15.11.2014 Views

Peripheral B and T cell differentiation - University Institute of ...

Peripheral B and T cell differentiation - University Institute of ...

Peripheral B and T cell differentiation - University Institute of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Cellular <strong>and</strong> Molecular Immunology<br />

30 October 2008<br />

<strong>Peripheral</strong> B <strong>and</strong> T <strong>cell</strong> <strong>differentiation</strong><br />

Christoph Mueller, <strong>Institute</strong> <strong>of</strong> Pathology<br />

<strong>University</strong> <strong>of</strong> Bern<br />

• General principles:<br />

- functional subsets<br />

- plasticity vs. stability <strong>of</strong> phenotype<br />

• Molecular basis <strong>of</strong> lymphocyte <strong>differentiation</strong>:<br />

transcription factors<br />

• Soluble factors <strong>and</strong> cognate interactions involved in<br />

the <strong>differentiation</strong> <strong>of</strong> lymphoid <strong>cell</strong>s<br />

• Experimental approaches to study B/T <strong>cell</strong> <strong>differentiation</strong><br />

• Consequences <strong>of</strong> impaired T <strong>and</strong> B <strong>cell</strong> <strong>differentiation</strong>


RAG-1, 2<br />

• RAG1 <strong>and</strong> RAG2 (“Recombination Activation Genes”)<br />

are essential for the rearrangement <strong>of</strong> the Ig <strong>and</strong> TCR<br />

genes<br />

• Mice deficient for either RAG1 <strong>and</strong>/or RAG2 are<br />

deficient for both T <strong>and</strong> B <strong>cell</strong>s (but may still have some<br />

NK <strong>cell</strong>s)<br />

• to prevent the later generation <strong>of</strong> autoreactive T <strong>and</strong> B<br />

<strong>cell</strong>s, the expression <strong>of</strong> these two genes needs to be<br />

tightly regulated


CD8 T <strong>cell</strong> <strong>differentiation</strong>


Functional Heterogeneity <strong>of</strong><br />

CD4 T Lymphocytes<br />

naive CD4 T Cell<br />

Th1 Th0 Th2<br />

ThO: IL2, IL3, IL4, IL5, IL6, IL9, IL10, IFN<br />

Th1: IL2, IFN , TNFlymphotoxin<br />

Th2: IL4, IL5, IL6, IL9, IL10


Functional Heterogeneity<br />

<strong>of</strong> CD4 T Lymphocytes<br />

naïve CD4 T Cells<br />

Th1 Th0 Th2<br />

<strong>cell</strong>ular<br />

immunity<br />

humoral<br />

immunity


Functional Heterogeneity <strong>of</strong> CD4 T<br />

Lymphocytes is Controlled by Different<br />

Transcription Factors<br />

naïve CD4 T Cells<br />

Th1 Th0 Th2<br />

T-bet<br />

GATA-3


Naïve<br />

CD4<br />

IL 4<br />

IL 12<br />

IFN <br />

Th 2 Th 1<br />

Grogan & Locksley Curr Opinion Immunol 14: 366-72; 2002


JCI 109;:431;2002<br />

Pathways thought to regulate<br />

the development <strong>of</strong> Th2 <strong>cell</strong>s


Leprosy<br />

• Chronic - progressive infectious disease, affecting the<br />

skin, peripheral nerves <strong>and</strong> occasionally the respiratory<br />

tract<br />

• Infectious agent: Mycobacterium leprae<br />

• Globally, approx. 10-20 million patients infected,<br />

endemic in tropical areas (e.g. Southeast Asia; India,<br />

South America, Subsaharan Africa)


Leprosy:<br />

different clinical forms <strong>of</strong> the disease<br />

Lepromatous Leprosy:<br />

• Multiple, nodular lesions <strong>of</strong> the skin, in particular, <strong>of</strong> the<br />

face (”lion face").<br />

• Persistent bacteriemia, foamy <strong>cell</strong>-like lesions with<br />

numerous M. leprae present<br />

Tuberculoid Leprosy:<br />

• Singular, small macular lesions <strong>of</strong> the skin.<br />

• <strong>Peripheral</strong> nerves (e.g. N. ulnaris, peronealis, N.<br />

auricularis) are <strong>of</strong>ten affected sensory neuropathy.<br />

• Granuloma are frequent (with only low numbers <strong>of</strong><br />

M. leprae present)


Immunological Spectrum <strong>of</strong> Leprosy<br />

naïve CD4 T <strong>cell</strong>s<br />

Th1 Th0 Th2<br />

<strong>cell</strong>ular<br />

immunity<br />

humoral<br />

immunity<br />

Tuberculoid leprosy<br />

Granuloma formation<br />

Tissue damage may ensue<br />

Lepromatous leprosy<br />

Persistence <strong>of</strong> M. leprae<br />

Disfiguring disorder


Type IV Hypersensitivity reactions<br />

Fig. 5-11<br />

Kumar 6th edition


Pathogens may influence the resulting adaptive immune response<br />

Science 302: 993-4; 2003


Figure 1 Stimulating the Th1 or Th2 response. In both pathways, dendritic <strong>cell</strong>s internalize the<br />

pathogen. They present its antigens to T <strong>cell</strong>s, which recognize antigens through their T-<strong>cell</strong> receptors<br />

(TCR). a, Organisms such as intra<strong>cell</strong>ular bacteria or viruses are recognized by the Toll-like<br />

receptors on dendritic <strong>cell</strong>s; the resulting signals induce the secretion <strong>of</strong> interleukin-12 (IL-12) <strong>and</strong><br />

<strong>differentiation</strong> <strong>of</strong> CD4 T <strong>cell</strong>s into the Th1 lineage that produces gamma interferon (IFN-). b, How<br />

dendritic <strong>cell</strong>s recognize larger pathogens, such as parasitic worms, is not known. But the end result<br />

is <strong>differentiation</strong> <strong>of</strong> Th2 effector <strong>cell</strong>s regulated by T-<strong>cell</strong>-produced interleukin-4 (IL-4).<br />

Information1, 2 on the link between dendritic <strong>cell</strong>s <strong>and</strong> T <strong>cell</strong>s suggests that the former express<br />

different Notch lig<strong>and</strong>s — Delta or Jagged — under different conditions. Jagged is specifically<br />

induced by stimuli known to induce Th2 <strong>differentiation</strong>. Notch signals (Notch-IC) can induce<br />

transcription <strong>of</strong> IL-4 through direct binding <strong>of</strong> RBPJ to the IL-4 promoter1<br />

Nature 430, 150 - 151 (08 July 2004)


# Publications per Year (PubMed)<br />

Publications on Suppressor T <strong>cell</strong>s <strong>and</strong><br />

Regulatory T <strong>cell</strong>s<br />

300<br />

250<br />

200<br />

Suppressor T <strong>cell</strong>s<br />

Regulatory T <strong>cell</strong>s<br />

150<br />

100<br />

50<br />

0


Rregulatory T <strong>cell</strong> subsets<br />

Natural regulatory T <strong>cell</strong>s express the <strong>cell</strong>-surface marker CD25 <strong>and</strong> the<br />

transcriptional repressor FOXP3 (forkhead box P3). These <strong>cell</strong>s mature <strong>and</strong> migrate<br />

from the thymus <strong>and</strong> constitute 5–10% <strong>of</strong> peripheral T <strong>cell</strong>s in normal mice. Other<br />

populations <strong>of</strong> antigen-specific regulatory T <strong>cell</strong>s can be induced from naive<br />

CD4 + CD25 - or CD8 + CD25 - T <strong>cell</strong>s in the periphery under the influence <strong>of</strong> semimature<br />

dendritic <strong>cell</strong>s, interleukin-10 (IL-10), transforming growth factor- (TGF-) <strong>and</strong><br />

possibly interferon- (IFN-). The inducible populations <strong>of</strong> regulatory T <strong>cell</strong>s include<br />

distinct subtypes <strong>of</strong> CD4 + T <strong>cell</strong>: T regulatory 1 (T R 1) <strong>cell</strong>s, which secrete high levels<br />

<strong>of</strong> IL-10, no IL-4 <strong>and</strong> no or low levels <strong>of</strong> IFN-; <strong>and</strong> T helper 3 (T H 3) <strong>cell</strong>s, which<br />

secrete high levels <strong>of</strong> TGF-. Although CD8 + T <strong>cell</strong>s are normally associated with<br />

cytotoxic T-lymphocyte function <strong>and</strong> IFN- production, these <strong>cell</strong>s or a subtype <strong>of</strong><br />

these <strong>cell</strong>s can secrete IL-10 <strong>and</strong> have been called CD8 + regulatory T <strong>cell</strong>s.


IFN-mediated STAT1 signaling leads to the induction <strong>of</strong> T-bet <strong>and</strong><br />

<strong>differentiation</strong> <strong>of</strong> T H 1 <strong>cell</strong>s. IFN- production is further potentiated by<br />

inflammatory cytokines such as IL-6. TGFß- induces Foxp3 expression in naive<br />

CD4 + T <strong>cell</strong>s <strong>and</strong> their <strong>differentiation</strong> into induced T reg <strong>cell</strong>s. IL-6 is a potent<br />

inhibitor <strong>of</strong> TGFß--induced Foxp3 induction in CD4 + T <strong>cell</strong>s. However,<br />

stimulation with both TGFß- <strong>and</strong> IL-6 results in the expression <strong>of</strong> RORt <strong>and</strong><br />

subsequent <strong>differentiation</strong> <strong>of</strong> T H -17 <strong>cell</strong>s.


Natural regulatory T <strong>cell</strong>s express the <strong>cell</strong>-surface marker CD25 <strong>and</strong> the<br />

transcriptional repressor FOXP3 (forkhead box P3). These <strong>cell</strong>s mature <strong>and</strong> migrate<br />

from the thymus <strong>and</strong> constitute 5–10% <strong>of</strong> peripheral T <strong>cell</strong>s in normal mice. Other<br />

populations <strong>of</strong> antigen-specific regulatory T <strong>cell</strong>s can be induced from naive<br />

CD4 + CD25 - or CD8 + CD25 - T <strong>cell</strong>s in the periphery under the influence <strong>of</strong> semimature<br />

dendritic <strong>cell</strong>s, interleukin-10 (IL-10), transforming growth factor- (TGF-)<br />

<strong>and</strong> possibly interferon- (IFN-). The inducible populations <strong>of</strong> regulatory T <strong>cell</strong>s<br />

include distinct subtypes <strong>of</strong> CD4 + T <strong>cell</strong>: T regulatory 1 (T R 1) <strong>cell</strong>s, which secrete<br />

high levels <strong>of</strong> IL-10, no IL-4 <strong>and</strong> no or low levels <strong>of</strong> IFN-; <strong>and</strong> T helper 3 (T H 3) <strong>cell</strong>s,<br />

which secrete high levels <strong>of</strong> TGF-. Although CD8 + T <strong>cell</strong>s are normally associated<br />

with cytotoxic T-lymphocyte function <strong>and</strong> IFN- production, these <strong>cell</strong>s or a subtype<br />

<strong>of</strong> these <strong>cell</strong>s can secrete IL-10 <strong>and</strong> have been called CD8 + regulatory T <strong>cell</strong>s.<br />

SL Reiner Cell 129: 33-36; 2007


Mechanism(s) <strong>of</strong> suppression.<br />

Various molecular <strong>and</strong> <strong>cell</strong>ular<br />

events have been described to<br />

explain how Treg can suppress<br />

immune responses. They<br />

include: IL-2 gene expression<br />

inhibition, modulation <strong>of</strong><br />

costimulatory molecules on APCs<br />

<strong>and</strong> interaction <strong>of</strong> LAG3 with<br />

MHC class II molecules (a),<br />

immunosuppressive cytokine<br />

secretion (b), induction <strong>of</strong><br />

tryptophan catabolism through<br />

CTLA-4 (c) <strong>and</strong> cytotoxicity (d).<br />

However, none <strong>of</strong> those<br />

mechanisms can explain all<br />

aspects <strong>of</strong> suppression. It is<br />

probable that various<br />

combinations <strong>of</strong> several<br />

mechanisms are operating,<br />

depending on the milieu <strong>and</strong> the<br />

type <strong>of</strong> immune responses. It is<br />

also possible that there might be<br />

a single key mechanism that has<br />

not been found yet (e).<br />

Abbreviations: APC, antigen<br />

presenting <strong>cell</strong>; TCR, T <strong>cell</strong><br />

receptor.


B <strong>cell</strong>s ….


CD4 T-Zelle<br />

CD40L<br />

T-Zell-Hilfe<br />

durch Zytokine<br />

2.Signal:<br />

Quervernetzung der<br />

Ig durch Antigen oder<br />

Aktivierung durch CD40L<br />

CD40<br />

1. Signal:<br />

Bindung des Antigen<br />

an Ig<br />

2. Signal<br />

naive B - Zelle<br />

kein<br />

2. Signal<br />

B-Gedächtniszelle

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!