Y 7 Resistor 5% 63mW 560R ~<br />

R<strong>12</strong>2 Y 5 Resistor 5% 63mW 560R ~<br />

R<strong>12</strong>3 Y 5 Resistor 5% 63mW 560R ~<br />

R<strong>12</strong>4 Y 6 Resistor 5% 63mW 560R ~<br />

R<strong>12</strong>5 Y 6 Resistor 5% 63mW 560R ~<br />

R<strong>12</strong>6 Y 5 Resistor 5% 63mW 560R ~<br />

R<strong>12</strong>7 Y 4 Resistor 5% 63mW 560R ~<br />

R<strong>12</strong>8 Y 3 Resistor 5% 63mW 560R ~<br />

R<strong>12</strong>9 Y 7 Resistor 5% 63mW 560R ~<br />

R130 Y 7 Resistor 5% 63mW 560R ~<br />

R131 Y 8 Resistor 5% 63mW 560R ~<br />

R132 P 8 Chipres 0W06 jumper 0402 0R ~<br />

R133 P 8 Chipres 0W06 jumper 0402 0R ~<br />

Voltage<br />

40/44


Ref. X Y Component<br />

R140 F 14<br />

R141 E 14<br />

Component<br />

value<br />

VARISTOR ARRAY 2XVWM16V VC50<br />

0405 2XVWM16V ~<br />

VARISTOR ARRAY 2XVWM16V VC50<br />

0405 2XVWM16V ~<br />

R142 J 13 Resistor 5% 63mW 1k0 ~<br />

R143 J 13 Resistor 5% 63mW 1k8 ~<br />

R144 J 13 Resistor 5% 63mW 2k2 ~<br />

R145 J 13 Resistor 5% 63mW 1k0 ~<br />

R146 J 14 Resistor 5% 63mW 1k8 ~<br />

R147 J 13 Resistor 5% 63mW 2k2 ~<br />

R148 J 14 Resistor 5% 63mW 330R ~<br />

R149 K 14 Resistor 5% 63mW 330k ~<br />

R150 K 13 Resistor 5% 63mW 330k ~<br />

R151 K 14 Resistor 5% 63mW 1k0 ~<br />

R152 M 14 Resistor 5% 63mW 4k7 ~<br />

R153 K <strong>12</strong> Resistor 5% 63mW 1k0 ~<br />

R154 M <strong>12</strong> Resistor 5% 63mW 4k7 ~<br />

R155 M 13 Resistor 5% 63mW 47R ~<br />

R156 N 13 Resistor 5% 63mW 47R ~<br />

R157 M 13 Resistor 5% 63mW 47R ~<br />

R158 M 13 Resistor 5% 63mW 47R ~<br />

R159 M <strong>12</strong> Resistor 5% 63mW 2k2 ~<br />

R160 J 13 Resistor 5% 63mW 10k ~<br />

R161 J 13 Resistor 5% 63mW 10k ~<br />

R400 F <strong>12</strong> Resistor 5% 63mW 100R ~<br />

R401 F <strong>12</strong> Resistor 5% 63mW 100R ~<br />

R402 G 11 Resistor 5% 63mW 68k ~<br />

R403 G 11 Resistor 5% 63mW 1k0 ~<br />

R406 Q 11 Chipres 0W06 jumper 0402 0R ~<br />

R410 B 7 Resistor 5% 63mW 47k ~<br />

R413 Q <strong>12</strong> Resistor 5% 63mW 47k ~<br />

R415 J 11 Resistor 5% 63mW 4k7 ~<br />

R416 R <strong>12</strong> Resistor 5% 63mW 10k ~<br />

R417 T 13 Resistor 5% 63mW 47k ~<br />

Voltage<br />

41/44


Ref. X Y Component<br />

Component<br />

value<br />

R418 T <strong>12</strong> Resistor 5% 63mW 10k ~<br />

R419 A 6 CHIP VARISTOR VWM18V VC50 0603 18V ~<br />

R420 B 6 Resistor 1% 63mW <strong>12</strong>k ~<br />

R421 B 6 CHIPRES 0W06 10K F 0402 10k ~<br />

R422 B 7 CHIPRES 0W06 10K F 0402 10k ~<br />

S100 M 11 Slide Switch 1-pole 2-pos ~ ~<br />

S101 M <strong>12</strong> Slide Switch 1-pole 2-pos ~ ~<br />

S400 G 13 Slide Switch 1-pole 2-pos ~ ~<br />

S401 G <strong>12</strong> Slide Switch 1-pole 2-pos ~ ~<br />

S402 I 11 SM SW TACT SPST <strong>12</strong>V 50MA ~ ~<br />

S403 R 13 Slide Switch 1-pole 2-pos ~ ~<br />

S404 T 13 Slide Switch 1-pole 2-pos ~ ~<br />

V100 Y 6 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V101 M 8 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V102 M 8 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V103 M 8 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V104 M 7 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V105 M 7 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V106 M 7 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V107 M 6 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V108 M 6 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V109 M 5 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V110 M 5 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V111 M 4 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V1<strong>12</strong> M 4 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V113 M 4 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V114 M 4 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V115 Y 4 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V116 Y 4 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V117 Y 4 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V118 M 6 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V119 M 5 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V<strong>12</strong>0 Y 6 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

Voltage<br />

42/44


Ref. X Y Component<br />

Component<br />

value<br />

V<strong>12</strong>1 Y 7 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V<strong>12</strong>2 Y 5 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V<strong>12</strong>3 Y 5 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V<strong>12</strong>4 Y 6 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V<strong>12</strong>5 Y 6 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V<strong>12</strong>6 Y 5 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V<strong>12</strong>7 Y 4 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V<strong>12</strong>8 Y 3 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V<strong>12</strong>9 Y 7 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V130 Y 7 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V131 Y 8 LED CL190HR RED>5MCD 20MA 0603 ~ ~<br />

V132 X 6<br />

V133 M 8<br />

V135 M 8<br />

V137 M 7<br />

V139 M 6<br />

V141 M 5<br />

V143 M 4<br />

V145 M 4<br />

V147 X 3<br />

V148 X 4<br />

V150 M 6<br />

V153 X 7<br />

V154 X 5<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

Voltage<br />

43/44


Ref. X Y Component<br />

V156 X 6<br />

V158 X 5<br />

V161 X 7<br />

Component<br />

value<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

TRX2+RX4 UMH2N N 50V 0.03A<br />

SOT363 ~ ~<br />

V400 A 5 SCH DI 40V 3A SOD6 ~ ~<br />

V490 E 5 SCH DI 40V 3A DO214AB ~ ~<br />

X100 L 2 SM CONN 2X10M P2.54 3A 90DEG ~ ~<br />

X101 F 2 SM CONN 2X10M P2.54 3A 90DEG ~ ~<br />

X102 R 2 SM CONN 2X10M P2.54 3A 90DEG ~ ~<br />

X103 X 2 SM CONN 2X10M P2.54 3A 90DEG ~ ~<br />

X150 F 16<br />

X400 B 16<br />

CONN MOD JACK 6POL <strong>12</strong>5V 1.5A<br />

90DEG ~ ~<br />

PC MODULAR JACK 10POL P1.27<br />

90DEG ~ ~<br />

X401 R 10 SM SOCKET STRIP 2X30F P1.27MM ~ ~<br />

X402 C 10<br />

X403 C <strong>12</strong><br />

X404 Q 11<br />

X406 J 17<br />

X407 Q 17<br />

X408 X 17<br />

CONN F 90DEG PCB RED BANANA<br />

SOCK ~ ~<br />

CONN F 90DEG PCB BLACK BANANA<br />

SOC ~ ~<br />

SINGLE ROW STRAIGHT PIN HEADER<br />

2X1 ~ ~<br />

CONN D9 F 90DEG B/LOCK 4-40UNC<br />

AU ~ ~<br />

CONN D9 F 90DEG B/LOCK 4-40UNC<br />

AU ~ ~<br />

CONN D9 F 90DEG B/LOCK 4-40UNC<br />

AU ~ ~<br />

X409 B 2 SMD JACK 3.0MM F DC 20V 2A ~ ~<br />

X410 Y 11 SM SIM CARD READER 2X3POL P2.54 ~ ~<br />

Voltage<br />

44/44


2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

3<br />

1<br />

2<br />

3<br />

1<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

3<br />

1<br />

2<br />

2<br />

1<br />

3<br />

1<br />

2<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

4<br />

1<br />

3<br />

2<br />

1<br />

2<br />

1<br />

INPUT10<br />

OUTPUT6<br />

OUTPUT7<br />

INPUT9<br />

OUTPUT9<br />

PORT1TX<br />

5<br />

(SCK/MBUS)<br />

2<br />

2<br />

1<br />

C<br />

D9 FEMALE<br />

8=CTS<br />

PORT2CTS<br />

SERVICE<br />

1=DCD<br />

9=RI<br />

6=DSR<br />

9=RI<br />

B<br />

A<br />

AD3<br />

INPUT11<br />

7=RTS<br />

6=DSR<br />

5=GND<br />

4=DTR<br />

(TXD/FBUSTXO)<br />

3<br />

AD2<br />

2=RxD<br />

3=TxD<br />

D<br />

7=RTS<br />

8=CTS<br />

A<br />

RESET_T<br />

RESET_A<br />

OUTPUT8<br />

3=TxD<br />

OUTPUT4<br />

INPUT4/P3TX<br />

1<br />

INPUT5<br />

INPUT6<br />

1 3 6<br />

MICP<br />

PCMDCLK<br />

PORT2RTS<br />

B<br />

5=GND<br />

1=DCD<br />

2=RxD<br />

VSIM<br />

(BSI)<br />

4=DTR<br />

5=GND<br />

NC<br />

NC<br />

A<br />

C<br />

D<br />

2<br />

9=RI<br />

D9 FEMALE<br />

SIMRST<br />

4=DTR<br />

4<br />

PORT2RX<br />

NC<br />

MBUS<br />

BSI<br />

NC<br />

OUPUT2<br />

8=CTS<br />

4<br />

PCMTX<br />

EARP<br />

SIMDET<br />

PORT2TX<br />

PORT1RX<br />

OUTPUT1/P3RX<br />

3=TxD<br />

1=DCD<br />

INPUT8<br />

OUTPUT3<br />

(RXD/FBUSRXO)<br />

6=DSR<br />

7=RTS<br />

D9 FEMALE<br />

6<br />

INPUT7<br />

PCMRX<br />

EARN<br />

PCMSCLK<br />

SIMDATA<br />

AD1<br />

IO_VOLTAGE<br />

SLEEPX<br />

SIMCLK<br />

MICN<br />

2=RxD<br />

OUTPUT5<br />

5<br />

STPS340U<br />

V400<br />

36<br />

NC<br />

XAUD(3:0)<br />

<strong>12</strong><br />

13<br />

14<br />

34<br />

470u_10V<br />

C406<br />

ANA_AUDIO(3:0)<br />

E425<br />

5<br />

6<br />

7<br />

8<br />

S2<br />

S1 9<br />

L413<br />

240R/100MHz<br />

VBB<br />

M-C707_10M006_522_2<br />

X410<br />

1<br />

2<br />

3<br />

220p<br />

C468<br />

9<br />

X408<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

VCC<br />

27<br />

C1+ 28<br />

C2- 3<br />

4 V-<br />

T1OUT<br />

5<br />

T2OUT<br />

6<br />

T3OUT<br />

7<br />

R1IN 8<br />

R2IN<br />

18<br />

19<br />

T4IN<br />

R2OUT<br />

20<br />

R1OUT<br />

21<br />

T3IN 22<br />

T2IN 23<br />

T1IN 24<br />

C1- 25<br />

V+<br />

10 T4OUT<br />

R3IN 11<br />

<strong>12</strong> T5OUT<br />

_EN 13<br />

14 _SHDN<br />

15 MBAUD<br />

16 R1OUTB<br />

17<br />

T5IN<br />

R3OUT<br />

E422<br />

MAX3237EAI<br />

GND 2=<br />

3V3 26=<br />

N403<br />

C2+ 1<br />

C401<br />

1u0<br />

C492<br />

2517865<br />

470u_6V3<br />

470u_6V3<br />

2517865<br />

GND<br />

GND<br />

GND<br />

GND<br />

C491<br />

GND<br />

C463<br />

56p<br />

42R/100MHz<br />

L416<br />

240R/100MHz<br />

L405<br />

GND<br />

220p<br />

C454<br />

27<br />

R416<br />

38<br />

29<br />

GND<br />

10k<br />

220p<br />

C456<br />

GND<br />

L4<strong>12</strong><br />

240R/100MHz<br />

C414<br />

100n<br />

23<br />

24<br />

25<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

R421<br />

10k<br />

10k<br />

R422<br />

470u_10V<br />

C405<br />

470u_10V<br />

C404<br />

470u_10V<br />

C403<br />

<strong>12</strong>k<br />

R420<br />

26<br />

17<br />

C466<br />

100u<br />

47k<br />

R417<br />

10n<br />

C493<br />

59<br />

C421<br />

220p<br />

37<br />

GND<br />

45<br />

48<br />

GND<br />

E421<br />

20<br />

VCC<br />

R419<br />

18V<br />

C432<br />

42<br />

43<br />

GND<br />

C433<br />

22p<br />

220p<br />

C458<br />

22p<br />

220p<br />

C452<br />

2611689<br />

C402<br />

L410<br />

240R/100MHz<br />

470u_10V<br />

GND<br />

GND<br />

L401<br />

240R/100MHz<br />

100R<br />

R401<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

R400<br />

100R<br />

9 3V3<br />

60<br />

GND<br />

GND<br />

49<br />

5<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

6<br />

60<br />

7<br />

8<br />

9<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

4<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

3<br />

30<br />

31<br />

32<br />

33<br />

X401<br />

1<br />

10<br />

11<br />

<strong>12</strong><br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

2<br />

C434<br />

GND<br />

C435<br />

22p<br />

22p<br />

E424<br />

GND<br />

GND<br />

68u_25V<br />

E423<br />

4341603<br />

SW_OUT<br />

IN<br />

CBOOST<br />

G<br />

FB<br />

ON/_OFF<br />

G<br />

C461<br />

GND<br />

GND<br />

3<br />

2<br />

1<br />

0<br />

LM2676S-ADJ<br />

N401<br />

C441<br />

22p<br />

GND<br />

C442<br />

22p<br />

3V3<br />

44<br />

47k<br />

C455<br />

220p<br />

GND<br />

3V3<br />

R413<br />

220p<br />

C445<br />

GND<br />

C446<br />

220p<br />

GND<br />

GND<br />

C464<br />

100n<br />

GND<br />

GND<br />

C428<br />

220p<br />

1k0<br />

R403<br />

L411<br />

240R/100MHz<br />

220p<br />

C423<br />

C419<br />

220p<br />

220p<br />

C450<br />

GND<br />

L409<br />

240R/100MHz<br />

C457<br />

220p<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND GND<br />

E411<br />

GND<br />

GND<br />

GND<br />

L402<br />

240R/100MHz<br />

100n<br />

C467<br />

GND<br />

GND<br />

GND<br />

49<br />

22<br />

4<br />

C469<br />

68u<br />

2.0A<br />

F400<br />

X409<br />

2<br />

3<br />

220p<br />

C422<br />

E400<br />

GND<br />

GND<br />

GND<br />

21<br />

C4<strong>12</strong><br />

100n<br />

100n<br />

C413<br />

E420<br />

240R/100MHz<br />

L403<br />

C424<br />

220p<br />

GND<br />

E415<br />

GND<br />

GND<br />

GND<br />

15<br />

GND<br />

GND<br />

E410<br />

16<br />

GND<br />

X407<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

E409<br />

4u7<br />

GND<br />

LP2985AIM5X<br />

-3.3_NOPB<br />

BYPASS<br />

GND<br />

ON_OFF<br />

VIN<br />

VOUT<br />

GND<br />

C400<br />

100n<br />

S404<br />

1<br />

2<br />

3<br />

N400<br />

1<br />

2<br />

3<br />

GND<br />

C430<br />

50<br />

E419<br />

X403<br />

S400<br />

GND<br />

GND<br />

GND<br />

3V3<br />

53<br />

220p<br />

C420<br />

GND<br />

GND<br />

GND<br />

GND<br />

220p<br />

C417<br />

E408<br />

100n<br />

C438<br />

220p<br />

C426<br />

240R/100MHz<br />

GND<br />

GND<br />

L404<br />

C431<br />

220p<br />

C427<br />

R415<br />

22p<br />

32<br />

33<br />

GND<br />

4k7<br />

51<br />

X402<br />

GND<br />

220p<br />

11<br />

10<br />

0R<br />

R406<br />

C443<br />

GND<br />

S401<br />

1<br />

2<br />

3<br />

GND<br />

3V3<br />

L490<br />

3640155<br />

33uH<br />

GND<br />

GND<br />

L406<br />

240R/100MHz<br />

GND<br />

C425<br />

220p<br />

GND<br />

E418<br />

E417<br />

GND<br />

57<br />

C470<br />

100n<br />

GND<br />

E416<br />

R402<br />

GND<br />

GND<br />

E413<br />

E414<br />

GND<br />

68k<br />

68u_25V<br />

C465<br />

S403<br />

1<br />

2<br />

3<br />

V490<br />

MBRS340T3<br />

4110032<br />

C418<br />

220p<br />

GND<br />

240R/100MHz<br />

L400<br />

1u0<br />

C429<br />

10k<br />

GND<br />

X404<br />

1<br />

2<br />

R418<br />

100n<br />

GND<br />

GND<br />

E4<strong>12</strong><br />

C416<br />

T1OUT<br />

6 T2OUT<br />

7 T3OUT<br />

8<br />

R1IN<br />

9<br />

R2IN<br />

C415<br />

100n<br />

T3IN<br />

23<br />

T2IN<br />

24<br />

T1IN<br />

25<br />

C1-<br />

27 V+<br />

28<br />

C1+<br />

3<br />

C2-<br />

V-<br />

4<br />

5<br />

MBAUD<br />

15<br />

R1OUTB<br />

16<br />

T5IN 17<br />

18 R3OUT<br />

T4IN 19<br />

20 R2OUT<br />

21 R1OUT<br />

22<br />

2=<br />

GND<br />

MAX3237EAI<br />

1<br />

C2+<br />

T4OUT<br />

10<br />

11<br />

R3IN<br />

T5OUT<br />

<strong>12</strong><br />

13<br />

_EN<br />

_SHDN<br />

14<br />

3V3<br />

GND<br />

N402<br />

26=<br />

3V3<br />

220p<br />

100n<br />

C440<br />

6<br />

7<br />

8<br />

9<br />

35<br />

C453<br />

GND<br />

X400<br />

1<br />

10<br />

2<br />

3<br />

4<br />

5<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

E401<br />

E402<br />

GND<br />

GND<br />

X406<br />

1<br />

2<br />

C449<br />

220p<br />

L415<br />

42R/100MHz<br />

GND<br />

C462<br />

1n0<br />

E405<br />

E406<br />

E407<br />

40<br />

41<br />

GND<br />

GND<br />

L414<br />

C451<br />

220p<br />

3V3<br />

42R/100MHz<br />

47<br />

240R/100MHz<br />

L407<br />

GND<br />

B400<br />

-<br />

+<br />

GND<br />

56p<br />

C459<br />

S402<br />

1<br />

2<br />

3<br />

4<br />

55<br />

56<br />

46<br />

52<br />

E404<br />

54<br />

31<br />

C490<br />

10n<br />

18<br />

19<br />

28<br />

3V3<br />

30<br />

47k<br />

GND<br />

42R/100MHz<br />

L418<br />

GND<br />

R410<br />

220p<br />

220p<br />

C448<br />

C447<br />

L408<br />

240R/100MHz<br />

100n<br />

C436<br />

58<br />

E403<br />

C437<br />

100n<br />

220p<br />

C444<br />

100n<br />

C439<br />

39<br />

AIF(60:1)<br />

XAUD(3:0)<br />

AIF(60:1)


2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2 2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

GENIO13<br />

GENIO22<br />

PORT1RTS<br />

PORT1DTR<br />

PCMRX_G16<br />

BSI<br />

MICP<br />

A<br />

D<br />

C<br />

PORT1CTS<br />

SIMDATA<br />

SIMDET<br />

SLEEPX<br />

B<br />

AD1<br />

AD2<br />

5<br />

Reset_T<br />

Reset_A<br />

GENIO10<br />

PORT2RX<br />

PORT1RI<br />

VSIM<br />

SIMRST<br />

PCMDCLK_G14<br />

MICN<br />

PCMTX_G15<br />

EARP<br />

SIMCLK<br />

1 2 3<br />

IO_VOLTAGE<br />

GENIO4<br />

GENIO8<br />

PORT1TX<br />

AD3<br />

GENIO28<br />

PORT1DCD<br />

PORT1DSR<br />

A<br />

D<br />

C<br />

EARN<br />

PORT1RX<br />

6<br />

PORT3RX<br />

PORT3TX<br />

GENIO21<br />

B<br />

4 5 6<br />

1 2 3 4<br />

GENIO<strong>12</strong><br />

UMH2N-TN<br />

47k<br />

4219953<br />

V135<br />

47k<br />

3<br />

4<br />

5<br />

PORT2TX<br />

GENIO11<br />

PORT2RTS<br />

PORT2CTS<br />

BUZZO<br />

MBUS<br />

PCMSCLK_G17<br />

24<br />

25<br />

26<br />

27<br />

36<br />

10<br />

11<br />

22<br />

23<br />

GND<br />

560R<br />

R<strong>12</strong>7<br />

R116<br />

560R<br />

47k<br />

V158<br />

4219953<br />

47k<br />

UMH2N-TN 3<br />

4<br />

5<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V145<br />

47k<br />

3<br />

4<br />

5<br />

34<br />

35<br />

VCC<br />

GND<br />

V114<br />

CL-190HR-CD-T<br />

CL-190HR-CD-T<br />

V<strong>12</strong>3<br />

V<strong>12</strong>2<br />

CL-190HR-CD-T<br />

31<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V139<br />

47k<br />

3<br />

4<br />

5<br />

52<br />

53<br />

V108<br />

CL-190HR-CD-T<br />

1<br />

2<br />

R101<br />

560R<br />

GND<br />

VCC<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V133<br />

47k<br />

6<br />

560R<br />

R<strong>12</strong>9<br />

GND<br />

45<br />

46<br />

47<br />

55<br />

40<br />

41<br />

42<br />

43<br />

44<br />

GND<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V148<br />

47k<br />

6<br />

1<br />

2<br />

R102<br />

560R<br />

R108<br />

560R<br />

GND<br />

GND<br />

VCC<br />

R<strong>12</strong>6<br />

560R<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V145<br />

47k<br />

6<br />

1<br />

2<br />

R113<br />

560R<br />

28<br />

29<br />

30<br />

VCC<br />

GND<br />

VCC<br />

V<strong>12</strong>5<br />

CL-190HR-CD-T<br />

6<br />

1<br />

2<br />

560R<br />

R<strong>12</strong>4<br />

CL-190HR-CD-T<br />

V<strong>12</strong>4<br />

47k<br />

V156<br />

4219953<br />

47k<br />

UMH2N-TN<br />

UMH2N-TN 3<br />

4<br />

5<br />

GND<br />

GND<br />

VCC<br />

47k<br />

V141<br />

4219953<br />

47k<br />

UMH2N-TN 3<br />

4<br />

5<br />

47k<br />

V154<br />

4219953<br />

47k<br />

GND<br />

VCC<br />

CL-190HR-CD-T<br />

V110<br />

1<br />

2<br />

560R<br />

R109<br />

CL-190HR-CD-T<br />

V109<br />

47k<br />

V141<br />

4219953<br />

47k<br />

UMH2N-TN 6<br />

E426<br />

E427<br />

VCC<br />

560R<br />

GND<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V153<br />

47k<br />

6<br />

1<br />

2<br />

R131<br />

CL-190HR-CD-T<br />

V106<br />

V131<br />

CL-190HR-CD-T<br />

CL-190HR-CD-T<br />

V105<br />

V107<br />

CL-190HR-CD-T<br />

560R<br />

R106<br />

GND<br />

CL-190HR-CD-T<br />

V103<br />

5<br />

48<br />

49<br />

CL-190HR-CD-T<br />

V130<br />

47k<br />

V161<br />

4219953<br />

47k<br />

UMH2N-TN 3<br />

4<br />

GND<br />

GND<br />

VCC<br />

GND<br />

VCC<br />

560R<br />

R117<br />

VCC<br />

47k<br />

V161<br />

4219953<br />

47k<br />

UMH2N-TN 6<br />

1<br />

2<br />

GND<br />

VCC<br />

CL-190HR-CD-T<br />

V<strong>12</strong>9<br />

3<br />

4<br />

5<br />

R<strong>12</strong>8<br />

560R<br />

CL-190HR-CD-T<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V147<br />

47k<br />

E465<br />

GND<br />

VCC<br />

V<strong>12</strong>8<br />

E462<br />

E463<br />

E464<br />

560R<br />

R115<br />

E454<br />

E455<br />

4219953<br />

47k<br />

UMH2N-TN 6<br />

1<br />

2<br />

CL-190HR-CD-T<br />

V<strong>12</strong>7<br />

CL-190HR-CD-T<br />

V117<br />

47k<br />

V147<br />

R1<strong>12</strong><br />

GND<br />

GND<br />

VCC<br />

V156<br />

47k<br />

3<br />

4<br />

5<br />

560R<br />

6<br />

7<br />

8<br />

9<br />

GND<br />

UMH2N-TN<br />

47k<br />

4219953<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

2<br />

20<br />

3<br />

4<br />

5<br />

9<br />

GND<br />

X100<br />

1<br />

10<br />

11<br />

<strong>12</strong><br />

13<br />

18<br />

19<br />

2<br />

20<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

1<br />

10<br />

11<br />

<strong>12</strong><br />

13<br />

14<br />

15<br />

16<br />

17<br />

19<br />

2<br />

20<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

X103<br />

1<br />

10<br />

11<br />

<strong>12</strong><br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

GND<br />

X101<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

2<br />

20<br />

3<br />

E437<br />

X102<br />

1<br />

10<br />

11<br />

<strong>12</strong><br />

GND<br />

VCC<br />

CL-190HR-CD-T<br />

V115<br />

6<br />

1<br />

2<br />

R<strong>12</strong>2<br />

560R<br />

GND<br />

VCC<br />

VCC<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V154<br />

47k<br />

R<strong>12</strong>1<br />

560R<br />

E459<br />

E460<br />

E461<br />

E457<br />

E458<br />

VCC<br />

V116<br />

CL-190HR-CD-T<br />

VCC<br />

E456<br />

47k<br />

V132<br />

4219953<br />

47k<br />

UMH2N-TN 3<br />

4<br />

5<br />

GND<br />

560R<br />

R130<br />

560R<br />

R<strong>12</strong>0<br />

GND<br />

<strong>12</strong><br />

47k<br />

V137<br />

4219953<br />

47k<br />

UMH2N-TN 3<br />

4<br />

5<br />

560R<br />

R118<br />

GND<br />

CL-190HR-CD-T<br />

V100<br />

47k<br />

V150<br />

4219953<br />

47k<br />

UMH2N-TN 6<br />

1<br />

2<br />

E446<br />

GND<br />

VCC<br />

VCC<br />

VCC<br />

47k<br />

V148<br />

4219953<br />

47k<br />

UMH2N-TN 3<br />

4<br />

5<br />

560R<br />

R103<br />

GND<br />

VCC<br />

47k<br />

UMH2N-TN 6<br />

1<br />

2<br />

GND<br />

VCC<br />

VCC<br />

13<br />

47k<br />

V135<br />

4219953<br />

21<br />

560R<br />

R110<br />

17<br />

18<br />

19<br />

20<br />

3<br />

4<br />

5<br />

V101<br />

CL-190HR-CD-T<br />

16<br />

47k<br />

4219953<br />

V158<br />

47k<br />

6<br />

1<br />

2<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V133<br />

47k<br />

V<strong>12</strong>6<br />

CL-190HR-CD-T<br />

UMH2N-TN<br />

E445<br />

R<strong>12</strong>5<br />

560R<br />

E442<br />

E443<br />

E444<br />

E439<br />

E440<br />

E441<br />

E438<br />

E436<br />

R114<br />

560R<br />

E432<br />

E433<br />

E434<br />

E435<br />

E430<br />

E431<br />

E428<br />

E429<br />

0R<br />

R132<br />

R133<br />

0R<br />

3<br />

4<br />

5<br />

32<br />

CL-190HR-CD-T<br />

V1<strong>12</strong><br />

47k<br />

V143<br />

4219953<br />

47k<br />

UMH2N-TN<br />

GND<br />

VCC<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V143<br />

47k<br />

6<br />

1<br />

2<br />

R111<br />

560R<br />

VCC<br />

V111<br />

CL-190HR-CD-T<br />

3<br />

4<br />

5<br />

R119<br />

560R<br />

3<br />

2<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V150<br />

47k<br />

E450<br />

E451<br />

E452<br />

E453<br />

E448<br />

E449<br />

V104<br />

CL-190HR-CD-T<br />

14<br />

15<br />

E447<br />

1<br />

0<br />

33<br />

V102<br />

CL-190HR-CD-T<br />

38<br />

39<br />

56<br />

57<br />

560R<br />

R100<br />

GND<br />

VCC<br />

47k<br />

V132<br />

4219953<br />

47k<br />

UMH2N-TN 6<br />

1<br />

2<br />

560R<br />

R<strong>12</strong>3<br />

58<br />

59<br />

60<br />

9<br />

VCC<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V153<br />

47k<br />

3<br />

4<br />

5<br />

V<strong>12</strong>1<br />

CL-190HR-CD-T<br />

CL-190HR-CD-T<br />

V<strong>12</strong>0<br />

V119<br />

CL-190HR-CD-T<br />

CL-190HR-CD-T<br />

V118<br />

2<br />

R107<br />

560R<br />

50<br />

51<br />

UMH2N-TN<br />

47k<br />

4219953<br />

V139<br />

47k<br />

6<br />

1<br />

V113<br />

CL-190HR-CD-T<br />

37<br />

GND<br />

560R<br />

R105<br />

GND<br />

VCC<br />

VCC<br />

47k<br />

UMH2N-TN 6<br />

1<br />

2<br />

GND<br />

VCC<br />

54<br />

47k<br />

V137<br />

4219953<br />

XAUD(3:0)<br />

R104<br />

560R<br />

AIF(60:1)


1 2 3 4 5 6<br />

A<br />

A<br />

VA<br />

R148<br />

GND<br />

C101<br />

10u<br />

R146<br />

1k8<br />

330R<br />

C102<br />

100n_35V<br />

GND<br />

GND<br />

C103<br />

100n_35V<br />

C109<br />

180p<br />

R149<br />

330k<br />

GND<br />

C110<br />

22p<br />

L101<br />

600R/100MHz<br />

R145<br />

1k0<br />

R147<br />

2k2<br />

C104<br />

100n<br />

2<br />

-<br />

3<br />

+<br />

N100<br />

TS974ID<br />

1<br />

R151<br />

1k0<br />

VA_2<br />

4= VA<br />

11= GND<br />

R152<br />

4k7<br />

GND<br />

B<br />

GND<br />

HANDSET_CONNECTOR<br />

X150<br />

VCC 1<br />

HOOK 2<br />

GND 3<br />

EAR 4<br />

MIC- 5<br />

MIC+ 6<br />

R140<br />

1 /2 VWM16V<br />

R140<br />

/2 VWM16V<br />

2<br />

L102<br />

C<strong>12</strong>5<br />

10u<br />

C<strong>12</strong>6<br />

10u<br />

C<strong>12</strong>4<br />

22p<br />

L100<br />

600R/100MHz<br />

R142<br />

1k0<br />

C100<br />

1n0<br />

R143<br />

1k8<br />

GND<br />

GND<br />

R144<br />

2k2<br />

VA_2<br />

GND<br />

C105<br />

22p<br />

C108<br />

22p<br />

C107<br />

100n<br />

C106<br />

22p<br />

C111<br />

180p<br />

R150<br />

330k<br />

N100<br />

TS974ID<br />

6<br />

-<br />

7<br />

5<br />

+<br />

4= VA<br />

11= GND<br />

GND<br />

C1<strong>12</strong><br />

22p<br />

R153<br />

1k0<br />

R154<br />

GND<br />

4k7<br />

C113<br />

1u0<br />

C114<br />

1u0<br />

C115<br />

150p<br />

R155<br />

47R<br />

R157<br />

47R<br />

C116<br />

18n<br />

R156<br />

47R<br />

R158<br />

47R<br />

C117<br />

10n<br />

R159<br />

2k2<br />

3<br />

2<br />

2 3<br />

3<br />

2<br />

2 3<br />

S101<br />

S100<br />

1<br />

1<br />

1<br />

1<br />

0<br />

1<br />

2<br />

3<br />

B<br />

/2 VWM16V<br />

R141<br />

1<br />

R141<br />

ANA_AUDIO(3:0)<br />

2 /2 VWM16V<br />

GND<br />

XAUD(3:0)<br />

2<br />

3<br />

C<br />

0<br />

1<br />

VCC<br />

C<br />

VA_2<br />

VA<br />

VIN N101<br />

VOUT<br />

ON_OFF<br />

LP2985AIM5X<br />

BYPASS<br />

-3.3_NOPB<br />

10k<br />

R160<br />

C119<br />

22p<br />

C<strong>12</strong>0<br />

47n<br />

C<strong>12</strong>1<br />

4u7<br />

GND<br />

GND<br />

C<strong>12</strong>3<br />

10n<br />

C<strong>12</strong>2<br />

1u0<br />

GND<br />

GND<br />

GND<br />

GND<br />

GND<br />

C118<br />

1u0<br />

10k<br />

R161<br />

GND<br />

GND<br />

A101<br />

RF-SHIELD<br />

FRAME<br />

W2<br />

DTE-1<br />

D<br />

D<br />

GND<br />

1 2<br />

3 4<br />

5<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!